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Mathematical modelling is one of the fundamental tools of science and engineering. Very

often, models are required to be executable, as a simulation, on a computer. In this

paper, we present some contributions to the process-theoretic and logical foundations of

discrete-event modelling with resources and processes. We present a process calculus

with an explicit representation of resources in which processes and resources co-evolve.

The calculus is closely connected to a logic that may be used as a specification language

for properties of models. The logic is strong enough to allow requirements that a system

has certain structure; for example, that it is a parallel composite of subsystems. This

work consolidates, extends, and improves upon aspects of earlier work of ours in this

area. An extended example, consisting of a semantics for a simple parallel programming

language, indicates a connection with separating logics for concurrency.

1. Introduction

Mathematical modelling and simulation are fundamental tools of science and engineering.
They are important in almost all fields, at many scales and at many levels of complex-
ity. This paper deals with the mathematical and logical foundations of discrete-event
modelling.

Modelling is the process of making a precise description, a model, of a system in order
that its properties may be subjected to a rigorous analysis. The precise form of the model,
the analysis it is subjected to and even the modelling process itself depend upon the object
of study. Some general observations are, however, in order to put this paper in context.
Any model should be sound, in the sense that all parts somehow represent aspects of
the system being modelled. On the other-hand a model need not be complete in order
to be useful, it does not have to represent every aspect of the system being described.
Thus it is important to distinguish between the model and the underlying system which
the model represents. Very often this introduces feedback into the modelling process, in
which a hierarchy of successively refined models is created.

One kind of model that frequently arises is the discrete-event model. In such models,
the (model of the) system evolves in discrete jumps. In traditional applied mathematics,
such systems are often described by families of difference equations that describe how
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the system changes locally in time from one instant to the next. From these equations
an evolution (or flow) operator is produced that completely describes the behaviour of
the system. This calculation method is undoubtedly very powerful. In practice, however,
it can be difficult to formulate the equations in a soluble form. This is often the case
when the system is complex, for example, with many mutually dependent, heterogeneous
components, evolving concurrently in different ways and on different time-scales. In such
situations, when calculation is difficult, infeasible or cannot be carried out within a given
time, it can be particularly useful to produce a computational model of the system. In
practice, this is done with a whole host of programming languages and tools. There are
even languages specifically designed for such tasks. Perhaps the best-known simulation
language is Simula (Dahl, Myhrhaug & Nygaard 1970). Most of the time the semantics
of such languages are not well-understood. Recall, however, the soundness criterion on
models. There is a need for simulation languages that rest upon rigorous foundations, in
order that no spurious trajectories are introduced inadvertently into simulations.

In this paper, we use Demos2k (Birtwistle & Tofts 2001a, Birtwistle & Tofts 2001b, De-
mos2k 2002) as an important example of such a language. Demos2k is a descendant of
the original Demos tool (Birtwistle 1979) which itself is a descendant of Simula. Hence-
forward, all specific references to the workings of Demos should be taken to refer to the
later Demos2k. Demos is a discrete-event modelling tool used to describe the concurrent
co-evolution of many entities together with the resources they use. It is closely related to
languages for concurrent and distributed programming (Ben-Ari 1990). The soundness
of Demos2k as a modelling tool is encapsulated in the statement that it is semantically
justified : there is a precise mathematical description of the structure and evolution of
every model written in the language. Alternative modelling tools that use languages in-
fluenced by the theory of semantics include the Concurrency Workbench (Cleaveland,
Parrow & Steffen 1993), the Mobility Workbench (Victor & Moller 1994), and PRISM
(Hinton, Kwiatkowska, Norman & Parker 2006) amongst others. In addition, there is
a well-developed modelling paradigm, in which systems of interest are characterized in
terms of their environment (typically represented as collections of stochastic events), the
spatial or logical distribution of the system, the resources present in the system, and
the processes that the system executes. Further discussion of this paradigm is beyond
the scope of this paper, but the analysis presented herein directly supports its last two
aspects. Demos conforms much more closely with this paradigm than do the alternative
tools mentioned above.

The area of semantics most closely connected to this kind of work is known as process
calculus (or process algebra). A process calculus can be thought of as a precise math-
ematical language for describing concurrently evolving entities called processes. Indeed,
they can fruitfully be thought of as idealized simulation languages (of a certain kind).
This point of view has been expounded by others in the past and a significant body of
work has been built-up in pursuing it. The paper (Birtwistle, Pooley & Tofts 1993), for
example, is a good introduction, whilst (Tofts 2006) provides an appraisal of the method-
ology, including an account of its scope and suggestions of areas and problems to which
it may be expected to make further contributions.

The process calculi which we shall develop in this paper are strongly influenced by
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Milners’ Synchronous Calculus of Communicating Processes SCCS (Milner 1983). This
followed an earlier development, CCS, which was asynchronous (Milner 1980, Milner
1989). Other process calculi emerged around the same time from other researchers, and
there have been many developments since, but for the most part these will not concern
us here. A survey (Baeten 2005) of the history of process calculi has appeared.

A good process calculus usually has several distinguishing features. To begin with, pro-
cesses should be constructed formally from a well-defined collection of atomic actions and
a small number of process constructors. Models of systems are assembled from sub-models
by means of the constructors. The meaning of every process should be given by a struc-
tural operational semantics (Plotkin 2004), with constructors having a natural, intuitive
reading. The operational semantics generates a transition structure (or system) that de-
scribes the flow of processes. An algebraic theory of process equality called (bi)simulation
is used to identify processes with the same behaviour. In addition, it is usually necessary
(for entirely practical reasons) to have a second language that makes logical assertions
about properties of processes. Thus the process calculus presents not only a precise de-
scription of the evolution of processes but also a method for specifying and verifying
process properties. Certain forms of process are known to give rise to terminating algo-
rithms for constructing transition structures, and for model-checking processes against
specifications. Automated tools are then often provided in support. When all of these
features are present the process calculus may be seen to be an integrated environment
for both the synthesis and analysis of models.

There are, however, some difficulties associated with using existing process calculi as
a foundation for modelling and simulation of the kind we have described, although it
can be done, (Birtwistle et al. 1993). These difficulties arise from there being no direct
representation of resource, which must therefore be represented via an encoding. This
has two consequences: firstly, there is a lack of clear conceptual analysis of the notion of
resource, a significant burden for the modeller who must track important quantitative
information conveyed by the resource; and, secondly, keeping track of the evolution of
resource becomes a heavy burden when computing the evolution of a process.

The process algebra SCRP, Synchronous Calculus of Resource Processes, introduced
in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson, Pym & Tofts 2007), provides the
beginnings of an approach to addressing these issues. In SCRP, resources are taken to
be first-class citizens along with processes. That is, a model consists of a complex pro-
cess together with some resources. The notion of resource used is closely related to the
resource-semantics of the BI-family of logics (O’Hearn & Pym 1999, Pym 1999, Pym,
O’Hearn & Yang 2004, Pym 2002) that have enjoyed a good deal of attention in recent
years, particularly in the guise of the program logic known as Separation Logic (Ishtiaq
& O’Hearn 2001, Reynolds 2002, O’Hearn 2007). Such logics have variants of standard
logical connectives that are often useful for internalizing statements about resource us-
age. The modelling approach which SCRP is intended to support is reflected in, and
begins with, its treatment of resource. Specifically, it is hypothesized that the following
properties of resource are basic:

— A basic collection of resource elements, including a zero element;
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— A notion of combination of resource elements; and
— A notion of comparison of resource elements.

These properties are captured mathematically as a preordered, (initially) commutative
monoid, (R, ◦, e, v), satisfying various algebraic laws, including a functoriality condition
for the product relative to the order.

The basic judgement in SCRP is the evolution of a process relative to a collection of
resources,

R,E
a→ R′, E′,

where the resource R′ = µ(a,R) is determined by a modification function, µ defined on
pairs of actions and resources. The basic judgement, for action prefix, then has the form

R, a : E a→ µ(a,R), E
.

As well as straightforward non-deterministic sum, SCRP admits a synchronous concur-
rent product (recall the generality of the synchronous product (Milner 1983, de Simone
1985) which requires the monoidal product on resources; roughly

R,E
a→ R′, E′ S, F

b→ S′, F ′

R ◦ S,E × F
ab→ R′ ◦ S′, E′ × F ′

.

There is also a hiding operator; roughly,

R ◦ S,E a→ R′ ◦ S′, E′

R, νS.E
νS.a→ R′, νS′.E′

,

in which part of the initial resource is bound locally to the process. This construct allows,
among other things, SCRP to recover concepts that are expressible using the restriction
combinator of SCCS.

SCRP’s use of the same structure for resources as taken in bunched logics suggests
the possibility of a logic, in the style of Hennessy-Milner logic, characterizing the com-
binatorial structure of the calculus. The semantic judgement of this logic, called MBI,
takes the form

R,E |= φ,

which is read as ‘the property φ holds of the process E relative to resources R’ or ‘φ is
true for the system R,E’. Such a logic can be thought of as providing a language MBI for
specifying and verifying systems expressed, using SCRP, as assemblies of resources and
processes. One valuable and useful consequence of this set-up is that the MBI-language
leads to a logical characterization of the synchronous product; roughly, we get

R,E |= φ1 ∗ φ2

iff there exist R1 and R2 such that R1 ◦R2 = R and E1 and E2 such that E1 ×E2 ∼ E,
where ∼ is an appropriate notion of bisimulation, such that

R1, E1 |= φ1 and R2, E2 |= φ2.

The hiding construct is characterized in a similar way using a quantifier (see Section
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3.5). The presence of these decompositions emphasizes the value of the two-language
(algebraic and logical) approach to process calculus and modelling.

The process calculus SCRP and its logic MBI were introduced in three papers (Pym
& Tofts 2006, Pym & Tofts 2007, Collinson et al. 2007), the last of these correcting an
error in the first two. The intention of these papers was to establish the core ideas of
the calculi and to demonstrate their practical effectiveness as a foundation for systems
modelling in the spirit of Demos. Those papers did not, however, address a number of
important theoretical issues relating to the metatheories of the calculi and the structures
of the spaces over which they are defined. In this paper, we give a thorough investigation
of these issues and show that the calculi can be significantly improved by making a
number of small changes to the set-up.

This paper presents further developments, and a consolidation, of the ideas introduced
in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al. 2007). We present a new cal-
culus SCRPr and logic with several important technical refinements that lead to better
theoretical properties. The first refinement is to pick out a new kind of (bi)simulation
relation, written ∼, which is a congruence. Certain identities for ∼ are seen to depend
critically upon structural properties of the operational semantics. The simulation leads
to a logic of system properties and part of a suitable Hennessy-Milner theorem. The third
contribution is to introduce a proof system for (the propositional fragment of) the modal
logic MBI. This is particularly important as the general model-checking problem for
MBI is hard. The combination of substructural connectives means that the soundness
result for the logic is non-trivial: indeed, it depends upon the Hennessy-Milner theorem.
We study the way in which additional structure on resources is connected to the funda-
mental design of such process and logical calculi. In particular, we set-up an intuitionistic
version of the logic on an ordered state-space. We study asynchrony and value-passing
in SCRP-like calculi. Finally, we sketch a semantics of a simple programming language
with heap-manipulating commands.

Section 2 of this paper sets up the process calculus and its simulation relations, and
develops the algebraic theory. Section 3 gives an account of the logical calculi, the associ-
ated Hennessy-Milner theorem and the soundness result. Section 4 investigates calculi in
the presence of ordered structure on resource and an intuitionistic logic. Section 5 gives
extensions of the calculus to treat asynchrony and value-passing, and sketches the devel-
opment of a parallel programming language with variable-assignment. Section 6 discusses
work in progress on extending and applying the calculus.

Finally, the reader should be aware that certain words used in this paper will have
more than one technical meaning: for example, the words model and simulation. This
unavoidable clash comes about because we are drawing upon the traditions of mathe-
matical logic and theoretical computer science as well as those of applied mathematics.
We hope that the reader will not have any difficulty in understanding what is meant in
each context.
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2. A Synchronous Calculus of Resources and Processes

The process algebra SCRP was sketched, along with its associated logic (MBI) and
various properties, in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al. 2007). In
this section, we give a refined presentation of a family of systems, collectively known as
SCRP, along with their key technical properties. We make (ad-hoc) naming distinctions
between the SCRP variants as necessary. In particular, we present a calculus with the-
oretical properties that are significantly improved relative to those of the system that
was sketched previously. We also make a more detailed study of (bi)simulation relations
and their corresponding algebraic theories. Indeed, we draw attention to a notion of
(bi)simulation that was not presented in the earlier work and which is essential for the
logical work that follows.

2.1. The Process Calculus

We now present a process calculus SCRPr that is a better-behaved, although less gen-
eral, variant of the calculus SCRP presented in (Pym & Tofts 2006, Pym & Tofts
2007, Collinson et al. 2007). The set-up of these calculi assumes the provision of certain
additional data pertaining to some semantic structure (Act,R, µ, ν) over which we are
working. Thus we should properly refer to the calculus as (Act,R, µ, ν)-SCRPr. In this
paper, however, we suppress the prefix as, at every stage, we work with a fixed such
structure.

We assume a commutative monoid, Act, of actions. Just as in standard process algebra,
these actions correspond to the events of a system. We reserve the letters a, b, c for actions.
Composition is written by juxtaposition and the unit action is written 1. We do not, for
now, need to assume that this monoid is generated from a collection of atomic actions
(usually called particles). Nor do we need any assumptions about the cardinality of Act.

In this paper, we shall often work with partial functions. We use the standard notations
R ↓ and R ↑ to mean that an expression R is, respectively, defined or undefined. We also
make use of Kleene-equality between expressions: the left-hand-side of an equality, L ' R,
is defined if and only if the right-hand-side is defined, and when defined they are equal.

A resource monoid is a structure R = (R, ◦, e,v). We do not use a separate notation
to distinguish the carrier set R from the structure. The structure has a preorder v, a
partial, binary operation ◦ and has a distinguished element e. The operation ◦ satisfies
monoid associativity and commutativity axioms up to Kleene-equality. The unit of ◦ is e.
Composition with this unit is always defined. Therefore, the structure satisfies the unit
axiom for a commutative monoid up to actual equality. Resource monoids are further
required to satisfy the bifunctoriality condition:

R v R′ and S v S′ and R′◦S′ ↓ implies R◦S ↓ and R◦S v R′◦S′

(1)
for all R, R′, S, S′ in R.

Some simple examples of resource monoids are:

1 The natural numbers with addition, zero, and their usual order.
2 The real numbers with addition, zero, and their usual order.



Algebra and Logic for Resource-based Systems Modelling 7

3 The set {0, 1} with an operation + such that 0 + 0 = 0, 0 + 1 = 1 = 1 + 0, 1 + 1 ↑
and the discrete order (equality).

4 A powerset P(L) of some set L. The composition is non-overlapping union: for any
subsets X and Y of L, the composite X ◦ Y is defined just when X ∩ Y = ∅, and
when defined X ◦ Y = X ∪ Y . The unit is the empty set. The order is the discrete
order.

The first example above is closely related to the kind of resources found in Demos2k.
The third can be used as a kind of semaphore resource. The fourth is that which lies at
the root of Separation Logic (Ishtiaq & O’Hearn 2001, Reynolds 2002).

Note that the order-dual (obtained by reversing the order) of a resource monoid is not
necessarily a resource monoid. Instead, it satisfies the property:

R v R′ and S v S′ and R◦S ↓ implies R′◦S′ ↓ and R◦S v R′◦S′

(2)
for all R, R′, S, S′ in R. Define a resource monoid to be special when its dual is also
a resource monoid, that is, when both (1) and (2) are satisfied. For the purposes of the
rest of this paper the order v should be taken to be equality, except for Subsection 3.1
and Section 4.

A binary relation, < , between resources is important in the development of SCRP.
Let R and S be resources. Say that S piggybacks on R, and write S < R, if, for every
resource T , if R ◦T is defined then R ◦S ◦T is defined. Intuitively, S<R if, whenever R
is consistent with any T then so is R ◦S. This predicate is used to ensure a well-behaved
hiding operation. Note that if S <R then R ◦ S ↓, and also that the relation < is total
(i.e., holds for all pairs of resources) if and only if the composition operation is total.

