
Graph Decomposition and Local Reasoning

D. Costa, J. Brotherston, D. Pym

University College London
d.costa,j.brotherston,d.pym @ ucl.ac.uk

Abstract. In modelling complex systems, at scales from code-level,
through distributed systems, to organizational structure, it is typically
necessary to introduce a model of location; that is, the places at which
system resources reside, together with their interconnectivity. Typically,
locations are modelled using (possibly directed) graphs. Handling very
large systems typically requires (i) that models be compositional and
(ii) that the composition of models supports local reasoning about their
properties; that is, just as in Separation Logic, the properties of the com-
ponents of a model can be established independently of one another. In
this paper, we provide a theory of graph composition, based on a concept
of a ‘pregraph’, that supports local reasoning about component graphs.

1 Introduction

In the world of complex systems modelling, it is commonplace to employ model
constructions in which there are concepts of location and of the connections be-
tween locations. These concepts are used to describe the underlying architecture
of the system. Locations may be logical or physical, but, either way, perhaps the
most common structures used to describe locations and the connections between
them are (possibly directed) graphs.

The world of program verification, itself a form of complex systems modelling,
provides a valuable insight: the desirability of models being constructed compo-
sitionally. First, large complex models should consist of assemblies of smaller,
possibly independently defined, components; second, it is desirable to be able to
reason about the component models locally. It should be possible to understand
which properties of given component models are dependent on the properties of
other component models. Therefore, if the essential structure of component mod-
els is described using graphs, it follows that a theory of graph (de)composition
that supports local reasoning is needed.

We propose a solution in which we move from graphs to pregraphs. Roughly
speaking, a pregraph is a graph in which we permit edges to be ‘dangling’ in the
sense that one vertex may be absent. Ordinary and dangling edges are drawn as
follows (direction omitted):

•	•	•	 o	
Ordinary edge Dangling edge

2

Dangling edges admit a form of composition that supports local reasoning,
as will be explained in more detail in the sequel. For a sneak peak on how this
works, consider Figure 1, in which the graph G has a subgraph H.

•

•

•

•

G

H •

o1. G \ H

•

2. G \ H •

v

v

v

Fig. 1. Graph decomposition

The allocation of vertex v when we extract H from G is our main concern:
should it be part of G\H and H simultaneously or only one of these? If dangling
edges are permitted, then – for some form of pregraph decomposition, the choices
for which will be discussed in the next section – the resulting G\H has no vertices
in common with H – that is, it is separated from H in the sense of separation
introduced in [4, 3, 5]. However, if dangling edges are not permitted, then the
resulting G\H must share a vertex, v, with H. In the former case, an appropriate
form of local reasoning is supported whereas in the latter it is not.

An appropriate form of local reasoning is described, in the spirit of [6], by
the ‘Frame Property’ in Figure 2, where the action a may for example alter the
structure of the pregraph. In short, the Frame Property holds when it is the case
that if a acts locally on G1, then the action a on G1 ◦G2 leaves G2 unaffected.

Abstract

The abstract.

1

G1 G1 � G2
a - G

G1
0

a

?
G1

0 � G2

wwwwwwwwww
a

-

1

Fig. 2. Frame property.

While the use of graphs to structure complex system models is more-or-less
ubiquitous, a theory of compositionality, essential to support tractable reasoning,
remains outstanding. The key requirement to address this gap is to have a theory
of (pre)graph (de)composition that supports effective local reasoning, which we
propose in this paper.

The rest of this paper is structured as follows: In Section 2, we discuss the
sensible choices of composition for pregraphs and identify the most appropriate
choice. In Section 3, we define a separation-like logic which we called Separating
Pregraph Logic, SPGL, for reasoning about pregraphs. We set up this logic in the
style of Separation Logic, giving its semantic definition in the style of BI’s Pointer
Logic [4, 3]. There are several steps in this definition, which largely follow the
corresponding steps in the set up of Separation Logic. We start by introducing
a programming language for manipulating pregraphs. Then we introduce an
assertion language to deal with properties of pregraphs. Putting these things

3

together, we sketch some key proof rules for SPGL’s ‘Hoare Triples’ of the form
{ϕ}C{ψ}, where C is a command in the programming language for pregraphs, ϕ
is precondition for C, and ψ is a postcondition for C. Perhaps the most important
of these rules is the Frame Rule,

{ϕ}C{ψ}
{χ ∗ ϕ}C{χ ∗ ψ}

where χ does not include any free variables modified by C. This rule will allow
us to reason about properties of pregraphs compositionally, a property of critical
importance when handling large, complex models. In Section 4, we verify the
correctness of the specification of a small toy program we built, before we move
on to the verification of the well-known Breadth-first search algorithm. Finally,
in Section 5, we summarize our contribution and consider some directions for
further research.

2 Composition of pregraphs

In the introduction, we have argued for the value of considering the notion of
pregraphs, which we now formally introduce. Critical to the value of considering
pregraphs is their composition, so, having defined pregraphs, we proceed to re-
flect on how they might be composed, considering and comparing three possible
definitions.

Definition 1 (Pregraph) Let V be a countably infinite domain whose elements
are called vertices and are usually denoted by lower case letters v, u, w, etc. A
pregraph, G, is a pair (V,E) of finite sets where V ⊂ V is the set of vertices of
the pregraph and E ⊂ (V × V) ∪ (V×V) is the set of edges of the pregraph.

A vertex v ∈ V is owned by G; a vertex u ∈ V\V, such that either (v, u) ∈ E
or (u, v) ∈ E for some owned vertex v, is called a dangling vertex. Edges in
V×V are called full edges; otherwise they are called half or dangling edges. We
may sometimes distinguish half edges (v, u) between incoming (if u ∈ V) and
outgoing (if v ∈ V). Note that a graph (in the usual sense) is a pregraph, but a
pregraph is not always a graph.

Example 1 Consider the pregraph G = ({v, u, w}, {(v, u), (x, v), (x,w), (u, y)}).
A visual representation of G is as in Figure 3. The vertices v, u and w are owned
by G; (v, u) is a full edge and all the others are half edges. In particular, (x, v)
and (x,w) are incoming edges and (u, y) is an outgoing edge.

We will now briefly explore some possible notions of composition for pre-
graphs. Before going any further, let us make it a rule that the composition of
two pregraphs, when defined, is a pregraph that takes the union of vertices and
the union of edges of the two initial pregraphs:

G1 ◦ G2 ↓ implies G = G1 ◦ G2 = (V1 ∪V2,E1 ∪ E2).

4

Fig. 3. A visual representation of the pregraph G from Example 1.

Our first requirement for the definedness of the composition of two pregraphs
is aligned with the notion of separation in [6]: it is that the pregraphs must not
share vertices. We call such pregraphs independent, formally defined as follows:

Definition 2 (Independent pregraphs) The pregraphs G1 = (V1,E1) and
G2 = (V2,E2) are said to be independent, denoted G1#G2, if V1 ∩V2 = ∅.