We now set-up a function describing how actions transform resources. A modification
is a partial function µ : Act×R −→ R satisfying two coherence conditions:

1 µ(1, R) = R for all R ∈ R;
2 if µ(a,R), µ(b, S) and R ◦S are all defined then µ(ab,R ◦S) and µ(a,R) ◦µ(b, S) are

both defined and µ(ab,R ◦ S) = µ(a,R) ◦ µ(b, S) holds.

Consider the resource monoid consisting of the natural numbers discussed above. Sup-
pose that the action monoid is freely generated from a single action i, so that every action
can be represented in the form im for some unique integer m ≥ 0. As a simple example
of a modification function consider:

µ(im, n) = m+ n

for all natural numbers m and n. The action i is incrementation.
We assume a total operation called hiding, ν : R×Act −→ Act, that takes any resource

R and any action a and produces an action νR.a. The precise form of this operation is
unimportant for most of the development that follows, and a number of possibilities exist.
One such possibility is given in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al.
2007) under the assumption that the action monoid is generated as a free monoid from
a set of atomic actions. Reserve the letter α for atomic actions. Any action a may be
written uniquely (up to re-ordering) as a product a =

∏
(αi | i ∈ I) for some family
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(αi | i ∈ I) indexed by a finite set I. Then we may take

νS.a =
∏

(αi | i ∈ I & µ(αi, S)↑) (3)

and recall that the product of an empty family of actions gives the identity action. The
intuition behind this is that this resultant action νS.a consists of precisely those atomic
constituent actions αi of a that play no role in the evolution of a process in the resource
environment S, since µ(αi, S) is not defined, and so the actions that fire when given S

are hidden. The hiding processes introduced below only evolve along such actions νS.a
and thus any of their atoms that are enabled by S may not be externally observed. This
is further clarified by the operational semantics of hiding processes described below.

We assume a countable collection of process variables, for which the letterX is reserved.
Processes are formed according to the grammar

E ::= 0 | X | a : E |
∑
j∈J

Ej | E × E | νR.E | fix iX.E ,

where 0 is the zero process, X is a process variable, a is an action, J is an arbitrary index
set, R is a resource, X is an n-tuple of process variables, E is an n-tuple of processes and
1 ≤ i ≤ n. The letters E,F,G are reserved for processes, and the letters E, F, G for tuples
of processes.

The fix operator binds occurrences of process variables within processes. It will occa-
sionally be necessary to distinguish processes that contain no free variables (sometimes
called agents) from the more general process expressions that exist in the language.
Let Agents be the set of agents and Proc be the set of processes. Let Xi be the ith
component of any tuple of process variables X, Ei be the ith component of any tuple
of process expressions E of the same length, then F [E/X] is the process formed by the
(capture-avoiding) substitution of each of the n components of E for the corresponding
variable of X that is free in F . Similarly, there is substitution F[E/X] for process variables
in a tuple F. The expression fix iX.E means (fixX.E)i, the ith component of the tuple
fixX.E. We use brackets, (), to disambiguate processes in the absence of their construc-
tion trees. The unit process 1 is defined to be fixX.(1 : X). Given a sequence of the form
s = b1/a1, . . . bn/an with a1, . . . , an distinct, the notation E[s] stands for the process
formed by the substitution of actions bi for the actions ai occurring in E.

These processes should appear familiar, with the exception of νR.E, to those ac-
quainted with process calculus. The calculus is intended to be a close relative of SCCS.
Thus a : E is a process with an action prefix,

∑
j∈J Ej is a sum, E×F is a (synchronous)

product, and fix iX.E is the ith component of the tuple of processes fixX.E defined as a
fixed point. The term νR.E is a hiding process and is a resource-based form of restriction
operation. We often write binary sums using the infix notation E + F .

A state is a pair consisting of a resource and a process. Thus States = R×Proc is the
set of all states. Define the set CStates of closed states to consist of those states with an
agent as the process component. If E is a process and R is any resource then we say that
R,E is an E-state.

The operational behaviour of processes is defined by a labelled family of transition
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Prefix
R, a : E

a→ µ(a,R), E
(µ(a,R) ↓)

Sum
R,Ej

a→ R′, E′

R,
∑

j∈J Ej
a→ R′, E′

(j ∈ J)

Product
R,E

a→ R′, E′ S, F
b→ S′, F ′

R ◦ S,E × F
ab→ R′ ◦ S′, E′ × F ′

(R ◦ S ↓)

Hide
R ◦ S,E a→ R′ ◦ S′, E′

R, νS.E
νS.a→ R′, νS′.E′

(µ(νS.a,R) = R′ ↓ & S <R)

Fix
R,Ei[fixX.E/X]

a→ R′, E′

R,fix iX.E
a→ R′, E′

Fig. 1. SCRPr transitions

relations
a→ ⊆ States× States

indexed by a ∈ Act. The family is defined recursively using the derivation rules of Fig-
ure 1. This describes how states evolve. Notice that the evolution of prefix processes
with a given resource is completely determined by the modification µ. Product processes
share out the globally available resource in such a way as to enable the components to
evolve synchronously; the fact that the resulting composite R′ ◦ S′ appearing in the rule
is well-defined follows as an immediate consequence of the definition of modifications
and Lemma 2 below. Essentially, a state R, νS.E featuring a hiding process evolves along
νS.a when the underlying process E evolves along a given the resource formed R ◦ S by
unpacking the hidden resource S.

Nondeterministic behaviour of processes is introduced into processes through the pres-
ence of sums. In most process calculi sums are the only source of nondeterminism. In
contrast, in SCRP-calculi nondeterminism can also be introduced by instances of the
product and hiding constructors. An arbitrary resource R can have many possible decom-
positions (R1, R2) such that R = R1◦R2. In such situations, a state of the form R,E1×E2

may make transitions induced by transitions of pairs of states ((R1, E1), (R2, E2)) for each
decomposition (R1, R2). Nondeterminism is induced by hiding since, looking at the rule
for hiding in Figure 1, there can be many possible resources S′ such that the premise of
the rule is true.

Define a (state) derivative of a state R,E to be a state R′, E′ that is reachable via a
(possibly null) sequence of transitions. An immediate derivative is a state that can be
reached using a single instance of a transition. A proper derivative is a derivative arising
from a non-empty sequence of transitions. A derivative of a process E is any E′ such
that there are some R and R′ such that R′, E′ is a derivative of R,E.
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The system SCRPr is a restriction of the more general calculus SCRP originally
suggested in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al. 2007). The differences
between the two systems are as follows:

1 the equality in the second clause in the definition of modification given above is
replaced by a Kleene-equality in SCRP;

2 the piggybacking condition does not appear in the side-condition of the operational
rule for hiding processes in SCRP.

Clearly, SCRP applies to a wider range of situations than SCRPr. However, SCRPr
has better operational behaviour and a closer correspondence with the logic BI.

2.2. Structural Properties

The transition systems associated with SCRPr systems have a number of important
properties. The following lemma is an immediate consequence of the operational seman-
tics and is established by induction on derivations.

Lemma 1. If R,E is a state and E is an agent then the process component of every
derivative is an agent. In other words, the subspace CStates is closed under transitions.

The evolution of resources is entirely deterministic in the chosen action.

Lemma 2. If R,E a→ R′, E′ then R′ = µ(a,R).

The proof of the lemma is an easy induction over derivations, making essential use of
the coherence conditions on µ and the explicit and implicit side-conditions on derivation
rules.

The coherence properties for modifications lead immediately to a result about the
extensibility of resources via composition.

Lemma 3. Let a be an action, and R and S be resources. If µ(a,R) and R◦S are defined,
then µ(a,R ◦ S) = µ(a,R) ◦ S is defined. We call this the simple-extension property for
resources.

The existence of any transition from a state is closed under composition with further
resource. That is, there is a simple-extension property for transitions as well as modifi-
cations.

Proposition 4. Let E be a process, a be an action, and R and S be resources. If
R,E

a→ µ(a,R), E′ and R ◦ S is defined, then R ◦ S,E a→ µ(a,R) ◦ S,E′.

The proof of the above proposition is an easy induction over derivations of transi-
tions. Lemma 3 establishes the base case (Prefix) and the side-condition on piggybacking
ensures that the induction passes across the Hide case.

By an analogy with situations that arise in Proof Theory, this can be seen as estab-
lishing an admissible rule,

R,E
a→ µ(a,R), E′

R ◦ S,E a→ µ(a,R) ◦ S,E′
(R ◦ S ↓)
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for all suitable R, S, E, E′, a. This is rather like a weakening rule for the resource
component of a state. Many other structural rules can, of course, be considered, and
their admissibility is linked to the structure of the underlying resource monoid. When
such rules are not admissible (for example, if we forget about piggybacking when hiding)
one may choose to include them explicitly in the calculus as the algebraic and logical
properties of these kinds of calculi sometimes rely critically upon their presence.

2.3. Bisimulation

It is usual to have a notion of equality for process terms that treats processes with the
same behaviour as equal. The standard notion is that of an equivalence relation called
bisimulation. For calculi in the SCRP family the situation is a little delicate. Firstly,
there is a question about where the equivalence should live. On one-hand, simulation is
usually defined via transition structures, see for example (Milner 1983, Popkorn 1994).
This suggests an equivalence between states, that is, between systems or models. On the
other-hand, an equivalence of processes is probably more useful than an equivalence of
states, as this is the part of a system in which it is most natural to exercise control.
Furthermore, the compositional nature of the systems we build resides primarily in the
process part, and we frequently want to know that two processes behave in the same way
in any given resource context. We explore these issues carefully for the calculus SCRPr,
and with an eye on logical equivalence of processes, as well as behavioural equivalence of
processes and states.

Define the local equivalence relation, ≈, to be the largest binary relation on closed
states such that the following condition holds. Let R and S be resources and E and F

be processes. If R,E ≈ S, F then:

1 if there is a transition R,E a→ µ(a,R), E′ for any E′ then there is transition R,F a→
µ(a,R), F ′ with µ(a,R), E′ ≈ µ(a,R), F ′ for some F ′;

2 if there is a transition R,F a→ µ(a,R), F ′ for any F ′ then there is a transition R,E a→
µ(a,R), E′ with µ(a,R), E′ ≈ µ(a,R), F ′ for some E′;

3 R = S.

The relation ≈ is extended to all states by substitution: for any states R,E and S, F

we define R,E ≈ S, F iff R,E[G/X] ≈ S, F [G/X] for all m-tuples of agents G, where X is
an m-tuple representing the set of free variables of E and F .

This relation ≈ is almost that considered in (Pym & Tofts 2006, Pym & Tofts 2007,
Collinson et al. 2007). Note however, that we have defined the relation initially for agents
rather than for arbitrary process expressions, and that this gives a slightly smaller rela-
tion.

Fundamentally, this relation starts from the view that agents should be considered
equivalent whenever they have the same behaviour given the same resources. In (Pym
& Tofts 2007) this relation was shown to be intimately connected to a denotational se-
mantics of SCRP that uses synchronization trees. Indeed, the relation on closed states
looks very much like the standard notion of bisimulation for transition structures, see
(Popkorn 1994) for example. In view of Lemma 2, the main difference is the insistence
that the resource components of the states under comparison are identical. Clearly, local
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equivalence on closed states is contained in the standard kind of bisimulation for tran-
sition systems on those states. Consequently, a modal logic of system properties may
be expected. However, the local equivalence relation fails to be a congruence as it is
not respected by the product constructor for processes — the references (Pym & Tofts
2006, Pym & Tofts 2007) contain an error on this point.

Example 5. Consider the resource monoid (N,+, 0) consisting of the natural numbers
with addition. Let Act be the monoid of actions freely generated from a single action d.
Every element of Act has the form di for some unique i ∈ N. There is a modification
defined by

µ(di, n) =
{
n− i if i ≤ n

↑ otherwise
for all i, n ∈ N. Let E be the process d : 0, let F be 0, and let G be 1 : 0.

Then 0, E ≈ 0, F holds, since neither state makes any transitions. However, the relation
0 + 1, E ×G ≈ 0 + 1, F ×G does not hold, since 1, E ×G has a transition but 1, F ×G

does not.

We write E ≈ F whenever R,E ≈ R,F for all resources R. This relation is an equiva-
lence but not a congruence.

Example 6. Let L be a set of locations. Let a heap be a partial function from L to the
set N of integers. Define the composite of a pair of heaps by taking the non-overlapping
union of their graphs. Let dom(h) = {x ∈ L | h(x) ↓} for any heap h. Then, for any
heaps h and h′, the composite h ◦ h′ is defined if and only if dom(h) ∩ dom(h′) = ∅.
Furthermore, (h ◦ h′)(x) = h(x) if x ∈ dom(h), and (h ◦ h′)(x) = h′(x) if x ∈ dom(h′).
The unit heap is the empty partial function. In this way, the set of heaps forms a resource
monoid.

Let x1, . . . , xn be distinct locations and z1, . . . , zn be integers. For any heap h, define
a heap h′ = h[x1 := z1, . . . , xn := zn] as follows:

h′(x) =


↑ if h(x) ↑
zi if h(x) ↓ and x = xi for some 1 ≤ i ≤ n

h(x) otherwise.

Let the action monoid Act be freely generated from the actions ax,z and bx,z, for all
x ∈ L and z ∈ N. Let 1 be the unit action.

Let c be any action. This may be written uniquely (up to re-ordering) in the canonical
form

am1
x1,z1

· · · amn
xn,zn

bmn+1
xn+1,zn+1

· · · bmn+p
xn+p,zn+p

for some n, p ≥ 0, where each mi > 0, and each pair xi, zi appears at most once as the
subscript of an a-atom, and at most once as the subscript of a b-atom.

We take µ(c, h) to be defined if and only if, in the canonical form above, xi 6= xj for
all xi, xj that appear, mi = 1 for all mi that appear, and h(xi)↓ for all xi that appear.
If µ(c, h) is defined then:

µ(c, h) = h[x1 := z1, . . . , xn := zn] .
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Note that µ(ax,z, h) is defined if h(x) is defined, and then µ(ax,z, h) = h[x := z], so
that ax,z is the action x := z that updates the heap with the value z at location x.
Similarly, µ(bx,z, h) is defined if h(x) = z is defined, and then µ(bx,z, h) = h, so that bx,z

is the guard x = z. The modification at the action c above is undefined whenever two
atoms in c use the same location.

Consider the processes

E = bx,0 : 1 : (1 : 0 + bx,1 : 0) F = bx,0 : 1 : 1 : 0

for some fixed location x. These two processes satisfy

E ≈ F

because, if the first guard x = 0 in E is true at any h, then the second guard x = 1 must
be false, so the two processes generate the same transition structures.

Let

G = 1 : ax,1 : 1 : 0

and let h0 be the heap defined only at location x, and such that h0(x) = 0. Then we do
not have that h0, E × G ≈ h0, F × G, since h0, E × G may eventually perform the bx,1

action, but h0, F ×G cannot. Hence

E ×G 6≈ F ×G

holds. Therefore the relation ≈ on processes is not a congruence for the product con-
structor.

The relation ≈ on processes also fails to be closed under transitions, in the sense that
we can have E ≈ F and R,E a→ µ(a,R), E′ for some E′ and R, but no corresponding F ′

with R,F
a→ µ(a,R), F ′ and E′ ≈ F ′. This means that the relation ≈ does not interact

well with the modal logic we introduce below (the more natural relation for which seems
to be ≈ on states). We believe it would be worthwhile to explore a version of ≈ on states
in which the resource components need not be identical. This topic, which we suspect
may be quite difficult, is suggested on the one hand by a desire to compare systems, and
on the other by the general notion of bisimulation in modal logic (Popkorn 1994).

There is a natural alternative relation which is a congruence but which is defined
initially on agents rather than states. Define the global equivalence relation, ∼, to be the
largest relation binary on agents such that, whenever E ∼ F holds:

1 if R,E a→ µ(a,R), E′ for any R, E′, then there is some F ′ with R,F
a→ µ(a,R), F ′

and E′ ∼ F ′;
2 if R,F a→ µ(a,R), F ′ for any R, F ′, then there is some E′ with R,E

a→ µ(a,R), E′

and E′ ∼ F ′.