Observe that if two pregraphs are independent, they do not share full edges.
Therefore, the restrictions on the composition of pregraphs that we may further
add must concern half edges. The simplest case we can consider is when there
are no restrictions at all on half edges. Unfortunately, this composition, ◦1 is not
cancellative, as the following example illustrates:

Example 2 Consider the pregraphs G1 = ({v, w}, {(x, v), (x,w)}), G2 = ({u},
{(v, u), (u, y)}) and G3 = ({v, w}, {(x, v), (x,w), (v, u)}). We can see that G1#G2

and G1#G3 and therefore, given there are no other restrictions, composing G1

with G2 and with G3 is possible. The resulting pregraph in both cases is G =
({v, u, w}, {(v, u), (x, v), (x,w), (u, y)}), so the composition is not cancellative.

Thus, given pregraphs G and G1 and knowing that G = G1 ◦1 G2, it is not
always the case that there is a unique G2 for which the equality hold. Hence,
this is not the ideal notion of composition.

On the other hand, if in addition to consider independent pregraphs, we also
demand that they do not share any edges, we will obtain a composition ◦2 that
is cancellative. Furthermore, it is commutative and associative too.

However, the decomposition of a pregraph G = (V,E) into pregraphs G1 and
G2, for fixed V1 and V2 is not always unique, as the following example shows:

Example 3 Take the pregraph G = ({u, v}, {(u, v)}) that we would like to de-
compose into two pregraphs G1 = ({u},E1) and G2 = ({v},E2). The sets of
vertices E1 and E2 are not uniquely defined, as both the combinations E1 = ∅,
E2 = {(u, v)} and E1 = {(u, v)},E2 = ∅ work.

In the middle of the scale lies a third composition, ◦3, that is defined when
pregraphs are independent and share half edges in a special way. Namely, if a
pregraph G1 has an incoming (respectively outgoing) edge (u, v) and the dangling
vertex u (respectively v) is owned by G2, then the composition of G1 and G2 is
defined only if (u, v) is an outgoing (respectively incoming) edge of G2. The
overall idea is that two independent pregraphs must agree on the half edges that
have dangling vertices owned by one another. Formally,

5

G1 ◦3 G2 ↓ if and only if G1#G2 and
E1 ∩ (V2 ×V1) = E2 ∩ (V2 ×V1) and
E1 ∩ (V1 ×V2) = E2 ∩ (V1 ×V2).

This composition ticks all the boxes for what we believe is a good notion of
composition: ◦3 is commutative, associative, cancellative, its unit is the empty
pregraph e = (∅,∅), i.e. for every pregraph G, G ◦3 e = e ◦3 G = G, and it
provides unique decompositions of a pregraph when given a partition of its set
of vertices. The following example shows the third composition at work:

Example 4 Consider the pregraphs G1 = ({u}, {(u, v)}) and G2 = ({v, w},
{(u, v), (v, w), (v, x)}). First, observe that G1#G2. Then note that V2 × V1 =
{(v, u), (w, u)}, so E1 ∩ (V2 × V1) = ∅ = E2 ∩ (V2 × V1). At last, V1 × V2 =
{(u, v), (u,w)} implies that E1∩(V1×V2) = {(u, v)} = E2∩(V1×V2). Therefore,
G1 ◦3 G2 ↓ and so G1 ◦3 G2 = ({u, v, w}, {(u, v), (v, w), (v, x)}), as represented in
Figure 4.

Fig. 4. A particular case of composition ◦3 at work in Example 4.

As hinted before, given a pregraph G = (V,E), its decomposition into pre-
graphs G1 = (V1,E1) and G2 = (V2,E2), for fixed V1,V2 such that V1∪V2 = V
is now a precise computation. Each set of edges Ei (i = 1, 2) is constructed by
taking for every vertex v in Vi, all edges in E where v appears. Formally,

Ei =
⋃

v∈Vi

{(u, v), (v, u) ∈ E}

The following example illustrates the decomposition process:

Example 5 Take the pregraph G = ({u, v}, {(u, v)}) as in Example 3. We would
like to determine G1 and G2 such that G = G1 ◦3 G2, where V1 = {u} and V2 =
{v}. According to the method above, E1 = E2 = {(u, v)}. The decomposition is
represented in Figure 5.

Fig. 5. Given a partition of the original set of vertices, ◦3 produces unique decompo-
sitions.

Given its properties, from now on we will work with this last composition.
Its formal definition comes as follows: (note that we drop the subscript)

6

Definition 3 (Composition of pregraphs) The composition of pregraphs is
a partial function ◦ : PreGs× PreGs ↪→ PreGs. ◦(G1,G2) is defined if and only if
G1#G2, E1 ∩ (V2×V1) = E2 ∩ (V2×V1) and E1 ∩ (V1×V2) = E2 ∩ (V1×V2).
Whenever defined, ◦(G1,G2) = (V1 ∪V2,E1 ∪ E2).

Notation-wise, we will for the rest of the paper use G1 ◦ G2 rather than
◦(G1,G2). Furthermore, the set of all pregraphs with composition and the empty
pregraph constitutes a BBI-model, as shown next:

Proposition 1 Let PreGs be the set of all pregraphs over vertex names V, with
the composition ◦ as defined in Definition 3. Then 〈PreGs, ◦, e〉 is a BBI-model.

Additionally, it satisfies the following separation theory properties:

1. Cancellativity: G ◦ H1 = G ◦ H2 ⇒ H1 = H2;
2. Indivisible Unit: G ◦ H = e⇒ G = H = e;
3. Disjointness: G ◦ G = H⇒ G = H = e;
4. Cross-split: G ◦ H = I ◦ J ⇒ ∃G1,G2,H1,H2. G = G1 ◦ G2,H = H1 ◦ H2,

I = G1 ◦ H1, J = G2 ◦ H2.

It is sometimes useful to associate data with vertices in a pregraph. A formal
definition is as follows:

Definition 4 (Extended pregraph with data) Given a pregraph G = (V,E)
in PreGs, an extension of G with data from a set D is a pregraph GD = (VD,E)
such that v ∈ V if and only if there is one tuple 〈v, d〉 ∈ VD for some data d ∈ D,
also |V| = |VD|.

We will refer to extended pregraphs simply as pregraphs, omitting the men-
tion to the data set D. Therefore, elements of sets of vertices V are tuples of the
form 〈v, d〉. Whenever we want to refer solely to a vertex v we say that v ∈ V
which is taken to be the set underlying V.

Two extended pregraphs G1,G2 are independent if and only if V1 ∩V2 = ∅.
The use of extended pregraphs rather than just pregraphs has no effect on their
composition: simply replace in the formal definition V1 and V2 by V1 and V2.

3 SPGL: a separating logic over pregraphs

In this section, we introduce SPGL (‘Separating PreGraph Logic’) a close ana-
logue of standard Separation Logic [3, 5] based on an underlying model of (ex-
tended) pregraphs and their associated composition (defined in the previous
section), rather than heap memories and their composition (namely the union of
disjoint heaps). First, we introduce a relatively abstract language of while pro-
grams that directly operate on pregraphs; then we introduce our logical language
of assertions about program states in this language; and finally we introduce a
Hoare logic proof system for this language, which in particular obeys separation
logic’s well known frame rule [6].

7

3.1 An abstract programming language on pregraphs

Here, we adapt a standard while programming language to operate directly on
pregraphs. We assume countably infinite sets Var of variables and LVar of list
variables. List expressions LExp, branching conditions B and commands C in our
language are then given by the following grammar:

LExp ::= [] | L | x; LExp | LExp;x

B ::= x = y | x 6= y | LExp = LExp | LExp 6= LExp | x.data = d

C ::= skip | C;C | ifB thenC elseC | whileB doC (i)
| x := add vertex() | add edge(x, y) | del vertex(x)
| del edge(x, y) (ii)
| enqueue(L, x) | x := dequeue(L) | L := LExp
| x.data := d (iii)

where L ∈ LVar, x, y range over Var and d is data from a set D.

The first group of commands, (i), corresponds to the usual skip, composition,
if-then-else, and while programs. The second group of commands, (ii), involves
pregraph-changing programs at the level of the pregraph structure, either by
adding or deleting vertices or edges. The third group of commands, (iii), includes
the addition/removal of an element to/from a queue, the assignment of specific
data to a variable, and the assignment of a list to a variable.

Our semantic model is based on the usual stack-and-heap model of standard
separation logic (cf. [6]), except that we replace heaps by (extended) pregraphs.
A (program) state is given by a pair (s,G) where G (in PreGs) is a pregraph with
data and s : Var ∪ LVar → (V × D) ∪ ls(V × D) is called a stack representing
the local store, where s(x) ∈ (V × D), s(L) ∈ ls(V × D), and ls(X) denotes
the set of lists with elements in X. Observe that we represent pairs in V × D
using angle brackets: 〈u, d〉. We extend s to list expressions by making s([]) = [],
s(x; LExp) = s(x); s(LExp) and s(LExp;x) = s(LExp); s(x). It is sometimes useful
to refer to the vertex assigned to a variable, for which we use the following
notation: s(x) = u ⇔ s(x) = 〈u, d〉. for some d ∈ D. We define a function to
evaluate branching conditions, dependent on the stack, as follows [[.]]s : B →
{true, false} such that [[X • Y]]s = true if and only if s(X) • s(Y), • ∈ {=, 6=}
and [[x.data = d]]s = true if and only if s(x) = 〈u, d〉, for some u ∈ V. A
(program) configuration is either a triple 〈C, s,G〉 where C is a command and
(s,G) a program state, or the special configuration fault, used to denote memory
faults.

The small-step operational semantics of programs is given by a binary rela-
tion ; on program configurations, shown in Tables 1, 2 and 3, where 〈C, s,G〉;
〈C′, s′,G′〉 holds if the execution of the command C in the state (s,G) can result
in the configuration 〈C′, s′,G′〉. We write ;∗ for the reflexive-transitive closure of
;. A configuration 〈C, s,G〉 is called safe if 〈C, s,G〉 6;∗ fault, i.e. if no memory
error can result from it.

8

〈skip; C, s,G〉; 〈C, s,G〉
〈C1, s,G〉; 〈C′1, s′,G′〉

〈C1;C2, s,G〉; 〈C′1;C2, s
′,G′〉

[[B]]s = true

〈ifB thenC elseC′, s,G〉; 〈C, s,G〉
[[B]]s = false

〈ifB thenC elseC′, s,G〉; 〈C′, s,G〉

[[B]]s = true

〈whileB doC, s,G〉; 〈C; whileB doC, s,G〉
[[B]]s = false

〈whileB doC, s,G〉; 〈skip, s,G〉

Table 1. Small-step operational semantics of commands in group (i).

s′
x∼ s s′(x) = 〈u, d〉 : u /∈ V V′ = V ∪ {s′(x)}
〈x := add vertex(d), s, (V,E)〉; 〈skip, s′, (V′,E)〉

s(x), s(y) ∈ V E′ = E ∪ {(s(x), s(y))}
〈add edge(x, y), s, (V,E)〉; 〈skip, s, (V,E′)〉

s(x) /∈ V or s(y) /∈ V

〈add edge(x, y), s, (V,E)〉; fault

s(x) ∈ V V′ = V\{s(x)} E′ = E ∩ ((V′ × V) ∪ (V× V′))

〈del vertex(x), s, (V,E)〉; 〈skip, s, (V′,E′)〉

s(x) /∈ V

〈del vertex(x), s, (V,E)〉; fault

s(x), s(y) ∈ V E′ = E\{(s(x), s(y))}
〈del edge(x, y), s, (V,E)〉; 〈skip, s, (V,E′)〉

s(x) /∈ V or s(y) /∈ V

〈del edge(x, y), s, (V,E)〉; fault

Table 2. Small-step operational semantics of commands in group (ii).

s′
L∼ s s′(L) = s(L; x)

〈enqueue(L, x), s,G〉; 〈skip, s′,G〉

s(L) = s(y; LExp) s′
x,L∼ s s′(x) = s(y) s′(L) = s(LExp)

〈x := dequeue(L), s,G〉; 〈skip, s′,G〉

s(L) = []

〈x := dequeue(L), s,G〉; fault

s′
L∼ s s′(L) = s(LExp)

〈L := LExp, s,G〉; 〈skip, s′,G〉

s(x) ∈ V s′
x∼ s (s(x) = 〈u, d′〉 implies s′(x) = 〈u, d〉) V′ = (V\{s(x)}) ∪ {s′(x)}

〈x.data := d, s, (V,E)〉; 〈skip, s′, (V′,E)〉

s(x) /∈ V

〈x.data := d, s, (V,E)〉; fault

Table 3. Small-step operational semantics of commands in group (iii).

There are two key operational facts about our programming language, which
collectively underpin the soundness of separation logic’s frame rule. Those results
are stated below, cf. [6].

Lemma 1 (Safety monotonicity) If 〈C, s,G〉 is safe, and G ◦ G′ is defined,
then 〈C, s,G ◦ G′〉 is also safe.

Lemma 2 (Frame property) If 〈C, s,G1 ◦ G2〉 ;∗ 〈s′,G′〉 and 〈C, s,G1〉 is
safe, then there exists s′′,G′1 such that 〈C, s,G1〉 ;∗ 〈s′′,G′1〉, s′′ ≡ s′ and
G′ = G′1 ◦ G2.

9

3.2 Assertion language: syntax and semantics

Here, we describe a language of assertions suitable for describing properties of
pregraphs and their composition. Following the general philosophy of separation
logic, where the atomic formulas describe individual memory cells (x 7→ y), here
our atomic formulas will describe regions whose vertices share the same data.

We assume infinite, countable sets Var of variables and LVar of list variables.
We also take in the construction of list expressions LExp from the previous
subsection. The connectives of the logic are imported directly from the assertion
language of separation logic, which in turn can be seen as an instance of the
bunched logic BBI [3, 1].

Definition 5 (Formulas) Formulas of SPGL are given by the following gram-
mar:

ϕ,ψ := x = y | r = t | x.data = d | region(d,S,T)
| ⊥ | > | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | I | ϕ ∗ ψ | ϕ −∗ ψ

where x, y ∈ Var, r, t ∈ LExp, S ⊆ Var, T ⊆ Var2, and d ∈ D.

In order to deal with the sets that appear in our formulas, we update the
stack s such that for a set of variables S/pairs of variables T, the stack returns
a set of vertices/pairs of vertices, respectively. Namely: s(S) = {s(x) | x ∈ S}
and s(T) = {(s(x), s(y)) | (x, y) ∈ T}. We define an extension to deal with
a couple new set operations, as follows: s(X d Y) = s(X) ∪ s(Y), s(X e Y) =
s(X)∩s(Y) and s(X\\Y) = s(X)\s(Y) where X,Y are both sets of variables or sets
of pairs of variables. And finally, to deal with restricted sets of pairs: s(T‖S) =
{(s(x), s(y)) | s(x) ∈ s(S) or s(y) ∈ s(S)}. Observe that s((X\\Y) d Y) = s(X)
and s(T‖S\\S′ d T‖S′) = s(T‖S).