The relation ∼ is then extended to all tuples of processes by substitution: for any
n-tuples of processes E and F we define E ∼ F iff Ei[G/X] ∼ Fi[G/X] for all 1 ≤ i ≤ n

and all m-tuples of agents G, where X is any m-tuple containing the free variables of E

and F with each listed exactly once. The global equivalence is lifted to states by taking
R,E ∼ R,F to hold just when E ∼ F , for all E, F and R.
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The global equivalence is intimately related to the logical language MBIc based on
resource semantics that we develop in Section 3. Notice that, for a local equivalence
E ≈ F , it is enough to compare derivatives of states R,E and R,F for all initial resources
R. In contrast, for a global equivalence, one must also compare states of the form S,E′

and S, F ′, that are resource-perturbations of derivatives of the form R′, E′ and R′, F ′ of
R,E and R,F for any R. That is to say, for global equivalence we cannot just compare
derivatives, we must also compare states that arise by perturbing the resource component
of such derivatives.

Proposition 7. The relation ∼ on processes is a congruence. That is, it is an equivalence
relation which is respected by the process constructors. In particular, if E ∼ F between
processes and E ∼ F between n-tuples of processes then for any action a, process G,
resource S, n-tuple X and index i:

a : E ∼ a : F

E +G ∼ F +G E ×G ∼ F ×G

νS.E ∼ νS.F fix iX.E ∼ fix iX.F .

Proof. The reflexivity and symmetry and transitivity of the relation are all straight-
forward to observe.

The proofs of the equalities stated above are also quite standard. For example, consider
the set of pairs of agents A = {(E×G,F ×G) | E ∼ F}. Consider some pair (E×G,F ×
G) ∈ A Consider any R and suppose that there is a transition R,E × G

a→ µ(a,R), E1

for some E′. Then E1 must be of the form E′ × G′ and there must be some actions b,
c with a = bc and some resources S, T with R = S ◦ T such that S,E b→ µ(b, S), E′

and T,G
c→ µ(c, T ), G′. Since E ∼ F there must be a transition S, F

b→ µ(b, S), F ′ for
some F ′ with E′ ∼ F ′. Hence there is a transition R,F × G

a→ µ(a,R), F ′ × G′ and
(E′ ×G′, F ′ ×G′) ∈ A. The symmetry of the components of the elements of set A then
shows that E ×G ∼ F ×G. The result then lifts to processes immediately.

Just as in Proposition 4.6 of (Milner 1983), the congruence property for the fixed point
relies upon the way that the relation has been lifted from agents to processes and uses
the preceding equalities.

We omit the proofs of the following two lemmas, these being routine verifications. The
first of these is established by showing that ∼ on closed states is closed under the condi-
tions for a local equivalence.

Lemma 8. The global equivalence relation, ∼, on closed states is contained in the local
equivalence relation, ≈, on such states.

We shall see that this is important for the modal logic MBIc. The relation ≈ on states
is not a congruence and so cannot be contained in the relation ∼ on states.

We use the notations . and / in the standard way for the asymmetric variants of ∼
and ≈. Thus, for example, R,E / R,F just if, whenever the agent R,E makes some
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transition into some R′, E′, then the agent R,F makes a transition along the same action
and into a state R′, F ′ with R′, E′ / R′, F ′. We now return to the question of algebraic
identities.

Lemma 9. Various simple equalities and inequalities hold for the relation∼ on processes:

E × F ∼ F × E E × (F ×G) ∼ (E × F )×G

E + F ∼ F + E E + (F +G) ∼ (E + F ) +G

E × 0 ∼ 0 E × 1 ∼ E

E + 0 ∼ E E + E ∼ E

E × (F +G) ∼ (E × F ) + (E ×G) νS.(E + F ) ∼ (νS.E) + (νS.F )

(a : E) + (a : F ) . a : (E + F ) (a : E)× (b : F ) . (ab) : (E × F )

for all processes E, F and G.

Proof. Again, it suffices to show the result on agents. The rest is straightforward
verification using the fact that ∼ on closed states is defined to be the largest relation
closed under the given conditions. It is important to note that the property E × 1 ∼ E

needs the simple-extension property for transitions (Proposition 4).

All of the simple algebraic identities from Lemma 9 hold with ∼ replaced by ≈ through-
out: this follows immediately from the fact that ∼ is contained in ≈.

Further inequalities may well hold for specific choices of resource monoid, modifica-
tion, hiding and action set. For example, well-behaved hiding on actions leads to better-
behaved hiding processes.

Lemma 10. If ν(S ◦ T ).a = νS.νT.a for all actions a and any resources S and T , then
the relation νS.νT.E . ν(S ◦ T ).E holds for any process E.

However, the following two properties do not hold in general:

1 R, a : (E + F ) / R, a : E + a : F
2 R, (ab) : (E × F ) / R, (a : E)× (b : F ).

Simple counterexamples exist to each. Of course, if R,F 6/ R,E, then R,F 6. R,E

for any R, E, F . To see that the first point does not hold consider any pair of states
R, a : E + a : F and R, a : (E + F ) with a = 1, E = 1 : 0 and F = 0. For the second
consider the trivial resource monoid N with addition, action monoid generated from the
set {a, b} and modification satisfying µ(ambn, p) = p + n − m if m ≤ p + n and that
is undefined otherwise. Then µ(ab, 0) is defined but µ(a, 0) is undefined, so that there
is an ab-transition of the prefix process ab : (0 × 0) but no transition of the product
(a : 0)× (b : 0).

The following lemma gives an important representation of any state.
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Lemma 11. Let E be any process. For any resource R, we may write

R,E ≈ R,
∑

{a : E′ | R,E a→ µ(a,R), E′}

and furthermore,∑
{a : E′ | ∀R. R,E a→ µ(a,R), E′} . E .

∑
{a : E′ | ∃R. R,E a→ µ(a,R), E′}

holds.

Proof. For the first part, the transitions and immediate derivatives on the left are
precisely the same as those on the right.

This result specializes in the case of a product of processes.

Lemma 12.

R,E1 × . . .× En ≈ R,
∑
{(a1 · · · an).(E′

1 × . . .× E′
n) | ∃R1, . . . , Rn.

R = R1 ◦ . . . ◦Rn & ∀1 ≤ i ≤ n. Ri, Ei
ai→ µ(ai, Ri), E′

i }

Proof. The coherence conditions on modifications guarantee that a transition on the
left is a transition on the right into the same derivative. The indexing set on the right
guarantees that there are no more transitions on the right.

We may expand out hiding processes in a similar way.

Lemma 13.

R, νS.E ≈ R,
∑

{(νS.a) : (νS′.E′) | R ◦S,E a→ R′ ◦S′, E′ & µ(νS.a,R) = R′ & S<R }

In the special case of a prefix,

R, νS.(a : E) ≈ R,
∑

{(νS.a) : (νS′.E′) | µ(a,R ◦ S) = µ(νS.a,R) ◦ S′ & S <R } .

Proof. For any given resource the derivatives of the left-hand-side coincide exactly
with the derivatives of the right-hand-side.

The preceding results can be combined to give the local expansion theorem for states
in the synchronous calculus.

Theorem 14.

R, νS.(E1 × . . .× En) ≈ R,
∑
{νS.(a1 . . . an).νS′.(E′

1 × . . .× E′
n) | S <R &

∃R1, . . . , Rn. R ◦ S = R1 ◦ . . . ◦Rn &
µ(a1 . . . an, R ◦ S) = µ(νS.(a1 . . . an), R) ◦ S′ &
∀1 ≤ i ≤ n. Ri, Ei

ai→ µ(ai, Ri), E′
i}

Proof. Notice that if S < R does not hold then the sum on the right is empty and
this gives the process 0. Once again, a transition to a derivative on the left exists if and
only if it exists on the right. The result generalizes easily to a form with multiple hidings
(rather than just one) outermost in the process term.

It is rather unsatisfactory to have these results stated only for ≈, given that it fails to
be a congruence. One would like to have an expansion theorem for processes, preferably
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using ∼. However, this would seem not to be possible in the general case, even using ≈.
The expansion relies critically on the resource at which the expansion is performed. In
particular, the second part of Lemma 11 cannot be tightened to make the second of the
inequalities an equality, because there can exist processes E and E′, and resources R
and S, with R,E a→ µ(a,R), E′ and µ(a, S) defined, but such that there is no transition
S,E

a→ µ(a, S), E′.

2.4. Specifying Modifications

General methods are needed for specifying modifications. It is not always feasible to spec-
ify the modification function individually at all actions and all resources. Furthermore,
when such a specification is made, the function defined must be explicitly checked to
satisfy the coherence conditions.

One method that can often be employed is to specify the modification on atomic
actions. Under suitable conditions this gives rise to a unique coherent modification. The
conditions we use involve the preorder that arises from the composition. For the purposes
of this section assume that we are working with an action monoid that is freely generated
from some set of atomic actions.

We will often suppose that we are working with a resource monoid R with cancellation,
that is, the partial function S ◦ (−) : R −→ R is injective for every S. In other words, for
any R and S, if whenever R = S ◦ T for some T , that T is unique. We usually write T
as R−S. Define a resource monoid to be good when it has cancellation and composition
is total. Define the preorder v◦ by

S v◦ R ⇐⇒ ∃T. S ◦ T = R

for all resources R and S.
Define a partial function f : R −→ R to be rooted if:

1 there is a unique resource R0, called the root, such that for all R, f(R) is defined if
and only if R0 v◦ R;

2 for all R and S, if f(R) and R ◦ S are defined then f(R ◦ S) = f(R) ◦ S is defined.
The following lemma is then immediate. Indeed, it characterizes rooted functions on good
monoids.

Lemma 15. For any rooted function f on a good resource monoid,

f(R) ' f(R0) ◦ (R−R0)

for all resources R, where R0 is the root of f .

Define an Act-indexed family of resources (Ra | a ∈ Act) to be consistent if, for any
two actions a and b,

Rab = Ra ◦Rb

holds.

Lemma 16. Every consistent family of resources on a good resource monoid satisfies:

(R ◦ S)−Rab = (R−Ra) ◦ (S −Rb)
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for all a, b, R, S such that the right-hand-side is defined.

Proof. Consider the calculation

((R−Ra) ◦ (S −Rb)) ◦Rab = (R−Ra) ◦ (S −Rb) ◦Ra ◦Rb

= R ◦ S

for any given R,R, a, b. Then the uniqueness of (R ◦ S)−Rab gives the result.

Suppose that we have a family of resources Rα indexed by atomic actions, with each
member drawn from the same good resource monoid. Extend the family to a family
indexed by all actions by taking

Ra = ©1≤i≤nRαi

for all a = α1 . . . αn, where n = 0 is the special case for the unit action, and ©i∈I is
I-indexed resource composition for any finite set I. Note that R1 = e. The proof of the
following lemma is then a routine verification.

Lemma 17. The Act-indexed family of resources generated (as above) from the family
of resources indexed by atomic actions is consistent.

We now return to the issue of functions specified at actions.

Proposition 18. Suppose that we have a good resource monoid. Suppose that we have
a family of rooted, partial functions µα : R −→ R indexed by atomic actions α, and that
the root of each µα is Rα. Then there is a unique modification µ : Act ×R −→ R such
that

µ(α,R) ' µα(R) (4)

for all atomic actions α and all resources R. Note that the equality here is a Kleene-
equality. Moreover, this satisfies

µ(a,R) =
{
µ(a,Ra) ◦ (R−Ra) if Ra v◦ R
↑ otherwise

(5)

for all actions a and resources R, where the consistent family (Ra | a ∈ Act) is generated
from the family of roots Rα indexed by atomic actions.

Proof. For any atomic action α and resource R,

µα(R) =
{
µα(Rα) ◦ (R−Rα) if Rα v◦ R
↑ otherwise

since µα is rooted. For every n ≥ 1 take

µ(α1 . . . αn, R) =
{
µ(α1, Rα1) ◦ . . . ◦ µ(αn, Rαn

) ◦ (R−Rα1...αn
) if Rα1...αn

v◦ R
↑ otherwise

(6)
for every sequence of atoms α1, . . . , αn and resource R. It is straightforward, using Lem-
mas 16 and 17, to verify that this is coherent and satisfies equations (4) and (5). For
uniqueness, observe that the coherence property requires equation (6).
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The proposition tells us how to construct a modification from a specification on atoms.
In practical modelling, many resource monoids are indeed good and modifications are
(implicitly) specified through a small family of rooted functions. This is also connected
to the enabling functions discussed in (Pym & Tofts 2006), which we shall return to in
Section 4.

We sometimes need to define a modification by specifying it on atomic actions as above,
but where each atom does not have a unique root, and when resource composition is not
required to be total. We now show how to get a SCRP-modification in such a situation.
This may not always be a SCRPr-modification, and we only show that it satisfies the
Kleene-equality version of the second coherence condition.

For the remainder of this section, assume that R is a resource monoid with cancellation,
but for which composition is not necessarily total.

Lemma 19.

R− (S ◦ T ) ' (R− S)− T ' (R− T )− S

for all resources R,S, T .

Proof. Suppose (R − (S ◦ T )) is defined. Then (R − (S ◦ T )) ◦ S ◦ T = R, so that
(R− (S ◦ T )) ◦ S = R− T , and then (R− (S ◦ T )) = (R− T )− S.

Suppose (R − T ) − S is defined. Then ((R − T ) − S) ◦ S = R − T is defined, and so
((R− T )− S) ◦ S ◦ T = R. Then by definition ((R− T )− S) = R− (S ◦ T ).

Lemma 20. If R ◦ S and R− T are defined then (R ◦ S)− T = (R− T ) ◦ S is defined.

Proof. The calculation ((R−T )◦S)◦T = ((R−T )◦T )◦S = R ◦S gives the result.

Lemma 21. If (R−R1), (S − S1) and R ◦ S are defined then

(R−R1) ◦ (S − S1) ' (R ◦ S)− (R1 ◦ S1) .

Proof. Suppose that (R−R1)◦(S−S1) is defined. Then (R−R1)◦(S−S1)◦R1 ◦S1 =
R ◦ S is defined. So (R−R1) ◦ (S − S1) = (R ◦ S)− (R1 ◦ S1).

Suppose that (R◦S)−(R1 ◦S1) is defined. Then ((R◦S)−(R1 ◦S1))◦(R1 ◦S1) = R◦S
is defined, and so ((R ◦ S) − (R1 ◦ S1)) ◦ S1 = (R ◦ S) − R1 is defined. By Lemma 20,
((R ◦ S)− (R1 ◦ S1)) ◦ S1 = (R−R1) ◦ S, so (R ◦ S)− (R1 ◦ S1) = ((R−R1) ◦ S)− S1 is
defined. Hence (R ◦ S)− (R1 ◦ S1) = (R−R1) ◦ (S − S1) by Lemma 20.

A partial function f : R −→ R is said to be multi-rooted if there is a set A, called the
set of roots of f , such that:

1 f(R0) is defined, for all R0 ∈ A;
2 for all R, f(R) is defined iff there is some R0 ∈ A such that f(R0)◦(R−R0) is defined

and f(R) = f(R0) ◦ (R−R0);
3 the set of roots is coherent:

f(R1) ◦ (R−R1) = f(R2) ◦ (R−R2)

for all roots R1, R2 ∈ A and all R such that f(R1) ◦ (R −R1) and f(R2) ◦ (R −R2)
are defined.
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Proposition 22. Let R be a resource monoid with cancellation. Suppose that there
is a family of multi-rooted partial functions µα indexed by atomic actions α. For each
atomic α let Roots(α) be the set of roots of µα. Then there is a SCRP-modification on
R, defined as follows. At any resource R and action a = α1 · · ·αn 6= 1,

µ(α1 · · ·αn, R) = µα1(R1) ◦ . . . ◦ µαn
(Rn) ◦ (R− (R1 ◦ . . . ◦Rn))

if there are Ri ∈ Roots(αi) for 1 ≤ i ≤ n such that the right-hand side is defined,
otherwise we take µ(α1 · · ·αn, R) to be undefined. If a = 1 then n = 0 and we take
µ(1, R) = R.