Now we introduce the semantics. First, we write PreGs for the set of all
pregraphs with vertices from V and data in D. We define a local satisfaction
relation as follows:

Definition 6 (Satisfaction) The satisfaction relation s,G |= ϕ where s is a
stack, G is a pregraph and ϕ is a formula, is defined by structural induction on
ϕ in Figure 6.

s,G |= x = y ⇔ s(x) = s(y)
s,G |= r = t ⇔ s(r) = s(t)

s,G |= x.data = d ⇔ s(x) = 〈u, d〉 for some u ∈ V
s,G |= region(d,S,T) ⇔ for all u, if u ∈ VG then 〈u, d〉 ∈ VG,

VG = s(S) and EG = s(T)
s,G |= I ⇔ G = e

s,G |= ϕ ∗ ψ ⇔ there exist G1,G2 s.t. G = G1 ◦ G2

and s,G1 |= ϕ and s,G2 |= ψ
s,G |= ϕ −−∗ ψ ⇔ for all G′, if G ◦ G′ is defined and G′, s |= ϕ,

then G ◦ G′, s |= ψ
Semantics for constants >,⊥ and Boolean connectives is defined as usual.

Fig. 6. Definition of the satisfaction relation s,G |= ϕ for SPGL.

10

A formula ϕ is said to be valid, denoted |= ϕ, if s,G |= ϕ for all G ∈ PreGs.
We write the entailment ϕ |= ψ, where ϕ and ψ are formulas, to mean that if
s,G |= ϕ then s,G |= ψ.

Note that every pregraph can be described by a formula of the form

region(d1, {x1},T1) ∗ . . . ∗ region(dn, {xn},Tn)

where n is its number of vertices.

3.3 Logical interactions in SPGL

In this section we will explore interactions between region formulas, namely how
to split and combine regions into new ones. First, we show how we can split
a region into two subregions. The result is stated for when the original region
has size n (the number of vertices in the pregraph) and its subregions have size
n− 1 and 1. Other partitions can be obtained in conjunction with the result on
merging regions that will appear after.

Lemma 3 (Split) region(d, S,T) |= region(d, S1,T1) ∗ region(d, S2,T2), where
S1 = S\\{x}, S2 = S e {x}, Ti = T‖Si

, i = 1, 2.

Reversely, given two regions with the same data, we can combine them into
a unique region as follows:

Lemma 4 (Merge) region(d,S1,T1) ∗ region(d,S2,T2) |= region(d, S1 d S2,
T1 d T2).

3.4 Hoare logic proof system

It is time to introduce specifications for the programs considered in Subsection
3.1. We begin by properly defining partial correctness for Hoare triples {ϕ}C{ψ},
which will be, in fact, analogous to the usual definition in the heaplets semantics.

Definition 7 (Partial correctness) {ϕ}C{ψ} is true when, for all s,G, if
s,G |= ϕ then (i) C, s,G is safe and (ii) if C, s,G ;∗ s′,G′ then s′,G′ |= ψ.

Table 4 lists the specifications for all programs in groups (ii) and (iii) intro-
duced in Subsection 3.1.

The Frame Rule for SPGL takes the form:

{ϕ}C{ψ}
{ϕ ∗ χ}C{ψ ∗ χ} ,Mod(C) ∩ [L]Var(χ) = ∅

where Mod(C) denotes the set of variables/list variables updated in the command
C, namely if C is of the form x := add vertex(d) or x.data := d then Mod(C) =
{x}, if C is of the form enqueue(L, x) or L := LExp then Mod(C) = {L}, and
Mod(x := dequeue(L)) = {x, L}; Mod(C) is empty for the remaining cases.
[L]Var(R) denotes the set of variables and list variables that occur in R.

11

{e}
x := add vertex(d)
{region(d, {x},∅)}

{region(d, {x},T)}
del vertex(x)
{e}

{region(d1, {x},T1) ∗ region(d2, {y},T2)}
add edge(x, y)
{region(d1, {x},T1 d {(x, y)}) ∗ region(d2, {y},T2 d {(x, y)})}

{region(d1, {x},T1) ∗ region(d2, {y},T2)}
del edge(x, y)
{region(d1, {x},T1\\{(x, y)}) ∗ region(d2, {y},T2\\{(x, y)})}

{L = LExp}
enqueue(L, x)
{L = LExp; x}

{L = y; LExp}
x := dequeue(L)
{x = y ∗ L = LExp}

{region(d2, {x},T)}
x.data := d1

{region(d1, {x},T)}

{e}
L := LExp
{e ∧ L = LExp}

Table 4. Specifications for commands in Subsection 3.1.

Theorem 1 (Soundness) The Frame Rule is sound.

Proof. The proof follows the same steps as in [6], by replacing heaps with pre-
graphs. As in the work mentioned, the proof relies heavily on the results on Safety
Monotonicity (Lemma 1) and Frame Property (Lemma 2) previously stated.

We leave a concrete proof of completeness for the future. However, it is rea-
sonable to assume that our system is complete. Observe that the Frame Rule is
sound, and furthermore, the Rule of Consequence is sound as well. Therefore the
typical “ingredients” at the base of completeness in SL are present in SPGL too.

ϕ′ ⇒ ϕ {ϕ}C{ψ} ψ ⇒ ψ′

{ϕ′}C{ψ′}

4 (Pre)Graph algorithms examples

In this section, we demonstrate how SPGL can be used to construct verification
proofs of (pre)graph algorithms. The first is a very simple example; afterwards
we proceed to the verification of the Breadth-first search algorithm.

4.1 new client: a (pre)graph changing program

Consider the toy example in Figure 7. The program takes a list of vertices V
and considers a pregraph whose owned vertices are those in V. It adds a new
vertex to the pregraph and then adds full edges from every pre-existing vertex
into the new one – we call this new vertex a “new client”. In order to make this
a simple example, there is no data associated with the vertices; therefore we will
keep notation lighter and omit the entries that refer to it. We will also omit the
fact that subformulas containing only variable assignments (as x = y, L = L′)
are satisfied in empty pregraphs (x = y ∧ e, L = L′ ∧ e).

We prove that the program satisfies the specification

{region({|V|},T)}
new client(V)

{region({|V|},T d {(y, x), y ∈ {|V|}}) ∗ region({x}, {(y, x), y ∈ {|V|}})}

12
new client(V){

Q:=V;
x:=add vertex();
while(Q 6= []){

y:=dequeue(Q);
add edge(y, x);

}
}

Fig. 7. A program to add a new client.

where {|V|} is the set of all elements in list V. We will use analogous notation
going forward. The proof is in Figure 8 and makes use of previous results on the
manipulation of region formulas from Subsection 3.3. In summary, in the proof we
introduce a new list variable which is assigned the list of vertices in the input and
add a new vertex according to specifications in Table 4. Inside the while loop, the
variable Q is always assigned to a list with at least one element and the size of the
pregraph does not change – the pregraph is constituted by the vertices in s({|V|})
plus the new vertex s(x). At each iteration, the sets T1 and T2 are incremented
with edges of the form (y, x) for y the vertex previously dequeued. In fact, at each
step, T1 = T d {(y, x) | y ∈ {|V|}\\{|y; L|}} and T2 = {(y, x) | v ∈ {|V|}\\{|y; L|}}.
This observation provides us with the invariant for the while loop:

region({|V|},T d {(y, x) | y ∈ {|V|}\\{|L|}})
∗ region({x}, {(y, x) | y ∈ {|V|}\\{|L|}}) ∗ Q = L

.
Therefore, when exiting the loop: region({|V|},T d {(y, x) | v ∈ {|V|}}) ∗

region({x}, {(y, x) | y ∈ {|V|}}) ∗ Q = [] holds. As we mentioned before, the vari-
able assignment holds in an empty region, thus it ends being omitted.

{region({|V|},T)}
new client(V)
Q:=V;
{region({|V|},T) ∗ Q = V}
x:=add vertex();
{region({|V|},T) ∗ region({x},∅) ∗ Q = V}
while(Q 6= []){
{region({|V|},T1) ∗ region({x},T2) ∗ Q = w; L}
y:=dequeue(Q);
{region({|V|},T1) ∗ region({x},T2) ∗ y = w ∗ Q = L}
{region({|V|}\\{y}, T1‖{|V|}\\{y}) ∗ region({y}, T1‖{y})
∗ region({x},T2) ∗ y = w ∗ Q = L} by Lemma 3

add edge(y, x);
{region({|V|}\\{y}, T1‖{|V|}\\{y}) ∗ region({y}, T1‖{y} d {(y, x)})
∗ region({x},T2 d {(y, x)}) ∗ y = w ∗ Q = L}
{region({|V|},T1 d {(y, x)}) ∗ region({x},T2 d {(y, x)}) ∗ y = w ∗ Q = L} by Lemma 4
}
{region({|V|},T d {(y, x) | y ∈ {|V|}}) ∗ region({x}, {(y, x), y ∈ {|V|}}) ∗ Q = []}
}
{region({|V|},T d {(y, x) | y ∈ {|V|}}) ∗ region({x}, {(y, x), y ∈ {|V|}})}

Fig. 8. Verification proof of the program in 4.1.

4.2 Breadth-first search algorithm verification

In this section we use SPGL and the usual principles of SL to construct the
verification proof of the Breadth-first search (BFS) algorithm [2] whose goal is

13

to, given an undirected graph and a source vertex, mark all reachable vertices
from the source. Since we are dealing with undirected (pre)graphs, we consider
the sets of edges E and the sets T in region formulas to be sets of two-sets {a, a′}
instead of pairs (a, a′).

From the point of view of the algorithm, a graph is composed by three (pos-
sibly empty, but definitely disjoint) regions, which are defined by clustering ver-
tices according to their data: in this case, one of the colours white, grey or black.
Simply put, white vertices correspond to undiscovered vertices, grey vertices cor-
respond to vertices that are about to be explored, and black vertices correspond
to vertices already visited. We will use d(S,T) to abbreviate region(d,S,T).

In the beginning, all vertices of the graph G are white, except for the source
s which we already consider grey. The algorithm creates a queue Q to accommo-
date s; in fact, this queue will accommodate all the vertices that are coloured
grey in the future. While the queue is not empty, meaning there are vertices
left to explore, the algorithm picks (and removes) the first element from the
queue, and immediately colours it black. Given that at this point nothing tells
us exactly to which region does that element belong, we simply “split” it from
all regions: note that since it belongs to a unique region, removing it from all
others produces no changes at all in the pregraph. Here is a zoomed in window
on that step for some intuition:

white(X,A) ∗ grey(Y,B) ∗ black(Z,C)
|= white(X\\{x}, A‖X\\{x}) ∗ white(X e {x}, A‖Xe{x})
∗ grey(Y \\{x}, B‖Y \\{x}) ∗ grey(Y e {x}, B‖Y e{x})
∗ black(Z\\{x}, C‖Z\\{x}) ∗ black(Z e {x}, C‖Ze{x})

Given that x can only be in one of X,Y, Z, the previous entails the following:

white(X\\{x}, A‖X\\{x}) ∗ grey(Y \\{x}, B‖Y \\{x}) ∗ black(Z\\{x}, C‖Z\\{x})
∗ 2({x}, (A dB d C)‖{x}), for 2 ∈ {white, grey, black}.

From this imprecise state, assigning a colour to the region that is consti-
tuted by x is actually possible. Thus in the proof we find white(X, A‖X) ∗
grey(Y , B‖Y) ∗ black(Z, C‖Z) ∗ black({x}, (A dB d C)‖{x}), where S is an

abbreviation for S\\{x}.
Now comes the second peculiarity of this example: the algorithm creates

a new queue to accommodate variables adjacent to x. We consider Adj(x) a
particular type of list variable that takes direct influence from the pregraph G,
namely: {|s(Adj(x))|} = {y | {y, x} ∈ EG}. While this queue is not empty, the
algorithm dequeues its first variable, which in case is white is added to the queue
Q. When we exit this while, we begin a new iteration of the main loop.

At the end of the algorithm, the set of all variables(/vertices) that are reach-
able from the source are coloured black and all the others remain white. We
prove in Figure 9 that the algorithm satisfies the specification

{white(S,T) ∗ grey(∅,∅) ∗ black(∅,∅)}
BFS(G,s)

{white(S\S′,T′) ∗ grey(∅,∅) ∗ black(S′,T′′)}

14

{white(S,T) ∗ grey({s}, T‖{s}) ∗ black(∅,∅)}
BFS(G,s){
Q:=s; []
{white(S,T) ∗ grey({s}, T‖{s}) ∗ black(∅,∅) ∗ Q = s; []}
while(Q 6= []){
{white(X,A) ∗ grey(Y,B) ∗ black(Z,C) ∗ Q = w; L}
x:=dequeue(Q)
{white(X,A) ∗ grey(Y,B) ∗ black(Z,C) ∗ x = w ∗ Q = L}
x.colour:=black
{white(X\\{x}, A‖X\\{x}) ∗ grey(Y \\{x}, B‖Y \\{x}) ∗ black(Z\\{x}, C‖Z\\{x})
∗ black({x}, (A d B d C)‖{x}) ∗ x = w ∗ Q = L}

Q′:=Adj(x)

{white(X), A‖X) ∗ grey(Y , B‖Y) ∗ black(Z, C‖Z)
∗ black({x}, (A d B d C)‖{x}) ∗ x = w ∗ Q = L ∗ Q′ = Adj(x)}

while(Q′ 6= []){
{white(X1, A1) ∗ grey(Y1, B1) ∗ black(Z1, C1) ∗ x = w ∗ Q = L ∗ Q′ = z; L2}
y:=dequeue(Q′)
{white(X1, A1) ∗ grey(Y1, B1) ∗ black(Z1, C1) ∗ x = w ∗ Q = L ∗ y = z ∗ Q′ = L2}
if(y.colour=white){
{white(X1\\{y}, A1‖X1\\{y}