Proof. We first show that µ(a,−) is well-defined as a partial function by induction on
the number n of actions in a = α1 · · ·αn.

Suppose that n = 1 and thatR1 and S1 are both roots of µα1 such that µα1(R)◦(R−R1)
and µα1(S1) ◦ (R − S1) are both defined for some R. Then by coherence of the roots of
µα1 , we have µα1(R) ◦ (R−R1) = µα1(S1) ◦ (R− S1), so µ(α1, R) is unambiguous.

Suppose that the result holds for α1 · · ·αn and consider a = α1 · · ·αn+1. Suppose that
there is a resource R and roots Ri, Si ∈ Roots(αi) for 1 ≤ i ≤ n with µα1(R1) ◦ . . . ◦
µαn(Rn) ◦ µαn+1(Rn+1) ◦ (R − (R1 ◦ . . . ◦ Rn ◦ Rn+1)) and µα1(S1) ◦ . . . ◦ µαn(Sn) ◦
µαn+1(Sn+1) ◦ (R− (S1 ◦ . . . ◦ Sn ◦ Sn+1)) both defined. Then

µα1(R1) ◦ . . . ◦ µαn
(Rn) ◦ µαn+1(Rn+1) ◦ (R− (R1 ◦ . . . ◦Rn ◦Rn+1))

= µα1(R1) ◦ . . . ◦ µαn
(Rn) ◦ µαn+1(Rn+1) ◦ ((R− (R1 ◦ . . . ◦Rn))−Rn+1)

= µα1(R1) ◦ . . . ◦ µαn(Rn) ◦ µαn+1(Sn+1) ◦ ((R− (R1 ◦ . . . ◦Rn))− Sn+1)
= µα1(R1) ◦ . . . ◦ µαn

(Rn) ◦ ((R− Sn+1)− (R1 ◦ . . . ◦Rn)) ◦ µαn+1(Sn+1)
= µα1(S1) ◦ . . . ◦ µαn(Sn) ◦ ((R− Sn+1)− (S1 ◦ . . . ◦ Sn)) ◦ µαn+1(Sn+1)
= µα1(S1) ◦ . . . ◦ µαn

(Sn) ◦ µαn+1(Sn+1) ◦ (R− (S1 ◦ . . . ◦ Sn ◦ Sn+1))

using Lemma 19 three times, the induction hypothesis and the facts that µαn+1 is rooted
and that µαn+1(Rn+1) ◦ ((R − (S1 ◦ . . . ◦ Sn)) − Rn+1)) and µαn+1(Sn+1) ◦ ((R − (S1 ◦
. . . ◦ Sn))− Sn+1)) are both defined.

Suppose that µ(a,R), µ(b, S) and R ◦ S are all defined. If both of the actions are the
unit then µ(ab,R ◦ S) = µ(1, R ◦ S) = R ◦ S = µ(a,R) ◦ µ(b, S) are all defined. Consider
the case where just one of the actions is the unit — without loss of generality suppose
that it is b. Then, for some atoms α1, . . . , αn and resources R1, . . . , Rn,

µ(a,R) ◦ µ(b, S)
' µ(a,R) ◦ S
' µα1(R1) ◦ . . . ◦ µαm

(Rm) ◦ (R− (R1 ◦ . . . ◦Rm)) ◦ S
' µα1(R1) ◦ . . . ◦ µαm

(Rm) ◦ ((R ◦ S)− (R1 ◦ . . . ◦Rm))
' µ(ab,R ◦ S)
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using Lemma 20. Now suppose a = α1 · · ·αm and b = β1 · · ·βn. Then

µ(a,R) ◦ µ(b, S)
' µα1(R1) ◦ . . . ◦ µαm(Rm) ◦ (R− (R1 ◦ . . . ◦Rm))◦

µβ1(S1) ◦ . . . ◦ µβn
(Sn) ◦ (S − (S1 ◦ . . . ◦ Sn))

' µα1(R1) ◦ . . . ◦ µαm
(Rm) ◦ µβ1(S1) ◦ . . . ◦ µβn

(Sn)◦
((R ◦ S)− ((R1 ◦ . . . ◦Rm) ◦ (S1 ◦ . . . ◦ Sn)))

' µ(ab,R ◦ S)

using Lemma 21, and roots Ri ∈ Roots(αi), Sj ∈ Roots(βj) for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. Thus µ satisfies the conditions for a modification of SCRP.

3. Bunched Modal Logic

The logic MBI, along with some basic properties, was sketched in (Pym & Tofts 2006,
Pym & Tofts 2007, Collinson et al. 2007). MBI is a modal logic, resembling Hennessy-
Milner logic (Hennessy & Milner 1985), based on bunched logic, (O’Hearn & Pym 1999,
Pym 1999, Pym et al. 2004, Pym 2002). As such, it serves as a specification language for
the process algebra SCRP.

The logic MBI has been shown to give a logical account of process constructs; in
particular, synchronous product and hiding. It has also been shown, through a number
of key examples, to give a useful account of resource-use by concurrent processes. In this
section we present a further developed account.

The logic as presented in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al.
2007) is not equipped with a (proof-theoretic) deductive system. Here we give a proof
system for (propositional) MBI that adds modal axioms to (propositional) BI’s natural
deduction system (O’Hearn & Pym 1999, Pym 1999, Pym 2002). The logical calculus has
a number of important properties that follow from the properties of the SCRPr calculus
— these properties were not all present in the previous accounts.

3.1. Bunched Implications

The logical system we wish to consider is based on propositional BI, the logic of bunched
implications. Here we present a brief review — more detailed accounts may be found in
(O’Hearn & Pym 1999, Pym 1999, Pym et al. 2004, Pym 2002).

The logic BI combines a logic with structural rules of contraction and weakening
(intuitionistic logic) with a substructural logic that lacks these rules (multiplicative linear
logic). Furthermore, it does this in such a way that the two embedded logics have the
same status (neither is definable from the other) and so that certain properties of those
logics are retained. The composite logic provides two variants, additive and multiplicative,
of several of the basic logical connectives. These have clear and distinct interpretations
on resource monoids and this gives rise to many applications. An example of this is
Separation Logic, (Ishtiaq & O’Hearn 2001, Reynolds 2002), a Floyd-Hoare-style program
logic with local reasoning regarding state.
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Assume a set Prop0 of basic propositions ϕ. Propositions are generated by the grammar

φ ::= ϕ | > | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ | I | φ ∗ φ | φ−−∗ φ

giving a set Prop of propositions. The connectives ∧, →, ∨, >, ⊥ stand respectively for
additive conjunction, implication, disjunction, truth and falsity. The connectives ∗, −−∗
and I are the multiplicative conjunction, implication and unit, respectively.

The development of bunched logic hinges on the use of contexts Γ for formulae that
are structured in a particular way. Bunches of propositions are generated by

Γ ::= ∅ | ∅∗ | φ | Γ; Γ | Γ,Γ .

The constants ∅ and ∅∗ are the additive and multiplicative units, respectively. Notice
that bunches are trees with leaves labelled by propositions or units and each internal
node labelled by either the additive context former ‘;’ or the multiplicative ‘,’.

A sub-bunch of Γ is just a sub-tree such that all leaves are labelled by propositions.
We write, for example, Γ(∆) for a bunch containing a sub-bunch ∆. We may substitute
bunches for sub-bunches. Given a bunch Γ(∆) we write either Γ[∆′/∆] or Γ(∆′) for the
result of substituting ∆′ for ∆ in Γ.

We introduce a congruence relation ≡ on bunches. This is generated by applying the
commutative monoid axioms to each of the binary operations ‘;’ and ‘,’ at arbitrary depth
in a bunch. The axioms ensure that the operation ‘;’ with> defines a commutative monoid
(up to ≡) on the set of bunches, as does ‘,’ with I. This relation is used to control the
exchange rule for BI.

We will present our bunched logics in natural-deduction-style calculi. The rules for the
basic system of intuitionistic BI are given in Figure 2. Write Γ ` φ and say that this is
derivable when it occurs at the root of a derivation using the proof rules. The calculus has
a number of important properties, including cut-elimination and the existence of known
decision procedures.

Let R be a resource monoid. For the purposes of this subsection the preorder is not
required to be discrete. Let U(R) be the collection of all upper sets of R (those that are
upper closed with respect to the order). Write ↑R for the upwards closure of a subset R
of R. There is a binary operation ∗ on U(R) defined by

R ∗ S = ↑ {R ◦ S | R ∈ R & S ∈ S & R ◦ S is defined}

for all R,S ∈ U(R).
The logical calculus can be given a forcing semantics on resource monoids. Suppose we

have a valuation, V : Prop0 −→ U(R), of atomic propositions. We define a satisfaction
relation � ⊆ R×Prop in Figure 3. Each valuation determines an interpretation function
J−K : Prop −→ U(R) given by

R ∈ JφK iff R � φ

for all R ∈ R and propositions φ. The interpretation of formulae extends to an interpre-
tation of BI-sequents by taking

J∅K = J>K J∅∗K = JIK JφK = JφK JΓ;∆K = JΓK ∩ J∆K JΓ,∆K = JΓK ∗ J∆K
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(Axiom)
φ ` φ (Γ ≡ ∆)

Γ ` φ
∆ ` φ (E)

(W )
Γ(∆) ` φ

Γ(∆;∆′) ` φ
Γ(∆;∆) ` φ
Γ(∆) ` φ (C)

(II) ∅∗ ` I
∆ ` I Γ(∅∗) ` φ

Γ(∆) ` φ (IE)

(∗I)
Γ ` φ ∆ ` ψ
Γ,∆ ` φ ∗ ψ

∆ ` φ ∗ ψ Γ(φ, ψ) ` θ
Γ(∆) ` θ (∗E)

(−−∗I)
Γ, φ ` ψ

Γ ` φ−−∗ ψ
Γ ` φ ∆ ` φ−−∗ ψ

Γ,∆ ` ψ (−−∗E)

(>I)
Γ ` >

∆ ` > Γ(∅) ` φ
Γ(∆) ` φ (>E)

(∧I)
Γ ` φ ∆ ` ψ
Γ;∆ ` φ ∧ ψ

∆ ` φ ∧ ψ Γ(φ;ψ) ` θ
Γ(∆) ` θ (∧E)

(→ I)
Γ;φ ` ψ

Γ ` φ→ ψ

Γ ` φ ∆ ` φ→ ψ

Γ;∆ ` ψ (→ E)

(∨Ii)
Γ ` φi

Γ ` φ1 ∨ φ2
(i = 1, 2)

∆ ` φ ∨ ψ Γ(φ) ` θ Γ(ψ) ` θ
Γ(∆) ` θ (∨E)

(Cut)
∆ ` φ Γ(φ) ` ψ

Γ(∆) ` ψ
Γ ` ⊥
Γ ` φ (⊥E)

Fig. 2. Axioms for (intuitionistic) BI

for all sequents Γ and ∆ and formulae φ.

Proposition 23. The axioms of BI are sound with respect to the forcing semantics.
That is,

Γ ` φ implies JΓK ⊆ JφK

holds.

An algebraic re-formulation of soundness is useful. This says that the set U(R) has a
natural BI-algebra structure — see (Pym et al. 2004, Pym 2002) for more on BI-algebras.
In particular, this uses the operation ∗ above. This construction is a mild generalization
of the construction of a quantale from a partially-ordered monoid (satisfying the bifuncto-
riality condition). It is also an instance of Day’s construction of (enriched) doubly-closed
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R � ϕ iff R ∈ V(ϕ)

R � > always

R � ⊥ never

R � φ ∧ ψ iff R � φ and R � ψ

R � φ ∨ ψ iff R � φ or R � ψ

R � φ→ ψ iff ∀S. R v S and S � φ implies S � ψ

R � I iff e v R

R � φ1 ∗ φ2 iff ∃R1, R2. R1 ◦R2 v R and R1 � φ1 and R2 � φ2

R � φ−−∗ ψ iff ∀S. R ◦ S ↓ and S � φ implies R ◦ S � ψ

Fig. 3. Interpretation of BI

categories (Day 1970, Day 1973). The definition of interpretation can evidently be mod-
ified to give an interpretation on the lower sets of a dual resource monoid.

We take the system BIc of classical BI to consist of classical additive connectives and
intuitionistic multiplicative connectives. This system, as well as more intricate variants
with classical multiplicatives, are discussed in (O’Hearn & Pym 1999, Pym et al. 2004,
Pym 1999, Pym 2002). We add the logical connective for negation by defining ¬φ to be
φ→ ⊥ for all propositions φ. The system BIc is formed by adding the rule

(RAA)
Γ ` ¬¬φ

Γ ` φ
to BI.

In order to give a semantics we restrict to resource monoids, R, with discrete order.
That is R v S if and only if R = S for all R,S ∈ R. Notice that the bifunctoriality
condition becomes vacuous in this situation. Valuations are defined as for BI. Note that
now U(R) = P(R) so that atomic propositions are interpreted as arbitrary subsets of R.
It is then easily verified that the rule (RAA) is sound.

Proposition 24. The axioms of BIc are sound with respect to the interpretation on
resource monoids with discrete order.

The algebraic formulation of this says that P(R) is a Boolean BI-algebra, that is, a
BI-algebra such that ¬ (as complementation) makes it a Boolean algebra.

Define the system BIc−I to be the same as BIc but with the unit I and all rules
involving it excised. The propositional systems BI and BIc can be extended to include
first-order predication and quantifiers as in (O’Hearn & Pym 1999, Pym 1999, Pym
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et al. 2004, Pym 2002). This provides additive and multiplicative variants of both the
existential and the universal quantifier.

3.2. A Modal Logic

We now present an extended Hennessy-Milner logic for SCRPr. The logic is a close
relative of the logic MBI given in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et
al. 2007). Here, we focus on the simplified language MBIc. The language MBIc is the
same as MBI except that predication and quantifications over actions are omitted.

Assume sets Act of actions and Prop0 of atomic propositions. Let ϕ range over such
atomic propositions. The set Prop of propositions of MBIc is defined by the grammar

φ ::= ϕ | > | ⊥ | φ→ φ | φ ∧ φ | φ ∨ φ | I | φ ∗ φ | φ−−∗ φ | [a]φ | 〈a〉φ | [a]νφ | 〈a〉νφ

where a is any action. Thus the language MBIc extends the language BIc with addi-
tive modalities [a], 〈a〉 and multiplicative modalities 〈a〉ν , [a]ν labelled by actions a. The
language MBIc−I omits the unit I. The additive modalities are the standard ‘necessar-
ily’ and ‘possibly’ connectives familiar from modal logics, in particular Hennessy-Milner
logics for process algebras. As such, they implicitly use meta-theoretic quantification to
make statements about reachable states. The multiplicative variants are related to mul-
tiplicative quantifications, as described in (O’Hearn & Pym 1999, Pym 1999, Pym et al.
2004, Pym 2002), and make statements about reachable states in the presence of addi-
tional resource. The logic is classical for additives and so we may define ¬φ to be φ→ ⊥.
We could have defined [a]φ to be ¬〈a〉¬φ. We will see from the semantics that we could
also have defined [a]νφ to be ¬〈a〉ν¬φ. Examples justifying the inclusion of multiplicative
modalities were included in (Pym & Tofts 2006, Pym & Tofts 2007).

For any bunch Γ of formulae let [a]Γ be the bunch formed by putting [a]φ for each φ

of Γ. Adopt a similar convention for 〈a〉Γ, [a]νΓ and 〈a〉νΓ. The rules of MBIc consist of
the rules of BIc together with the rules presented in Figures 4 and 5. Notice that there
is a new introduction rule for each of the modalities. With the exception of these, all of
the new modal rules may be translated immediately into Hilbert-style tautologies.

3.3. Semantics

The mathematical structure on which we interpret MBIc is the set States of states gener-
ated by resources and processes. Recall that each state generates a transition structure.
We define the interpretation of a formula at a state to be the interpretation of that
formula at the corresponding transition structure in the ambient set of states. For the
purposes of this section assume that (Act,R, µ, ν) is fixed.