) ∗ white({y}, A1‖{y})
∗ grey(Y1, B1) ∗ black(Z1, C1) ∗ x = w ∗ Q = L ∗ y = z ∗ Q′ = L2} by Lemma 3

y.colour:=grey
{white(X1\\{y}, A1‖X1\\{y}

) ∗ grey({y}, A1‖{y})
∗ grey(Y1, B1) ∗ black(Z1, C1) ∗ x = w ∗ Q = L ∗ y = z ∗ Q′ = L2}

enqueue(Q, y)
{white(X1\\{y}, A1‖X1\\{y}

) ∗ grey({y}, A1‖{y})
∗ grey(Y1, B1) ∗ black(Z1, C1) ∗ x = w ∗ Q = L; y ∗ y = z ∗ Q′ = L2}
{white(X1\\{y}, A1‖X1\\{y}

) ∗ grey(Y1 d {y}, B1 d A1‖{y})
∗ black(Z1, C1) ∗ x = w ∗ Q = L; y ∗ y = z ∗ Q′ = L2} by Lemma 4
}
}
{white(X\\({k | {k, x} ∈ T} e X), A‖X\\({k | {k,x}∈T}eX))

∗ grey(Y d ({k | {k, x} ∈ T} e X), B‖Y d A‖{k | {k,x}∈T}eX)

∗ black(Z d {x}, C‖Z d (A d B d C)‖{x})
∗ x = w ∗ Q = L; [[{k | {k, x} ∈ T} e X]] ∗ Q′ = []}
}
{white(S\\{k | ∃k1, . . . , kn s.t. {k1, k2}, . . . , {kn−1, kn} ∈ T, k1 = s, kn = k, k ∈ S},
T‖S\\{k | ∃k1,...,kn s.t. {k1,k2},...,{kn−1,kn}∈T,k1=s,kn=k,k∈S})

∗ grey(∅,∅) ∗ black({k | ∃k1, . . . , kn s.t. {k1, k2}, . . . , {kn−1, kn} ∈ T, k1 = s, kn = k, k ∈ S},
T‖{k | ∃k1,...,kn s.t. {k1,k2},...,{kn−1,kn}∈T,k1=s,kn=k,k∈S} ∗Q = [])}
}

Fig. 9. Verification proof of the Breadth-first search algorithm.

where S′ is the set of vertices in the same connected component as s and the sets
of edges T′,T′′ are obtained by restricting T to the set of edges where at least
one of the elements in each two-set is in the region white or black, respectively.

Invariants I for the while loops in the algorithm can be stated as follows: at
each iteration of the while(Q′ 6= []) loop, the following holds:

I = white(X\\(M eX), A‖X\\(MeX))

∗ grey(Y d (M eX), B‖Y d A‖MeX)
∗ black(Z d {x}, C‖Z d (A dB d C)‖{x})
∗ x = w ∗ Q = L; [[M eX]] ∗ Q′ = Adj(x)\\[[M]]

where [[M e X]] is a list whose elements are in the set M e X and
Adj(x)\\[[M]] should be interpreted as the list of variables adjacent to x that
are not in M .

15

For the main loop, while(Q 6= []) the invariant takes the form:

I = white(S\({|L|} ∪ J), T|S\({|L|}∪J)) ∗ grey({|L|}, T|{|L|})
∗ black(J, T|J) ∗ Q = L

where at each iteration, if the elements in J are reachable in at most k steps, then
those in {|L|} are reachable in at most k + 1 steps. At the end of the algorithm
we obtain a black region of variables reachable in n steps and no other variable
is reachable in more than n steps. The white region contains all variables not
reachable from the source.

5 Conclusions and future work

Being able to split graphs into smaller parts has always constituted a problem.
More often than not, the remainder of a graph after a subgraph is extracted is
not a graph. However, one certainly recognizes that being able to zoom in into a
region of a graph, make changes and posteriorly zoom out is much desirable in
several contexts. In order to overcome the issues that arise when one tries to split
graphs, we introduced a new concept, that of a pregraph. Simply put, a pregraph
is a kind of graph where some vertices may be missing, under the constraints
that missing vertices are part of an edge and that at most one vertex per edge
is missing. After a detailed study of notions of composition for pregraphs, we
settled on a definition that makes the set of all pregraphs, the composition and
the empty pregraph (the unit), a BBI-model.

We introduced a separation-like logic where instead of heaps we consider
pregraphs, in an attempt to provide a formal way of verifying graph algorithms.
We were indeed able to prove the correctness of a small toy example and of the
well-known Breadth-first search algorithm. While we cannot claim that SPGL
is equipped to deal with all kinds of graph algorithms, it certainly feels like it
is the first step in the right direction. In the future we intend to use this new
logic and by adding new extra machinery, be able to prove the correctness of
more complex algorithms, such as the Ford-Fulkerson algorithm, which involves
weights on edges.

One of the main ingredients of the logic is the presence of a sound frame rule,
which is what enables the proofs of the examples presented. In fact, the frame
rule used is analogous to the rule found in standard Separation logic. A detailed
account on completeness is left as future work. An in-depth study of complexity
and decidability for SPGL are also topics to address later on.

Acknowledgements. This work has been supported by the UK EPSRC project

EP/R006865/1.

References

1. J. Brotherston and J. Villard. Parametric completeness for separation theories. In
Proceedings of POPL-41, pages 453–464. ACM, 2014.

16

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

3. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proceedings of POPL-28, pages 14–26. ACM, 2001.

4. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 1999.

5. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS-17, pages 55–74. IEEE Computer Society, 2002.

6. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In Proceedings of
FOSSACS-5, pages 402–416. Springer, 2002.

17

Appendix

Proposition 1 Let PreGs be the set of all pregraphs over vertex names V, with
the composition ◦ as defined in Definition 3. Then 〈PreGs, ◦, e〉 is a BBI-model.

Additionally, it satisfies the following separation theory properties:

1. Cancellativity: G ◦ H1 = G ◦ H2 ⇒ H1 = H2;
2. Indivisible Unit: G ◦ H = e⇒ G = H = e;
3. Disjointness: G ◦ G = H⇒ G = H = e;
4. Cross-split: G ◦ H = I ◦ J ⇒ ∃G1,G2,H1,H2. G = G1 ◦ G2,H = H1 ◦ H2, I =

G1 ◦ H1, J = G2 ◦ H2.

Proof. The triple 〈PreGs, ◦, e〉 is a BBI-model if ◦ is commutative, associative,
and G ◦ e = G for all G ∈ PreGs. It is trivial to prove that the first and third
conditions hold. In order to prove associativity of ◦, assume that G1 ◦ (G2 ◦ G3)
is defined. Then, by definition, G1#(G2 ◦ G3) and G1 and G2 ◦ G3 agree on half
edges and G2#G3 and G2 and G3 agree on half edges. Since V1 ∩ (V2 ∪V3) = ∅
and V2 ∩V3 = ∅, it follows that V1 ∩V2 = ∅ and (V1 ∪V2) ∩V3 = ∅.