Recall the global equivalence relation ∼. A set Σ of states is said to be ∼-closed if it
satisfies the property

R,E ∈ Σ and E ∼ F implies R,F ∈ Σ

for all states R,E and processes F . Let P∼(States) be the set of all ∼-closed sets of states.
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([]I)
Γ ` ψ

[a]Γ ` [a]ψ

Γ ` ψ
〈a〉Γ ` 〈a〉ψ (〈〉I)

(¬[]¬1)
Γ ` 〈a〉φ

Γ ` ¬[a]¬φ
Γ ` ¬[a]¬φ
Γ ` 〈a〉φ (¬[]¬2)

([]>)
Γ ` >

Γ ` [a]>
Γ ` 〈a〉⊥
Γ ` ⊥ (〈〉⊥)

([] ∧ 1)
Γ ` [a]φ ∧ [a]ψ

Γ ` [a](φ ∧ ψ)

Γ ` [a](φ ∧ ψ)

Γ ` [a]φ ∧ [a]ψ
([] ∧ 2)

(〈〉 ∨ 1)
Γ ` 〈a〉φ ∨ 〈a〉ψ
Γ ` 〈a〉(φ ∨ ψ)

Γ ` 〈a〉(φ ∨ ψ)

Γ ` 〈a〉φ ∨ 〈a〉ψ (〈〉 ∨ 2)

([] ∧ 〈〉)
Γ ` [a]φ ∧ 〈a〉ψ
Γ ` 〈a〉(φ ∧ ψ)

Γ ` 〈a〉(φ ∧ ψ)

Γ ` 〈a〉φ ∧ 〈a〉ψ (〈〉∧)

(〈1〉)
Γ ` 〈1〉φ
Γ ` φ

Γ ` φ
Γ ` [1]φ

([1])

(〈1〉I)
Γ ` I

Γ ` 〈1〉I
Γ ` φ

Γ ` 〈1〉φ ∨ [1]⊥ (〈1〉[1])

(〈〉∗)
Γ ` 〈a1〉φ1 ∗ 〈a2〉φ2

Γ ` 〈a1a2〉(φ1 ∗ φ2)

Fig. 4. Axioms for the additive modalities of MBIc

Another way to construct this is to lift ∼ up to the set of states via

R,E ∼ S, F iff R = S and E ∼ F

for all states R,E and S, F . This is evidently an equivalence relation. Furthermore, the
∼-closed subsets are seen to be in one-one correspondence with unions of families of
equivalence classes of the relation ∼ on states. The set CStates does not, in general, have
to be ∼-closed.

We now proceed to give an interpretation of the logical calculus on the set CStates of
closed states. Consider the relation ∼ restricted to CStates. Then we may consider the
set P∼(CStates) of ∼-closed sets of closed states. A valuation is a function

V : Prop0 −→ P∼(CStates)

from the set of basic propositions to ∼-closed subsets of the set of all states. Every valua-
tion extends in a canonical way to an interpretation for MBIc-formulae, the satisfaction
relation for which is indicated in Figure 6, and in which every process that appears is
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([]νI)
Γ ` ψ

[a]νΓ ` [a]νψ

Γ ` ψ
〈a〉νΓ ` 〈a〉νψ

(〈〉νI)

(¬[]ν¬1)
Γ ` 〈a〉νφ

Γ ` ¬[a]ν¬φ
Γ ` ¬[a]ν¬φ
Γ ` 〈a〉νφ

(¬[]ν¬2)

([−]ν>)
Γ ` >

Γ ` [a]ν>
Γ ` 〈a〉ν⊥

Γ ` ⊥ (〈−〉ν⊥)

([]ν ∧ 1)
Γ ` [a]νφ ∧ [a]νψ

Γ ` [a]ν(φ ∧ ψ)

Γ ` [a]ν(φ ∧ ψ)

Γ ` [a]νφ ∧ [a]νψ
([]ν ∧ 2)

([]ν ∧ 〈〉ν)
Γ ` [a]νφ ∧ 〈a〉νψ
Γ ` 〈a〉ν(φ ∧ ψ)

Γ ` 〈a〉ν(φ ∧ ψ)

Γ ` 〈a〉νφ ∧ 〈a〉νψ
(〈〉ν∧)

(〈〉ν ∨ 1)
Γ ` 〈a〉νφ ∨ 〈a〉νψ
Γ ` 〈a〉ν(φ ∨ ψ)

Γ ` 〈a〉ν(φ ∨ ψ)

Γ ` 〈a〉νφ ∨ 〈a〉νψ
(〈〉ν ∨ 2)

([−][−]ν)
Γ ` [a]νφ

Γ ` [a]φ

Γ ` 〈a〉φ
Γ ` 〈a〉νφ

(〈−〉〈−〉ν)

(〈〉ν∗)
Γ ` 〈a1〉νφ ∗ 〈a2〉νφ2

Γ ` 〈a1a2〉ν(φ1 ∗ φ2)

Fig. 5. Axioms for the multiplicative modalities of MBIc

required to be an agent. A model for MBIc consists of the set of closed states together
with such an interpretation.

Example 25. One of the most interesting new axioms of MBIc is (〈〉∗), which is equiv-
alent to a tautology

(〈a1〉φ1 ∗ 〈a2〉φ2) → 〈a1a2〉(φ1 ∗ φ2)

for all actions a1, a2 and propositions φ1 and φ2. This can be seen to describe an essential
part of the operational behaviour of product processes as prescribed by the operational
semantics: if resource can be split in such a way that it enables actions for a pair of
processes, then it enables the product process. Furthermore, if each of the two sub-
processes are known to step into processes with known properties φ1 and φ2 then the
product process can step into some (product) process satisfying φ1 ∗ φ2.

A careful reading of the handshaking-process example from (Pym & Tofts 2006, Pym
& Tofts 2007) reveals that this is precisely how the logical specification for the process
is constructed. In this example, there are a pair of processes

E1 = 1 : E1 + goE1
: E′

1

E2 = 1 : E2 + goE2
: E′

2
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R,E � ϕ iff R,E ∈ V(ϕ)

R,E � ⊥ never

R,E � > always

R,E � φ ∧ ψ iff R,E � φ and R,E � ψ

R,E � φ ∨ ψ iff R,E � φ or R,E � ψ

R,E � φ→ ψ iff R,E � φ implies R,E � ψ

R,E � I iff R = e and E ∼ 1

R,E � φ1 ∗ φ2 iff ∃R1, R2, E1, E2. R = R1 ◦R2 and E ∼ E1 × E2 and

R1, E1 � φ1 and R2, E2 � φ2

R,E � φ−−∗ ψ iff ∀S, F. R ◦ S ↓ & S, F � φ implies R ◦ S,E × F � ψ

R,E � [a]φ iff ∀R′, E′. R,E
a→ R′, E′ implies R′, E′ � φ

R,E � 〈a〉φ iff ∃R′, E′. R,E
a→ R′, E′ and R′, E′ � φ

R,E � [a]νφ iff ∀T,R′, E′. R ◦ T,E a→ R′, E′ implies R′, E′ � φ

R,E � 〈a〉νφ iff ∃T,R′, E′. R ◦ T,E a→ R′, E′ and R′, E′ � φ

Fig. 6. Interpretation of MBIc on closed states

that can evolve to a new state just when they agree on progress, and otherwise wait
in the original state. The underlying resource monoid is assumed to be good and the
modifications for all atomic actions are all rooted. Thus we have a modification as in
Proposition 18. Let the root of µ(goEi

,−) be Ri 6= e for i = 1, 2 and suppose that
R1 6= R2. Let R = R1 ◦ R2 and note that R1 6= R 6= R2. The two processes either
remain together in the initial state R,E1×E2 or progress to a new state via a transition
R,E1 × E2

goE1
goE2→ R′, E′

1 × E′
2 where R′ = µ(goE1

goE2
, R). If µ(a,Ri), E′

i � φ for
i = 1, 2 then we see that we have

R,E1 × E2 � (〈goE1
〉φ1) ∗ (〈goE2

〉φ2)

and so

R,E1 × E2 � 〈goE1
goE2

〉(φ1 ∗ φ2) .

The additive version of the axiom (〈〉∗) together with the BI rules entail:

〈a1〉(φ−−∗ ψ) ` (〈a2〉φ)−−∗ (〈a1a2〉ψ) .
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Note that:

(〈a1〉φ) ∗ (〈a2〉ψ) ` 〈a1a2〉(φ ∗ φ) and (φ−−∗ ψ) ∗ φ ` ψ
are derivable. We can therefore make the derivation:

...
〈a1〉(φ−−∗ ψ) ∗ (〈a2〉φ) ` 〈a1a2〉((φ−−∗ ψ) ∗ φ)

...
(φ−−∗ ψ) ∗ φ ` ψ

〈a1a2〉((φ−−∗ ψ) ∗ φ) ` 〈a1a2〉ψ
〈a1〉(φ−−∗ ψ), (〈a2〉φ) ` 〈a1a2〉ψ

〈a1〉(φ−−∗ ψ) ` (〈a2〉φ)−−∗ (〈a1a2〉ψ)

for any φ, ψ, a1 and a2, using the cut rule.
In the handshaking example, if ai = goEi

for i = 1, 2, and φ1 is φ2−−∗ψ, then whenever
we combine R1, E1 � 〈goE1

〉φ1 with R2, E2 � 〈goE2
〉φ2 we get R,E1×E2 � 〈goE1

goE2
〉ψ.

Note that the satisfaction of certain formulae at a given state makes use of states that
lie outside the transition structure generated by that state. This is a critical difference
between MBIc and most process logics.

This means that the model-checking problem for MBIc can be very hard, indeed
often only semi-decidable, depending on the properties of the underlying quadruple
(R,Act, µ, ν). The development of a proof system to accompany the language is therefore
an important step.

Define a binary relation on closed states by

R,E
MBIc≡ S, F iff ∀φ. R,E � φ ⇐⇒ S, F � φ

for all R,E, S, F . For any E,F write

E
MBIc≡ F iff ∀R. R,E MBIc≡ R,F

holds.
The following result, which is related to the Hennessy-Milner theorem (Hennessy &

Milner 1985), shows that there is a close relationship between the algebraic equivalence
∼ and the logical equivalence

MBIc≡ :

Theorem 26. Let E and F be closed states. If E ∼ F then E
MBIc≡ F also holds.

Proof. The proof is by induction on the structure of formulae. We show that for every
formula φ, if we take any E, F , R with E ∼ F and R,E � φ then R,F � φ. Since ∼ is
symmetric the fact that R,F � φ implies R,E � φ follows.

The base cases, where φ is one of ϕ, >, ⊥, are all immediate. In particular, the case
for ϕ goes through because atomic propositions are valued as ∼-closed sets.

The step cases use the following induction hypothesis: for all sub-formulae ψ of φ, if
for any E, F and R we have E ∼ F then R,E � ψ if and only if R,F � ψ.

The cases for the connectives ∧, ∨, → are all unsurprising. We omit the [a] and [a]ν
cases as they are dual to the 〈a〉 and 〈a〉ν cases, respectively. We now consider the other
cases.

(〈a〉) Suppose R,E � 〈a〉φ holds. Then there is some E′ such that R,E a→ R′, E′ � φ.
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Since E ∼ F it follows that there is an F ′ with R,F
a→ R′, F ′ with E′ ∼ F ′. By the

induction hypothesis we have that R′, F ′ � φ. Therefore R,F � 〈a〉φ.
(I) Suppose R,E � I. Then R = e and E ∼ 1. Therefore F ∼ 1, and so R,F � 1.
(∗) Suppose R,E � φ1 ∗ φ2. Then there are R1, R2, E1, E2 with R = R1 ◦ R2,

E ∼ E1 × E2, R1, E1 � φ1 and R2, E2 � φ2. Then F ∼ E1 × E2 and so R,F � φ1 ∗ φ2.
(−−∗I) Suppose R,E � φ−−∗ψ. Consider any S,G such that R◦S is defined and S,G � φ

holds. Then R ◦ S,E × G � ψ holds. By Proposition 7 we have E × G ∼ F × G and so
R ◦ S, F ×G � ψ by the induction hypothesis.

(〈a〉ν) Suppose that R,E � 〈a〉νφ. There are some T , R′, E′ such that R ◦ T is
defined and R ◦ T,E a→ R′, E′ � φ. Since E ∼ F it follows that there is some F ′ with
R ◦ T, F a→ R′, F ′ and E′ ∼ F ′. By the induction hypothesis we have that R′, F ′ � φ.
Therefore R,F � 〈a〉νφ.

Note that neither of the I or ∗ cases requires the induction hypothesis. The fact that
∼ is a congruence is only required for the −−∗ case. There were errors in the original proof
in (Pym & Tofts 2006, Pym & Tofts 2007) which used the relation ≈ instead of ∼. This
was corrected in (Collinson et al. 2007). However, the following is true:

Proposition 27. Consider the {>,⊥,∧,∨,→, 〈−〉, [−], I, ∗}-fragment of MBIc. Assume
that all atomic propositions are valued as sets of closed states that are closed under ≈.
Alter the I and ∗ clauses of the interpretation so that:

R,E � I iff R,E ≈ e, 1

R,E � φ1 ∗ φ2 iff ∃R1, R2, E1, E2. R = R1 ◦R2 and R,E ≈ R,E1 × E2 .

The following version of Theorem 26 then holds: if R,E ≈ R,F then R,E
MBIc≡ R,F , for

all resources R and processes E and F .

Proof. The proof is essentially as before. We suppose that R,E ≈ R,F and show,
by induction on the structure of φ, that if R,E � φ then R,F � φ. The I and ∗ cases
only require the fact that ≈ is an equivalence relation. The other cases then hold for the
standard reasons for the usual interpretation of a classical modal logic.

Theorem 26 remains true for ∼ and with atomic predicates, additive and multiplicative
quantifiers added to MBIc, as in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et
al. 2007). See also Section 3.5 below.

Theorem 26 shows that the set of closed states satisfying any formula is ∼-closed.

Corollary 28. Every interpretation yields a unique function

J−K : Prop −→ P∼(CStates)

with

R,E ∈ JφK iff R,E � φ

for all closed states R,E and MBIc-propositions φ.

The sets States and CStates have monoidal structure that the interpretation is critically



Algebra and Logic for Resource-based Systems Modelling 31

dependent upon. This is easily shown using the algebraic properties of ∼ that we have
already determined.

Proposition 29. The set States is a resource monoid with the equality given by ∼. The
composition is defined by the Kleene-equality:

(R,E)× (S, F ) ' (R ◦ S,E × F )

for all (R,E) and (S, F ). Note that this expression is defined just when R ◦ S is defined.
The unit is (e, 1). The set CStates is a resource monoid with the same structure.

We extend the monoid on CStates to a monoid ∗ with unit I on ∼-closed sets of CStates

by taking:

I = {(e,E) | E ∼ 1}

Σ1 ∗ Σ2 = {(R,E) | ∃R1, R2, E1, E2. R = R1 ◦R2 and E ∼ E1 × E2 and
R1, E1 ∈ Σ1 and R2, E2 ∈ Σ2}

for any two sets of closed states Σ1 and Σ2. The interpretation extends to an interpre-
tation of bunches and judgements following the pattern used for the semantics of BIc,
but now using ∼-closed subsets of CStates in place of sets of resources.

Lemma 30. If J∆K ⊆ J∆′K then JΓ(∆)K ⊆ JΓ(∆′)K for any Γ.

The proof of this monotonicity property is by induction on the structure of Γ and uses
the observation that both the intersection and ∗ operations are monotonic. In fact, they
both satisfy the bifunctoriality condition (1).

Lemma 31. We have the following simple results:

JφK = JφK ∗ JIK and JφK ∗ Jφ−−∗ ψK ⊆ JψK

for all φ and ψ.

Proof. The proof is by unfolding the definitions and applying Theorem 26 and Lemma
9. The proof of the first rests upon the simple-extension property for transitions since it
requires the result E ∼ E × 1 for all agents E.

Theorem 32. The calculus MBIc is sound on the model above. That is

Γ ` ψ implies JΓK ⊆ JψK

holds, for all Γ, ψ.

Proof. The proof is an induction on the derivation of the judgement Γ ` ψ. This
amounts to a case-analysis on the final rule of the derivation. We omit the cases for the
introduction and elimination rules of >, ⊥, ∧, ∨, → as they are rather standard. The
cases [−] and [−]ν are omitted as they are dual to the 〈−〉 and 〈−〉ν cases, respectively.