We need to prove that G1 and G2 agree on half edges, so that G1 ◦ G2 ↓,
and then prove that G1 ◦ G2 and G3 agree on half edges too. Take a half edge
(u, v) ∈ E1 and assume, W.L.G., that u ∈ V1, v ∈ V2. Then v ∈ V2 ∪ V3.
Since G1 and G2 ◦ G3 agree on half edges, (u, v) ∈ E2 ∪ E3. Moreover, because
V1 ∩ V2 = V1 ∩ V3 = V2 ∩ V3 = ∅, u, v /∈ V3 and therefore (u, v) ∈ E2. For
a dangling edge (u, v) ∈ E2 such that, W.L.G., u ∈ V2, v ∈ V1, observe that
(u, v) ∈ E2 ∪ E3 and u ∈ V2 ∪ V3. This implies that (u, v) ∈ E1, given that G1

and G2 ◦ G3 agree on half edges. This concludes the proof that G1 and G2 agree
on half edges.

In order to prove that G1 ◦ G2 and G3 agree on half edges, take a half edge
(u, v) ∈ E1 ∪ E2 and consider, W.L.G., that u ∈ V1 ∪ V2, v ∈ V3. If u ∈ V1,
(u, v) ∈ E1. Also, v ∈ V2 ∪ V3. Since G1 and G2 ◦ G3 agree on half edges,
(u, v) ∈ E2 ∪ E3. Additionally, u, v /∈ V2 implies that (u, v) /∈ E2 and thus
(u, v) ∈ E3. If, on the other hand, u ∈ V2, then (u, v) ∈ E2, which implies
(u, v) ∈ E3 as G2 and G3 agree on half edges. For a dangling edge (u, v) ∈ E3

such that, W.L.G., u ∈ V3, v ∈ V1∪V2, in case v ∈ V1, observe that u ∈ V2∪V3

and (u, v) ∈ E2 ∪E3. Given that G1 and G2 ◦G3 agree on half edges, (u, v) ∈ E1.
Case v ∈ V2 it immediately follows that (u, v) ∈ E2 as G2 and G3 agree on half
edges. Thus (u, v) ∈ E1∪E2. This concludes the proof that G1 ◦G2 and G3 agree
on half edges. Consequently ◦ is commutative.

We now prove the additional properties listed:
1. Cancellativity: Assume that G,H1,H2 ∈ PreGs and G ◦ H1 = G ◦ H2. Then

(VG∪VH1 ,EG∪EH1) = (VG∪VH2 ,EG∪EH2). Since G◦H1 and G◦H2 are defined,
VG∩VH1

= VG∩VH2
= ∅. Therefore, VG∪VH1

= VG∪VH2
implies VH1

= VH2
.

We prove by contradiction that EH1
= EH2

, so take (u, v) ∈ EH1
and (u, v) /∈

EH2
. From the first assumption it follows that (u, v) ∈ EG◦H1

. Then, since G◦H1 =
G ◦H2, it implies that (u, v) ∈ EG◦H2

. Given that we assumed that (u, v) /∈ EH2
,

it must be the case that (u, v) ∈ EG. So, (u, v) ∈ EH1 ∩ EG and therefore (u, v)

18

is a dangling edge in both H1 and G, which in turn implies that (u, v) is a full
edge in G ◦ H1. However, (u, v) is not a full edge in G ◦ H2, since (u, v) /∈ EH2

.
This contradicts the fact that G ◦ H1 = G ◦ H2; thus EH1 = EH2 .

2. Indivisible unit: Take pregraphs G,H ∈ PreGs such that G ◦ H = e. Then
(VG ∪ VH,EG ∪ EH) = (∅,∅), which implies that VG = VH = EG = EH = ∅.
Thus G = H = e.

3. Disjointness: Assume that G ◦G = H for some pregraphs G,H ∈ PreGs. By
definition, the composition is defined only if VG ∩ VG = ∅, which implies that
VG = ∅. By the definition of pregraph it follows that EG = ∅. Consequently
G = H = e.

4. Cross-split: The decomposition of pregraphs is always possible, so there
exist G1,G2 such that G = G1 ◦ G2 for every possible choice of VG1

,VG2
as long

as VG1 ∩VG2 = ∅ and VG1 ∪VG2 = VG. Analogously for the decomposition of H.
Therefore, G◦H = (G1◦G2)◦(H1◦H2). Associativity and commutativity of ◦ lead
to G ◦ H = (G1 ◦ H1) ◦ (G2 ◦ H2). Thus for appropriate choices of G1,G2,H1,H2,
I = G1 ◦ H1 and J = G2 ◦ H2.

Lemma 1 (Safety Monotonicity) If 〈C, s,G〉 is safe, and G ◦ G′ is defined,
then 〈C, s,G ◦ G′〉 is also safe.

Proof. • Commands in group (i):

The commands skip, C1;C2, ifB thenC elseC′ and whileB doC are always
safe.

• Commands in group (ii):

For C = x := add vertex(d), 〈C, s,G〉 is always safe, regardless of the choice
of pregraph. Given that pregraphs own a finite number of vertices, and that
the set V is countably infinite, it follows that for any given pregraph G there is
always a vertex u ∈ V\V such that 〈u, d〉 that can be added to V.

For C = add edge(x, y), since 〈C, s,G〉 is safe, s(x), s(y) ∈ V, thus the edge
(s(x), s(y)) can be added to the set of edges E of the pregraph. Assuming that
G ◦ G′ ↓, it immediately follows that s(x), s(y) ∈ V ∪ V′ and thus the edge
(s(x), s(y)) can be added to E ∪ E′. Therefore 〈C, s,G ◦ G′〉 is safe.

For C = del vertex(x), since 〈C, s,G〉 is safe, s(x) ∈ V. So s(x) can be
removed from the set of vertices V and all dangling edges involving s(x) can
be removed from the set of edges E. Assuming that G ◦ G′ ↓, it follows that
s(x) ∈ V ∪ V′. Therefore, s(x) may be removed from V ∪ V′ and all dangling
edges involving s(x) can be removed from E ∪ E′. Thus 〈C, s,G ◦ G′〉 is safe.

For C = del edge(x, y), since 〈C, s,G〉 is safe, s(x), s(y) ∈ V. Therefore
the edge (s(x), s(y)) can be removed from the set of edges E. From the as-
sumption that G ◦ G′ ↓, it is straightforward that s(x), s(y) ∈ V ∪ V′, then the
edge (s(x), s(x)) may be removed from the set of edges E ∪ E′. In conclusion,
〈C, s,G ◦ G′〉 is safe.

• Commands in group (iii):

The safety of none of these commands depends on the pregraph, therefore if
〈C, s,G〉 is safe, then surely so is 〈C, s,G ◦ G′〉.

19

Lemma 2 (Frame property) If 〈C, s,G1 ◦ G2〉;∗ 〈s′,G′〉 and 〈C, s,G1〉 is safe,
then there exists s′′,G′1 such that 〈C, s,G1〉;∗ 〈s′′,G′1〉, s′′ ≡ s′ and G′ = G′1◦G2.

Proof. Assume that for each case, 〈C, s,G1 ◦ G2〉;∗ 〈s′,G′〉 and 〈C, s,G1〉 is safe.
• Commands in group (i):
Check the proof for standard Separation logic in [6].

• Commands in group (ii):

For C = x := add vertex(d), s′
x∼ s, G′ = (V1∪V2∪{s′(x)},E1∪E2), where

s′(x) /∈ V1∪V2 is a new vertex with data d. From the assumption that 〈C, s,G1〉
is safe, we reach the state 〈s′′,G′1〉, where s′′

x∼ s, G′1 = (V1 ∪ {s′′(x)},E1) and
s′′(x) /∈ V1 is a new vertex with data d. We may consider s′′ ≡ s′, from which it
follows that G′1 = (V1 ∪ {s′(x)},E1) and therefore G′ = G1 ◦ G2.

For C = add edge(x, y), from the first assumption follows that s(x), s(y) ∈
V1 ∪ V2, s′ = s and G′ = (V1 ∪ V2,E1 ∪ E2 ∪ {(s(x), s(y))}). The second as-
sumption implies that s(x), s(y) ∈ V1. Therefore, 〈C, s,G1〉 ;∗ 〈s,G′1〉, where
G′1 = (V1,E1 ∪ {(s(x), s(y))}). So G′ = G′1 ◦ G2.

For C = del vertex(x), the first assumption implies that s(x) ∈ V1 ∪ V2.
Also, s′ = s and G′ = (V′,E′), where V′ = (V1 ∪ V2)\{s(x)} and E′ = (E1 ∪
E2) ∩ ((V′ × V) ∪ (V× V′)). From the assumption that 〈C, s,G1〉 is safe follows
that s(x) ∈ V1 and 〈C, s,G1〉 ;∗ 〈s,G′1〉 where G′1 = (V′1,E

′
1) V′1 = V1\{s(x)}

and E′1 = E1 ∩ ((V′1 × V) ∪ (V× V′1)). We now prove that G′ = G′1 ◦ G2. In the
first place, V′ = V′1∪V2 = (V1\{s(x)})∪V2 = (V1∪V2)\{s(x)} since s(x) ∈ V1

and s(x) /∈ V2. As for the set of edges, E′ is equal to the set E except for all
dangling edges whose owned vertex is s(x); the construction of E′1 is analogous.
Given that s(x) /∈ V2, there are no dangling edges in E2 whose owned vertex is
s(x). Therefore, E′ = E′1 ∪ E2.

For C = del edge(x, y), the first assumption implies that s(x), s(y) ∈ V1∪V2,
s′ = s and G′ = (V′,E′), where V′ = V1 ∪V2 and E′ = (E1 ∪E2)\{(s(x), s(y))}.
From the second assumption we obtain that s(x), s(y) ∈ V1. It follows that
〈C, s,G1〉 ;∗ 〈s,G′1〉, where G′1 = (V1,E1\{(s(x), s(y))}). So V′ = V′1 ∪ V2 and
since s(x), s(y) /∈ V2 and (s(x), s(y)) /∈ E2, it follows that E′ = E′1 ∪ E2. Thus
G′ = G′1 ◦ G2.

• Commands in group (iii):

For C = enqueue(L, x), s′
L∼ s, s′(L) = s(L); s(x) and G′ = G1 ◦ G2. From

the assumption that 〈C, s,G1〉 is safe follows that 〈C, s,G1〉 ;∗ (s′′,G1), where

s′′
L∼ s, s′′(x) = s(L); s(x). Therefore, s′′ = s and the result follows.

For C = x := dequeue(L), s′
x,L∼ s, s′(x) = y and s′(L) = LExp when s(L) =

y; LExp. Also, G′ = G1 ◦ G2. Given the assumption of the safety of 〈C, s,G1〉, it
is the case that 〈C, s,G1〉;∗ (s′,G1). Thus the property holds.

For C = L := LExp, s′
L∼ s, s′(L) = LExp, G′ = G1 ◦G2. Given the assumption

of the safety of 〈C, s,G1〉, it is the case that 〈C, s,G1〉 ;∗ (s′,G1). The result
follows.

For C = x.data := d, s(x) ∈ V, s′
x∼ s and G′ = (V′,E) such that if

s(x) = 〈u, d′〉 then s′(x) = 〈u, d〉 and V′ = (V\{s(x)}) ∪ {s′(x)}. Assuming

20

that 〈C, s,G1〉 is safe, it follows that s(x) ∈ V1, and 〈C, s,G1〉;∗ (s′,G′1), where
G′1 = (V′1,E1) and V′1 = (V1\{s(x)}) ∪ {s′(x)}. The result follows.

Lemma 3 (Split) region(d,S,T) |= region(d,S1,T1) ∗ region(d,S2,T2), where
S1 = S\\{x}, S2 = S e {x}, Ti = T‖Si

, i = 1, 2.

Proof. Take s,G such that s,G |= region(d,S,T). We want to prove that
s,G1 |= region(d, S1,T1) and s,G2 |= region(d,S2,T2), where G1 ◦ G2 = G.

First we show that V = V1 ∪ V2. Take an element 〈u, d〉 ∈ V. We want to
prove that 〈u, d〉 ∈ V1 ∪ V2. By definition, 〈u, d〉 ∈ V if and only if there exists
y ∈ S such that s(y) = 〈u, d〉. Also, V1 = s(S\{x}) = {s(y) | y ∈ S}\\{s(x)}
and V2 = s(S e {x}) = {s(y) | y ∈ S} ∩ {s(x)}. If s(y) = s(x) then 〈u, d〉 ∈ V2;
otherwise, if s(y) 6= s(x) then 〈u, d〉 ∈ V1.

Now we prove that V1 ∩V2 = ∅. Observe that from the previous paragraph
we can extract that V1,V2 ⊆ V. Also, note that for x, y ∈ S, if s(x) = 〈u, d〉
and s(y) = 〈u, d′〉 then d = d′ by the definition of pregraph with data. Take
an element 〈u, d〉 ∈ V1 = s(S1). There is no element 〈u, d′〉 ∈ V with d′ 6= d,
so we can already conclude that 〈u, d′〉 /∈ V2. From our premise, it follows that
〈u, d〉 ∈ {s(y) | y ∈ S}\{s(x)}. Equivalently, 〈u, d〉 /∈ {s(y) | y ∈ S} ∩ {s(x)},
thus 〈u, d〉 /∈ s(S2) = V2. Therefore V1 ∩V2 = ∅.

We conclude the proof showing that E = E1 ∪ E2. Take (u, v) ∈ E = s(T).
Assume that (u, v) /∈ E1 = s(T1). It follows that (u, v) /∈ {(s(y), s(z)) | s(y) ∈
s(S1) or s(z) ∈ s(S1)}. Thus (u, v) 6= (s(y), s(z)) for all pairs such that either
s(y) ∈ s(S) and s(y) 6= s(x) or s(z) ∈ s(S) and s(z) 6= s(x). If (u, v) = (s(y), s(z))
and s(y) ∈ s(S), then s(y) = s(x) and (u, v) ∈ s(T2) = E2. On the other
hand if s(y) /∈ s(S), then by the definition of pregraph, s(z) ∈ s(S). Therefore,
s(z) = s(x) and (u, v) ∈ s(T2) = E2. Thus (u, v) ∈ E1 ∪ E2. The proof that
(u, v) /∈ E2 implies (u, v) ∈ E1 follows an analogous approach. Thus E = E1∪E2

Lemma 4 (Merge) region(d,S1,T1) ∗ region(d,S2,T2) |= region(d,S1 d S2,
T1 d T2).

Proof. Let s,G be such that s,G |= region(d, S1,T1) ∗ region(d,S2,T2). This im-
plies that V = s(S1) ∪ s(S2) = s(S1 d S2) and E = s(T1) ∪ s(T2) = s(T1 d T2).
The result immediately follows.