(II) This case is trivial since J∅∗K = I.
(IE) The induction hypothesis means that J∆K ⊆ JIK and JΓ(∅∗)K ⊆ JφK. Now JIK =

J∅∗K, so by Lemma 30, JΓ(∆)K ⊆ JΓ(∅∗)K and hence JΓ(∆)K ⊆ JφK.



Collinson and Pym 32

(∗I) We have JΓK ⊆ JφK and J∆K ⊆ JψK. Then JΓ,∆K = JΓK ∗ J∆K ⊆ JφK ∗ JψK = Jφ ∗ψK
using the monotonicity properties of ∗.

(∗E) We have J∆K ⊆ Jφ ∗ ψK = Jφ, ψK and JΓ(φ, ψ)K ⊆ JθK. Then JΓ(∆)K ⊆ JθK by
Lemma 30.

(−−∗I) We have that JΓ, φK ⊆ JψK. Now suppose R,E ∈ JΓK. Consider any closed state
S, F such that R ◦S ↓ and S, F � φ. By the definitions of satisfaction and interpretation
we have R ◦ S,E × F ∈ JΓ, φK. Therefore R ◦ S,E × F ∈ JψK and so R ◦ S,E × F � ψ. It
follows that R,E ∈ Jφ−−∗ ψK. Therefore JΓK ⊆ Jφ−−∗ ψK holds.

(−−∗E) The induction hypothesis gives JΓK ⊆ JφK and J∆K ⊆ Jφ −−∗ ψK. Since ∗ is
bifunctorial we have that JΓ,∆K ⊆ JφK∗Jφ−−∗ψK. Applying Lemma 31 we get JΓ,∆K ⊆ JψK.

(〈〉∗) Suppose R,E � 〈a1〉φ1 ∗ 〈a2〉φ2. Then there are R1, R2, E1, E2 such that R =
R1 ◦ R2, E ∼ E1 × E2, R1, E1 � 〈a1〉φ1 and R2, E2 � 〈a2〉φ2 hold. Then there are
R′1 R′2, E

′
1, E

′
2 such that R1, E1

a1→ R′1, E
′
1, R2, E2

a2→ R′2, E
′
2 and R′1, E

′
1 � φ1 and

R′2, E
′
2 � φ2. We can then derive R,E1 × E2

a1a2→ R′, E′
1 × E′

2, where R′ = R′1 ◦ R′2.
Clearly, R′, E′

1 ×E′
2 � φ1 ∗ φ2 holds, and therefore so does R,E1 ×E2 � 〈a1a2〉(φ1 ∗ φ2).

Since E ∼ E1 × E2 we have that R,E � 〈a1a2〉(φ1 ∗ φ2), using Theorem 26. Thus, if
JΓK ⊆ J〈a1〉φ1 ∗ 〈a2〉φ2K then JΓK ⊆ J〈a1a2〉(φ1 ∗ φ2)K.

(E) The structural rule of equivalence makes use of the relation ≡ between bunches.
The soundness of this makes essential use of the first result in Lemma 31.

We omit the proofs of the other rules. They are all quite straightforward consequences
of the definitions and results we have developed above.

Notice that this soundness relies upon Theorem 26, the algebraic properties of Lemma 9
and the simple-extension property for transitions. For the process calculus SCRP (rather
than SCRPr) the logic MBIc−I is sound under this interpretation (but MBIc is not).

Corollary 33. If ∅ ` φ then R,E � φ for all closed states R,E.

Since R,E ∈ J∅∗K entails R = e and E ∼ 1 we see that we are more interested in the
additive theorems (those of the form ∅ ` φ) than in the multiplicative theorems (∅∗ ` φ).

An algebraic restatement of the soundness result may be made, namely, that the set
P∼(CStates) is naturally equipped with the structure of a BIc-algebra together with
operators for additive and multiplicative modalities. This all follows from the fact that
CStates is a resource monoid and the fact that ∼ is contained in the usual bisimulation
relation on states familiar from modal logic (Popkorn 1994).

3.4. Characterization of the Logical Equivalence

We have shown above that the global simulation ∼ on states is contained in both the
logical (semantic) equivalence

MBIc≡ and the local simulation ≈. It is not always the case
that the relation ≈ on processes is contained in the relation

MBIc≡ on processes. The
following counterexample shows that the relation ≈ on states is not contained in

MBIc≡ on
states:
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Example 34. Consider the resource monoid R = (N ∪ {∞}, ◦, 0,=) with

m ◦ n =


m+ n if m,n ∈ N
∞ if (m = 0 and n = ∞) or (m = ∞ and n = 0)
↑ otherwise.

Take the action monoid Act = {bp | p ∈ N} generated freely from the atomic action b.
In particular, write 1 = b0.

The following defines a modification:

µ(bp, n) =


n if n ∈ N and p = 0
↑ if n ∈ N and p 6= 0
∞ if n = ∞ and p = 0
0 if n = ∞ and p 6= 0 .

Consider the processes E and F defined by:

E = 1 : E + b : E F = 1 : F .

For any n ∈ N, the only transition of n,E is n,E 1→ n,E, and the only transition of
n, F is n, F 1→ n, F , since µ(1, n) = n and µ(b, n) ↑. Therefore n,E ≈ n, F for any n ∈ N.

Note that ∞, E and ∞, F have distinct operational behaviour since ∞, E
b→ 0, E, but

there is no b-transition starting from ∞, F . Therefore ∞, E 6≈ ∞, F .
Consider the atomic proposition φ, valued such that:

n,E′ � φ iff n = ∞ and E′ ∼ 1

for all n and E′.
Consider any n and E′ such that n,E′ � φ, so that n = ∞ and E′ ∼ 1. Then

∞, E
b→ 0, E 0, E′ 1→ 0, E′

∞◦ 0, E × E′ b→ 0 ◦ 0, E × E′

since µ(b,∞) = 0. Now ∞, E×E′ b→ 0, E×E′ and 0, E×E′ � >, so 0◦∞, E×E′ � 〈b〉>.
Therefore 0, E � φ −−∗ 〈b〉>, since the above argument holds for arbitrary n and E′. On
the other-hand 0, F 2 φ−−∗ 〈b〉>, since ∞, 1 � φ but 0 ◦∞, F × 1 makes no b-transition.

Therefore

0, E ≈ 0, F and 0, E 6MBIc≡ 0, F

both hold.

For standard process algebras like SCCS there is a partial converse to Theorem 26
which says that, under certain conditions, any two logically equivalent processes are also
≈-equivalent.

Define a state R,E to be image-finite if it has finitely many immediate derivatives.
Define an agent E to be image-finite if R,E is image-finite for all R. Define a process E
with all free variables amongst the n-tuple X to be image-finite if E[G/X] is image-finite
for all n-tuples of agents G. We then have the following result:
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Theorem 35. If R,E
MBIc≡ R,F for any image-finite processes E and F and any resource

R, then R,E ≈ R,F holds. Consequently, if E
MBIc≡ F then E ≈ F holds.

Proof. Note that if the the theorem is true then
MBIc≡ is contained in ≈ on states, and

so
MBIc≡ must satisfy the closure conditions defining ≈.
Suppose for a contradiction that the theorem is false. Then there must be some states

R,E and R,F with R,E
MBIc≡ R,F and, without loss of generality, some transition

R,E
a→ µ(a,R), E′ for some E′ and some a, such that there is no F ′ with both R,F a→

µ(a,R), F ′ and µ(a,R), E′ MBIc≡ µ(a,R), F ′.
Let F = {F ′ | R,F a→ µ(a,R), F ′}. If F is empty then R,E � 〈a〉> and R,F 2 〈a〉>,

which contradicts R,E
MBIc≡ R,F . Therefore F must be non-empty. Since F is image-

finite we may enumerate the elements of F as F1, . . . , Fn for some n ≥ 1. Furthermore,
since µ(a,R), E′ 6MBIc≡ µ(a,R), Fi for every Fi ∈ F and MBIc has classical negation, for
each 1 ≤ i ≤ n there is some φi such that µ(a,R), E′ � φi and µ(a,R), Fi 2 φi. But then
R,E � 〈a〉(φ1 ∧ . . . ∧ φn) and R,F 2 〈a〉(φ1 ∧ . . . ∧ φn). This contradicts R,E

MBIc≡ R,F

and so F cannot be non-empty either.

The SCRP-version of this result was shown in (Pym & Tofts 2006). The main work
in the proof is done by the presence of the additive diamond modality, which allows us
to distinguish processes that make different transitions. This is a general fact of modal
logic, see (Popkorn 1994) for a detailed explanation. Indeed, the proof will work for any
fragment of MBIc including 〈〉, ∧ and >.

It does not seem that an analogous result can be produced for ∼, even with the
multiplicative connectives. In particular, an equivalence E ∼ F makes comparisons of
states S,E′ where E′ is the process component of a derivative R′, E′ of some state
R,E, with S 6= R′. However, the multiplicative diamond only gives access to states with
resource components that are formed as composites of some resource with the resource
component of derivatives. In general, not all resources can be realized as such composites.
The connectives −−∗ and ∗ also do not seem to be of any help here.

We find ourselves in the situation of having Theorem 26 stated using the relation ∼,
but no converse. This is somewhat unsatisfactory. Ideally, one would wish to have a single
bisimulation relation that matched perfectly with the logical equivalence.

The relation ≈ on states seems like the natural way to compare the operational be-
haviour of states and is also intimately related to the soundness of the classical modal
connectives. We have seen, however, that it is not always a congruence. This means that
it cannot be used to give a logical interpretation of MBIc (along the lines of Proposi-
tion 27) that supports the connective −−∗ (it also does not support 〈〉ν).

The failure of congruence for ≈ on states is a consequence of the form of the operational
rule for synchronous product, and the fact that resource composition is not injective.
This also holds for the relation ≈ on processes, which may further fail to be closed under
transitions on states: there exists E, E′, F , R and R′, with E ≈ F and R,E

a→ R′, E′

but no F ′ with R,F
a→ R′, F ′ and E′ ≈ F ′. Hence this relation does not give a version

of Theorem 26 featuring the additive or multiplicative modalities.
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The relation ∼ is a conservative solution to the failure of both notions of ≈ above.
The use of universal quantification across resource and the fact that it is closed under
transitions guarantees that it is a congruence and that Theorem 26 and Theorem 32 hold.

The logic MBIc speaks about composition and decomposition of states and resources
as well as operational behaviour. Thus one should perhaps expect that a bisimulation
relation that matches

MBIc≡ should compare more than just the operational behaviour of
states — it should also compare composition and decomposition of states and resources.

A line of work (Sewell 1998, Leifer & Milner 2000, Sassone & Sobociński 2003) has de-
veloped methods for designing labelled transition systems for process calculi that satisfy
general forms of bisimulation. We do not know if such methods can be used to re-design
the labelled transition system of SCRP in such a way as to make ≈ better behaved, or
to find a suitable alternative to ∼.

3.5. Quantification

The above system is purely propositional. In contrast, in (Pym & Tofts 2006, Pym &
Tofts 2007, Collinson et al. 2007) quantification was shown to be extremely useful, in
particular for describing the resource-hiding restriction mechanism of SCRP. In this
section we consider an extension, MBIq, of our previous logical system, MBIc, with
such quantification.

It turns out that what we need for the discussion of hiding is quantification over an
action. Thus we assume a countable set, ActVar of action variables, ranged over by x,
and a constant symbol a for each action a of SCRPr. Let A = ActVar ∪ Act and let
a range over this set. We assume a given set of function symbols on actions, each with
some chosen arity. The terms t of the language are then formed in the standard way
(variables and constants are terms, functions applied to terms are terms). We assume
a given set of relations on the set of actions, each with a given arity. We assume the
equality relation = between terms to be included in this set. Atomic formulae ϕ consist
of all instances of relations, that is, if p is a relation symbol of arity n and t1, . . . , tn are
terms, then p(t1, . . . , tn) is an atomic formula. The formulae of the language MBIq are
then as follows

φ ::= ϕ | > | ⊥ | φ→ φ | φ ∧ φ | φ ∨ φ | I | φ ∗ φ | φ−−∗ φ

| [a]φ | 〈a〉φ | [a]νφ | 〈a〉νφ | ∃x.φ | ∀x.φ | ∃νx.φ | ∀νx.φ .

Notice that we now have modalities 〈x〉, [x], 〈x〉ν and [x]ν labelled by variables (in this
case x) as well as action constants. The additive quantifiers ∃, ∀ and the multiplicative
quantifiers ∃ν , ∀ν bind free action variables (in the usual way). The sentences are just
the formulae without free variables. For any formula φ, let φ[t1/xn, . . . , tn/xn] be the
formula formed by replacing each occurrence of each variable xi by the term ti.

A valuation V for the language above is fixed by choosing a relation V(p) ⊆ Actn ×
CStates for each relation symbol p of arity n and an n-ary function on Act for each n-ary
function symbol. In particular, V(=) = {(a, a, (R,E)) | a ∈ Act, (R,E) ∈ CStates}. Each
set V(p) must be closed under the relation ∼. An assignment, η, is a function from ActVar
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R,E � p(t1, . . . , tn)η iff (t1η, . . . , tnη, (R,E)) ∈ V(p)

R,E � (∃x.φ)η iff ∃a ∈ Act. R,E � φ[a/x]η

R,E � (∀x.φ)η iff ∀a ∈ Act. R,E � φ[a/x]η

R,E � (∃νx.φ)η iff ∃(S, F ) ∈ CStates. ∃a ∈ Act.

R,E ∼ R, νS.F and R ◦ S ↓ and µ(a, S) ↓ and R ◦ S, F � φ[a/x]η

R,E � (∀νx.φ)η iff ∀(S, F ) ∈ CStates.∀a ∈ Act.

R,E ∼ R, νS.F and R ◦ S ↓ and µ(a, S) ↓ implies R ◦ S, F � φ[a/x]η

Fig. 7. Interpretation of MBIq

to Act. For any η, let η[a/x] be the assignment that is identical to η, except that η(x) = a.
Constants are interpreted as themselves at any assignment. A variable x is interpreted
as η(x) at any assignment η. Compound terms are interpreted at an assignment by
applying the interpretation of the outermost function symbol to the interpretation of sub-
terms: thus all terms denote actions. A valuation is then extended to an interpretation
of formulae as in Figure 7 with the understanding that the interpretation of all other
formulae follows the pattern in Figure 6. In particular, the interpretations of 〈x〉, [x], 〈x〉ν ,
[x]ν follow from those of 〈a〉, [a], 〈a〉ν , [a]ν , respectively, by replacing all occurrences of
a by x.

There are a number of special cases of the above set-up that are particularly important.
The first of these is the case where there are no function symbols, so that the only terms
are the variables and (constant) actions. A second recovers atomic propositions that are
independent of action (as in MBIc) by including relations of arity 0 (note that these
are distinct from action constants). Notice that in this case, quantification is only over
actions that occur as labels of modalities.

The situation in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et al. 2007) follows
the first of the special cases (no function symbols). In addition, only a special form of
relation is allowed. These are defined (with a slight change of notation) to be those
susceptible to an interpretation

R,E � p(a1, . . . , an) iff ∀1 ≤ i ≤ n. µ(ai, R) ↓ and JpK(R, . . . , R)

where JpK ⊆ Rn is an n-ary relation on resources associated with the relation symbol p.
For a relationship R,E � φ for a formula φ of the form ∃x.〈x〉φ or ∃x.p(x), any witness a
for x will clearly satisfy µ(a,R) ↓. Similarly, for formulae of the form ∀x.〈x〉φ we only need
to verify that φ[a/x] whenever µ(a,R) is defined. A slightly different formulation of the
additive quantifiers was presented in (Pym & Tofts 2006, Pym & Tofts 2007, Collinson et
al. 2007) in which these conditions µ(a,R) ↓ were explicitly included. We have preferred
the slightly more general version here. This is likely to have cleaner proof rules.

The multiplicative quantifier ∃ν is intended to characterize hiding, in the same sense
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that ∗ characterizes synchronous product. Examples of the use of multiplicative quantifi-
cation are given in (Pym & Tofts 2006, Pym & Tofts 2007).

Example 36. The privacy example contained in (Pym & Tofts 2007) can, in fact, be
illustrated through the combination of the two special cases above. This example is a
continuation of Example 25. The resources used by the evolving state R1 ◦ R2, E1 × E2

may be hidden to form some new state

e, ν(R1 ◦R2).(E1 × E2)

in which the resources are no longer externally visible. If this state evolves (because it
meets the side-conditions on the transition rule for hiding processes) then it does so in
the same way as before, but with two differences. First, the evolution of R1 ◦ R2 is no
longer externally invisible. Second, the state now evolves along the action ν(R1 ◦ R2).a
so that a itself may not be externally observable. In the case of the choice of ν from
equation (3) only the atoms of a that do not use R1 ◦R2 are externally visible.

Suppose that the state e, ν(R1◦R2).(E1×E2) does evolve. Then we have the satisfaction
relation

e, ν(R1 ◦R2).(E1 × E2) � ∃νx.〈x〉(φ1 ∗ φ2)

since R1 ◦R2, E1×E2 � 〈goE1
goE2

〉(φ1 ∗φ2) holds. Furthermore, the fact that ∃ν is used,
forces the process to be a hiding (resource restriction), at least up to global bisimulation,
and the action x (instantiated by goE1

goE2
) to be such that the hidden resource enables

it to act.

Write,

R,E
MBIq
≡ R,F iff ∀φ .R,E � φ ⇐⇒ R,F � φ

for any closed states R,E and R,F . Write E
MBIq
≡ F whenever R,E

MBIq
≡ R,F for all

R. The appropriate extension of Theorem 26 holds.

Theorem 37. Let E and F be closed states. If E ∼ F then E
MBIq
≡ F also holds.

Proof. The proof is an extension of the induction given for Theorem 26. The new
clauses in the proof are almost trivial given the interpretation above. The valuations of
atoms are assumed to be closed under ∼. The induction steps at the additive quantifiers
are straightforward. The steps for the multiplicative quantifiers only use the fact that ∼
is an equivalence relation.

We have not considered any proof rules for the quantifiers of MBIq. It seems that the
additives should satisfy the standard rules for first-order quantification and that these
should be susceptible to the usual semantics using indexed categories following (Lawvere
1969). How to do this for the multiplicatives and how to produce an appropriate extension
of Theorem 32 is completely open.

It may well be the case that further enrichments of the calculus with, for example, a
resource sort, function symbols for partial functions and equality would prove fruitful.



Collinson and Pym 38

Clearly, they would approximate more closely the level of detail involved in the satisfac-
tion relation �, in particular allowing us to deal directly with properties of modifications
within the logic.

4. Ordered SCRP and Intuitionistic MBI

None of the work on members of the SCRP and MBI families of calculi has so far
made any use of the order on resource monoids. In this section we will develop calculi
that are sensitive to the order. The process calculus OSCRP deals with actions that are
performed just when they have sufficient resources. A special version of such a calculus
was already considered in (Pym & Tofts 2006), using an enabling function, ρ : Act −→ R
to specify the minimum resources required for an action to fire. This kind of calculus
was suitable for most of the modelling situations under consideration but was difficult
to reconcile with a Hennessy-Milner logic with classical modalities. We now show that
the appropriate logic for reasoning about OSCRP is a modal logic with an intuitionistic
proof system and semantics. Again, we consider only the propositional part, and call the
new logic MBIi.

The use of order in both the process calculus and the logic has considerable practical
advantages. For example, in a system that automatically generates the transition system
associated with a resource-process state, the computationally-hard part can be deter-
mining the evolution of resource under an arbitrary modification. The use of an order
can substantially simplify these calculations. In a similar way, a model-checker that at-
tempts to automatically verify assertions of MBI against states must, in general, deal
with unbounded searches across infinite resource spaces. Suitable structuring using the
order and modification can bound this search and therefore yield a model-checker with
better termination properties.

We begin with a special resource monoid R = (R, ◦, e,v) and an action monoid
Act. A modification, µ, is a partial function satisfying the coherence conditions (for
SCRPr) previously stated, but we suppose that it also satisfies both of the monotonicity
conditions:

1 if µ(a,R) ↓ and R v S then µ(a, S) ↓ and µ(a,R) v µ(a, S);
2 if µ(a,R ◦ S) and µ(νS.a,R) ◦ S′ are both defined, µ(a,R ◦ S) = µ(νS.a,R) ◦ S′ and

R v T , then µ(a, T ◦S) and µ(νS.a, T )◦S′ are defined and µ(a, T ◦S) = µ(νS.a, T )◦S′

for all actions a and resources R, S, S′, T .
It is easily verified that Lemma 3 concerning the extension of resources and modi-

fications holds in this new setting. An additional observation about the piggybacking
relation and the order is needed, the proof of which is immediate.

Lemma 38. If the resource monoid is special, S <R and R v T then S < T holds.

The process terms are precisely the same as for SCRPr, as are the operational rules,
with the exception of the product, which becomes

R,E
a→ R′, E′ S, F

b→ S′, F ′

T,E × F
ab→ µ(ab, T ), E′ × F ′

(R ◦ S v T )
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for all appropriate a, b, E, E′, F , F ′, R, R′, S, S′, T .
As before, the form of the rules means that the only resource that appears in the target

of a transition is the modification of the resource in the source of that transition. That
is, Lemma 2 holds in this setting. The rule for prefix and the monotonicity conditions on
µ means that if the state R, a : E makes a transition and R v S then so does S, a : E.
In fact, we have the following order-extension property for transitions:

Lemma 39. If R,E a→ µ(a,R), E′ and R v R′ then R′, E
a→ µ(a,R′), E′ is also deriv-

able.

Proof. The proof is much as one would expect, that is, by induction on the derivation
of the process term E. The prefix case holds for the reasons noted above. The sum
case is straightforward. The product case is taken care of through by the order in the
side-condition. The hiding case follows because of the new condition on modifications
regarding hiding actions and the monotonicity condition for the predicate < noted in
Lemma 38.

The simple-extension property for transitions, Lemma 4, holds in this new setting,
and the proof is much as before. The product case now makes use of the bifunctoriality
condition on the resource monoid and the hiding case makes use of the predicate < .

The global bisimulation relation ∼ is defined precisely as before. That is, it takes no
account of the order. On the other-hand, if we wished to work with the local variant then
we would have to place some compatibility constraints between it and the order. The
global bisimulation is shown to be an equivalence relation and a congruence as before
(Lemma 7) with only minor alterations to the product clause. The simple algebraic
properties of Lemma 9 continue to hold: in particular, the clause that says that 1 is a
unit for × makes use of Proposition 4 and Lemma 39; the associativity of × makes use
of the new monotonicity condition on composition.

We introduce a logic MBIi of intuitionistic modal propositional MBI. This has the
same connectives as MBIc and all of the same rules except for (RAA), (¬[]¬2), (〈〉 ∨ 2),
(〈1〉[1]), (〈〉νI), (¬[]ν¬2), (〈〉ν ∨ 2), (〈〉〈〉ν), which are omitted.

4.1. Interpretation

Define a preorder on states by

R,E v S, F iff R v S and E = F

for all E, F , R, S, where = is the identity on the syntax of processes. Let the set of all
upper sets amongst the states be Υ(States), and the set of all ∼-closed upper sets be
Υ∼(States).

A valuation of atomic propositions is taken to be a map

V : Prop0 −→ Υ∼(CStates)

from the set of atomic propositions, Prop0 to the ∼-closed upper sets of closed states.
For any given valuation, V, of the atomic propositions, the language MBIi is given
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R,E � ϕ iff R,E ∈ V(ϕ)

R,E � φ→ ψ iff ∀S. R v S and S,E � φ implies S,E � ψ

R,E � I iff e v R and E ∼ 1

R,E � φ1 ∗ φ2 iff ∃R1, R2, E1, E2. R1 ◦R2 v R and E ∼ E1 × E2

and R1, E1 � φ1 and R2, E2 � φ2

R,E � [a]φ iff ∀S, S′, E′. R v S & S,E
a→ S′, E′ implies S′, E′ � φ

R,E � 〈a〉φ iff ∀S. R v S implies ∃S′, E′. S, E
a→ S′, E′ and S′, E′ � φ

R,E � [a]νφ iff ∀S, T, S′, E′. R v S & S ◦ T,E a→ S′, E′ implies S′, E′ � φ

R,E � 〈a〉νφ iff ∀S. R v S implies ∃T, S′, E′. S ◦ T,E a→ S′, E′ and S′, E′ � φ

Fig. 8. Interpretation of MBIi

an interpretation on closed states as in Figure 8. This makes use of the order on the
resource monoid. We omit the interpretation of the ∧, ∨ and −−∗ connectives as they
remain unchanged from Figure 6.

The recursive definition of the interpretation has been designed so as to maintain the
following important invariant.

Lemma 40. Every proposition φ has an interpretation

JφK = {R,E ∈ CStates | R,E � φ}

which is an upper set with respect to the order v on states.

Write R,E
MBIi≡ S, F whenever given states R,E and S, F satisfy exactly the same

MBIi-formulae. Write E
MBIi≡ F whenever the processes E and F satisfy the same for-

mulae at all R.

Theorem 41. If E ∼ F then E
MBIi≡ F .

The proof is essentially as in the classical case, with a few easy modifications because
of the new interpretation. This shows that the set JφK is ∼-closed for each φ. Thus, an
interpretation is a function

J−K : Prop −→ Υ∼(CStates)

given any valuation.
Lemma 30, which says that interpretation of substitution in a context is monotonic,

holds in this setting. Lemma 31 also holds, by a proof that makes use of Theorem 41.
The proof of soundness is also a trivial modification of the discrete version (Theorem 32).
In particular, we have retained the important systems rule (〈−〉∗) through our set-up.
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Theorem 42. The calculus MBIi has a sound interpretation on CStates.

Quantifiers may easily be included in the system MBIi: the interpretation of quantifiers
in MBIc are modified in the obvious way so that they become upper sets of states. All
of the results above then continue to hold. Just as in the discrete case, it is the extension
properties that make the unit axioms for the logic work. Here, however, we also need the
order-extension property to get the associativity of ×. Thus, in situations where it is not
appropriate to use the piggybacking condition we must have a variant calculus in which
this extension property is explicitly included as a structural transition rule. Note that
when the order v on resources is taken to be discrete OSCRP reduces to SCRPr, and
the interpretation of formulae of MBIi are identical to their interpretation in MBIc.
Thus the discrete versions are special cases of the ordered versions.

Example 43. The fact that all propositions are upper sets can be very useful for model-
checking, since, for example, sometimes it suffices to verify that the given state has suffi-
cient resource. Consider, for example, a language with just increment, i, and decrement,
d, operations over the resource monoid consisting of the natural numbers with their usual
ordering. If we take

µ(dmin, p) =
{
p+ n−m if m ≤ p

↑ if m > p

then µ is a modification in the sense of this section. Owing to the particular proper-
ties of this resource monoid, we do not get any more transitions than we did for the
unordered calculus. However, we may take typical atomic propositions from the logical
language to make assertions like φn, where this says ‘the resource component of the given
state is greater than n’. Propositions can then be checked at states by combinations of
computable order-assertions. A proposition of the form 〈ab〉(φm ∗ φn) can be checked by
finding a witness for 〈a〉φm∗〈b〉φn at a state with a sufficiently large resource component.
For example, suppose we are given the state 3, (d : E) × (i : F ). Then we find that this
state satisfies 〈d〉φ2 ∗ 〈i〉φ1 and 〈di〉(φ2 ∗φ1). Moreover, any state p, (d : E)× (i : F ) with
p ≥ 3 will also satisfy these properties.

5. Definable Extensions

The calculus SCCS is so powerful that it can be used to capture many other frameworks
for concurrent modelling and computation. Indeed, a remarkable functional completeness
result exists (de Simone 1985) which shows that all concurrent behaviour that can be
described by calculi with operational rules of a certain form are already captured by
SCCS. Nevertheless, specialized calculi remain very interesting in applications, and it
is an extremely pleasing aspect of (S)CCS that it may be used to give an unambiguous
semantics to these calculi, see (Milner 1980, Milner 1983, Milner 1989). In this section we
show how similar definability results are possible for our resource-based process calculi.

For the purposes of this section we use a synchronous calculus SCRPν which is a
slightly altered version of SCRP. A modification for SCRPν is therefore a partial
function µ : Act×R −→ R satisfying the coherence conditions:
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1 µ(1, R) = R for all R ∈ R;
2 if µ(a,R), µ(b, S) and R ◦ S are defined then µ(ab,R ◦ S) ' µ(a,R) ◦ µ(b, S).

The hiding rule of SCRPν is:

Hide
R ◦ S,E a→ R′ ◦ S′, E′

R, νS.E
νS.a→ R′, νS′.E′

(µ(νS.a,R) = R′ ↓) .

Note that the hiding rule and the coherence conditions on modifications are more general
than for SCRPr.

In Section 5.2, however, we also employ a refinement of SCRPν called SCRPrν,
which extends SCRPr with the Hide-id rule of SCRPν. This calculus is required in
order to develop the theory of equivalence of asynchronous processes. The remaining
sections revert to SCRPν because the programming languages considered there do not
appear to translate naturally into a system with the stronger constraint on modifications,
such as SCRPrν.

The first additional requirement we make for SCRPν is that the hiding function on
actions satisfies

νS.1 = 1

for all resources S. We call this the identity-hiding property. The example defined in
equation (3) above has this property.

This calculus SCRPν has the same grammar as SCRP, and one additional rule

Hide-id
R, νS.E

1→ R, νS.E

is added to the operational semantics of SCRP. Thus any hiding process may always
tick given any resource. In particular this is the case for R, νS.E even when R ◦ S is
undefined. Of course, if E was a process that could tick and composition is total then
there is no new transition of νS.E given by the rule Hide-id.

The Hide-id rule is essential for the encoding of asynchrony below. The inclusion of
this rule can be compared with the restriction operator of SCCS, where in any restriction
E �A the set A must contain the tick action 1.

We use the name SCRPrν to refer to SCRPν-calculi with: a modification function
µ which satisfies the same coherence conditions as SCRPr (rather than just the weaker
conditions for SCRP); the side-condition on hiding regarding piggybacking; the identity-
hiding property; the Hide-id rule.

The table below summarizes the distinctions between the SCRP-calculi used in this
paper.

coherence piggybacking Hide-id and identity-hiding

SCRP ' no no
SCRPr = yes no
SCRPν ' no yes
SCRPrν = yes yes
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It is straightforward to show that Lemma 1, Propositions 4, 7 and Lemmas 8, 9 hold
in SCRPrν. The proofs are by minor modifications of those for SCRPr.

5.1. Idleness and Delay

The key to the fact that the synchronous formalism of processes encodes the asynchronous
formalism is the definability of processes that may tick (perform the identity action) for
arbitrary finite time before performing any other action.

We begin by defining the extremely important delay operator, δ, that takes a process
and produces another process that may wait arbitrarily long before making any non-
identity action. For any E, we take

δ(E) = fixX.((1 : X) + E)

to be the delayed process. Note that it may still perform an E-action immediately and
that if E is an agent then so is δ(E). The delay operator satisfies two derived rules

R, δ(E) 1→ R, δ(E)

R,E
a→ µ(a,R), E′

R, δ(E) a→ µ(a,R), E′

for all actions a, resources R and processes E.

Proposition 44. The delay operator satisfies the following equalities and inequalities:

δ(E) ∼ δ(δ(E)) ∼ E + 1 : δ(E) ∼ E + δ(E)

δ(E)× δ(F ) ∼ δ((E × δ(F )) + (δ(E)× F ))

δ(νS.E) . νS.δ(E)

for all processes E, F and resources S. If the partial function R◦− : R −→ R is injective
for every R ∈ R then

νS.δ(E) ∼ δ(νS.E)

holds for all resources S and processes E.

We omit the proof (which uses the standard techniques) but note that the property
νS.1 = 1 is required for the relations involving hiding processes.

A state R,E is said to be idle if R,E ≈ R, δ(E). A process E is said to be idle if R,E
is idle for every resource R.

Proposition 45. For any process E:

1 A state R,E is idle iff R,E
1→ R,E;

2 A process E is idle iff E ≈ δ(E);
3 A process E is idle iff E ∼ δ(E).

Proof. The first property is immediate by definition of δ. The second is immediate
by definition of ≈ on processes. Consider the third point. If E ∼ δ(E) then E ≈ δ(E)
since Lemma 8 holds here, so we may apply the second point and conclude that E is
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idle. Now suppose that E is idle. If R,E a→ R,F then R, δ(E) a→ R,F and F ∼ F . If
R, δ(E) a→ R,F then either R,E a→ R,F or a = 1 and F = δ(E). In the first case there
is nothing to show. In the second we have R,E 1→ R,E. Hence E ∼ δ(E).

Lemma 46. For all processes E and F :

1 δ(E) is idle;
2 νS.E is idle;
3 If E and F are idle then E × F is idle.

Proof. All three points follow from Lemma 45. Point (1) is immediate by reflexivity of
≈. Point (2) is immediate by the Hide-id rule. Point (3) follows by the operational rule
for product processes since any resource R decomposes into a pair (R, e) with R ◦ e = R.

Recall that in (Milner 1983) a process is said to be asynchronous if every proper
derivative is idle. We make an appropriate change to this for all SCRP calculi. We define
a state to be asynchronous if every proper derivative of that state is idle. A process E is
asynchronous when all E-states are asynchronous.

5.2. Asynchronous Prefix

For the purposes of this section we assume that the action monoid Act contains countably
many tick actions (actions b such that µ(b, R) = R for all resources R). This is mostly
harmless in the light of the following proposition:

Proposition 47. Let R be a resource monoid, Act be an action monoid, µ be a mod-
ification (of SCRPν), and ν be a hiding function. Let B be any set disjoint from Act.
The action set may be freely extended with B giving a new action monoid Act′, a new
modification µ′ : Act′ ×R −→ R and a new hiding ν′ : R× Act′ −→ Act′ such that:

— µ′ and ν′ agree with µ and ν, respectively on Act;
— B contains only tick actions.

Furthermore, if µ is a SCRPrν modification then so is µ′.

Proof. Let Act′ be the free monoid of words over the set Act∪B. Words are written in
the form 〈x1, . . . , xn〉, the unit word is 〈〉, and multiplication is concatenation of words.
For any word w let >w =

∏
(xi | w ≡ 〈x1, . . . , xn〉 & 1 ≤ i ≤ n & xi /∈ B) be the action

of Act formed by forgetting all letters from B and replacing formal products by products
of Act. In particular >〈〉 = 1, the unit of Act. Define

µ′(w,R) ' µ(>w,R)
ν′S.w ' νS.(>w)

for all words w, and resources R and S.
For any S, ν′S.〈〉 = νS.1 = 1, so ν′ is a hiding (it satisfies the identity-hiding property).
Note that µ′(〈〉, R) = µ(1, R) = R for all R.
Suppose that µ′(v,R), µ′(w,S) and R ◦ S are all defined. Since µ is a modification,
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µ((>v)(>w), R ◦ S)) ' µ(>v,R) ◦ µ(>w,S). Now >(vw) = (>v)(>w), so

µ′(vw,R ◦ S) ' µ(>(vw), R ◦ S)
' µ((>v)(>w), R ◦ S)
' µ(>v,R) ◦ µ(>w,S)
' µ′(v,R) ◦ µ′(w,S)

and µ′ is a modification.
If µ is a SCRPrν modification then each instance of ' above can be replaced by an

equality, since both sides of each equality are defined, and so µ′ is a SCRPrν modifica-
tion.

Finally, µ′(〈b〉, R) = µ(1, R) = R, for every b ∈ B and R ∈ R.

We now define the asynchronous calculus ASCRP. This calculus is the analogue for
SCRPν of the calculus ASCCS presented in (Milner 1983).

The grammar of the new language is

E ::= X | a.E | δ(E) |
∑
i∈I

Ei | E × E | νR.E | fix iX.E

where the notation for variables and processes is as before, and this calculus is to be
considered relative to a fixed (Act,R, µ, ν). The operator δ could have been omitted
since it is definable. We take 0 to be the sum of an empty set of processes and 1 to be
δ(0). This will turn out to be equivalent to fixX.(1.X).

We give a semantics to this calculus by translating into SCRPν over the same sig-
nature (Act,R, µ, ν). Define this translation Tas : ASCRP −→ SCRPν recursively, by
the clause

Tas(a.E) = a : δ(Tas(E))

together with clauses such that Tas passes through all the other process combinators:
Tas(X) = X, Tas(δ(E)) = δ(Tas(E)), Tas(

∑
Ei) =

∑
Tas(Ei), Tas(E × F ) = Tas(E) ×

Tas(F ), Tas(νR.E) = νR.Tas(E), Tas(fix iX.E) = fix iX.Tas(E), where the final equality
uses the evident tuple of translations of each of the components.

The semantics of ASCRP is defined by the operational rules inherited from SCRPν.
To be precise the transitions of an ASCRP state R,E are induced from SCRPν-
transitions of the form

R, Tas(E) a→ R′, E′

where R′, E′ is a SCRPν-state. We then have the following proposition to show that
the calculus ASCRP contains only asynchronous processes and is suitably closed under
transitions:

Proposition 48. If E is an agent of ASCRP and R, Tas(E) a→ R′, E′ for some R, R′

then E′ is the translation of an agent of ASCRP and E′ is idle. In particular, R′, E′ is
idle.

Proof. The proof is by induction on the structure of the agent E of ASCRP. The
prefixing case itself is a simple consequence of the properties of δ. The Hide-id rule
ensures that the derivative of any hiding is idle. The other details are all routine.
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As an example of the above translations at work, observe that an ASCRP-state of
the form R, a.b.1 gives a sequence of SCRPν-transitions

R, a : δ(b : δ(1)) a→ µ(a,R), δ(b : δ(1)) b→ µ(b, µ(a,R)), δ(1)

when µ(b, µ(a,R)) is defined, making use of the Prefix rule and one of the derived rules
for δ.

It is often inappropriate to use either of the relations ∼ and ≈ to compare agents in
such definable asynchronous calculi since agents that delay by differing times should not
necessarily be distinguished. In particular, the unit action 1 should be invisible from the
point of view of the equivalence.

The remainder of the work in this subsection is concerned with the study of equivalence
relations for asynchronous processes. For this we suppose that the translation is, in fact,
into a member of SCRPrν. In particular, the modification satisfies the stronger version
of coherence. The reason for this is that we wish to find an equivalence which is a
congruence, so we want the property that if two asynchronous processes are equivalent
then they cannot be distinguished by forming the product with any other asynchronous
process. A step in our construction is to find a bisimulation relation which identifies any
asynchronous process E with E × 1, and this requires the simple-extension property for
transitions. An alternative might be to work with a calculus in which the simple-extension
property is taken as one of the rules defining the operational semantics, but this avenue
has not been explored.

For any set X, let X∗ be the set of all finite words on X. Let u ∈ Act∗ be the word
〈a1, . . . , ai, ai+1, . . . , an〉. For any SCRPrν-states R,E and R′, E′ write

R,E
u=⇒ R′, E′

just when there is some sequence of transitions

R,E( 1→)∗ a1→ ( 1→)∗ . . . ( 1→)∗ an→ ( 1→)∗R′, E′

or in other words, if there is a sequence of transitions along a1 to an in order, but

interspersed by arbitrarily many tick actions. In particular R,E
〈〉

=⇒ R,E where 〈〉 is
the empty word. Write R,E

a=⇒ R′, E′ when R,E
u=⇒ R′, E′ with u = 〈a〉. Write

R,E
a→ u=⇒ R′, E′ for a sequence of transitions that begins with an a-transition and ends

with a sequence of transitions from u (interspersed by ticks).
Define the relation ∼a to be the largest binary relation on SCRPrν agents such that

whenever R,R′ ∈ R, u ∈ (Act \ {1})∗ and E ∼a F :

— if there is some E′ with R,E
u=⇒ R′, E′ then there is some F ′ with R,F

u=⇒ R′, F ′

and E′ ∼a F
′;

— if there is some F ′ with R,F
u=⇒ R′, F ′ then there is some E′ with R,E

u=⇒ R′, E′

and E′ ∼a F
′.

The relation is then extended to all processes in the standard way (by substitution). Any
relation contained in ∼a is said to be a weak global bisimulation or WG-bisimulation, for
short.
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This relation is an equivalence. Furthermore, any pair of processes which differ only by
a number of ticks inserted as prefixes will be equivalent under this relation. However, such
pairs of processes can be distinguished by the use of the synchronous parallel composition
×. The sequence of results that follow study a congruence formed from ∼a by closing
under substitution in all asynchronous contexts. These results are analogues for ASCRP
of those in the theory of ASCCS in (Milner 1983), Section 8, pp. 296–301. The proof of
the first proposition below is just an unwinding of the definition of WG-bisimulation.
The second, third and fourth are implied by the first.

Proposition 49. A relation ∼′ is contained in ∼a iff whenever R ∈ R and E ∼′ F ,
then:

— if R,E a→ µ(a,R), E′ for some E′ then either a = 1 and E′ ∼′ F or there is some F ′

with R,F a=⇒ µ(a,R), F ′ and E′ ∼′ F ′;
— if R,F a→ µ(a,R), F ′ for some F ′ then either a = 1 and E ∼′ F ′ or there is some E′

with R,E a=⇒ µ(a,R), E′ and E′ ∼′ F ′.

Proposition 50. The relation ∼ is contained in ∼a.

Proposition 51. Let E be an agent of ASCRP. Then

Tas(E) ∼a 1 : Tas(E) ∼a Tas(1.E) ∼a δ(Tas(E)) .

Proposition 52. If Tas(E) ∼a TasF then

Tas(a.E) ∼a Tas(a.F ) Tas(δ(E)) ∼a Tas(δ(F )) Tas(νS.E) ∼a Tas(νS.F )

all hold.

The simple-extension property of Proposition 4 together with Proposition 49 gives the
following result (which also follows from Proposition 50):

Lemma 53. The relation E ∼a E × 1 holds for all SCRPrν-processes E.

Lemma 54. Suppose that E, F and G are idle processes of SCRPrν. If E ∼a F then
E ×G ∼a F ×G.

Proof. The characterization of Proposition 49 is used for the relation ∼′, defined, for
all E, F and G, by:

E ×G ∼′ F ×G ⇐⇒ E ∼a F and E, F , G are idle

and only for such processes. If some transition R,E ×G
a→ µ(a,R), E′ ×G′ takes place

then this splits into a transition for E and a transition for G using the operational rule
for products. Since E ∼a F one can apply Proposition 49 to find a sequence of transitions
from F into some F ′ with E′ ∼a F

′, or else we have that E′ ∼a F and the E-state ticks,
with a = 1. In the first case the fact that G is idle gives a sequence of matching length
from G and hence R,F ×G a=⇒ µ(a,R), F ′ ×G′ with E′ ×G′ ∼′ F ′ ×G′. In the second
case one finds R,F ×G a→ µ(a,R), F ×G′ and E′×G′ ∼′ F ×G since E′, F,G′ are idle.
The verification of the other condition (when R,F ×G make some transition) is similar.
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Lemma 55. The following are equivalent:

1 for all agents G of ASCRP, the relation Tas(E ×G) ∼a Tas(F ×G) holds;
2 for all a ∈ Act, all R ∈ R:

— if R, Tas(E) a→ µ(a,R), E′ for some E′ then R, Tas(F ) a→ 〈〉
=⇒ µ(a,R), F ′ for some

F ′ with E′ ∼a F
′;

— if R, Tas(F ) a→ µ(a,R), F ′ for some F ′ then R, Tas(E) a→ 〈〉
=⇒ µ(a,R), E′ for some

E′ with E′ ∼a F
′.

Proof. Suppose point (2) is true and that there is some transition of an Tas(E × G)-
state. Such a transition must be of the form

R, Tas(E) a→ µ(a,R), E′ S, Tas(G) b→ µ(b, S), G′

R ◦ S, Tas(E ×G) ab→ µ(ab,R ◦ S), E′ ×G′

for some a, b, R, S, E′, G′. By (2) there is some F ′ with R, Tas(F ) a→ 〈〉
=⇒ µ(a,R), F ′

for some F ′ with E′ ∼a F
′. So R, Tas(F ) a→ ( 1→)nµ(a,R), F ′ for some n. Now G′ is idle

by Proposition 48 so S, Tas(G) b→ ( 1→)nµ(b, S), G′. Therefore R ◦ S, Tas(F × G) ab→ 〈〉
=⇒

µ(ab,R ◦ S), F ′ × G′ and E′ × G′ ∼a F
′ × G′ by Lemma 54, since E′ and F ′ are idle

by Proposition 48. A similar argument can be made when given any transition of any
Tas(F ×G)-state, and so point (1) holds by Proposition 49.

Now suppose that point (2) is false. Without loss of generality, suppose that it is the
first of the two conditions that fails. Since we have infinitely many tick actions there must
be some such tick b not present in F . Take G = b.0. Then R, Tas(E×G) ab→ µ(ab,R), E′×1

for some E′. If R, Tas(F × G)
〈ab〉
=⇒ µ(ab,R), F ′ × 1 for some F ′ then we must have

R, Tas(F ) a→ 〈〉
=⇒ µ(a,R), F ′. Since (2) is false we have E′ 6∼a F

′. Then E′ × 1 6∼a F
′ × 1

by Lemma 53. Therefore Tas(E ×G) 6∼a Tas(F ×G), and (1) does not hold.

Let E, F be processes of ASCRP. Define E ∼×a F if for every agent G of ASCRP
the relation Tas(E ×G) ∼a Tas(F ×G) holds. The first lemma below is immediate. The
second lemma below holds by taking G = 1 and applying Lemma 53.

Lemma 56. Let X contain precisely the free variables of E and F . Then E ∼×a F if and
only if E[H/X] ∼×a F [H/X] for all tuples of ASCRP agents with length matching X.

Lemma 57. If E ∼×a F then Tas(E) ∼a Tas(F ).

Lemma 58. The relation ∼×a is a congruence on ASCRP-processes:

1 if E ∼×a F then a.E ∼×a a.F , δ(E) ∼×a δ(F ), E ×G ∼×a F ×G, νS.E ∼×a νS.F hold;
2 if Ei ∼×a Fi for all i ∈ I then

∑
i∈I Ei ∼×a

∑
i∈I Fi holds;

3 if E ∼×a F then fix iX.E ∼×a fix i.X.F.

Proof. Suppose E ∼×a F .
A simple proof that a.E ∼×a a.F uses the characterization of Lemma 55 and the fact

that Tas(δ(E)) ∼a Tas(δ(F )) by Proposition 52.
In order to show that δ(E) ∼×a δ(F ) one shows that δ(Tas(E))×Tas(H) ∼a δ(Tas(F ))×
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Tas(H) for an arbitrary agent H of ASCRP. Supposing a transition of δ(Tas(E)) ×
Tas(H) ab→ µ(ab,R),K there must be a decomposition as an a-transition of a δ(Tas(E))-
state and b-transition of a Tas(H)-state. Now Tas(δ(E)) ∼a Tas(δ(F )) by Proposition 52
so the characterization of Proposition 49 may then be applied. In either case of that
Proposition 49 one finds δ(Tas(F )) × Tas(H) ab→=⇒ µ(ab,R),K (using Lemma 54 in
the idle case a = 1). The symmetrical argument for when δ(Tas(F )) × Tas(H) makes a
transition and an application of Proposition 49 once more gives the desired conclusion.

That Tas((E × G) × H) ∼a Tas((F × G) × H) for an arbitrary agent H of ASCRP
follows from the fact that (Tas(E) × Tas(G)) × Tas(H) ∼a Tas(E) × (Tas(G) × Tas(H))
and Tas(F )× (Tas(G)× Tas(H)) ∼a (Tas(F )× Tas(G))× Tas(H) since ∼ is contained in
∼a, and the definition of ∼×a .

Proposition 52 gives that νS.Tas(E) ∼a νS.Tas(F ). Proposition 48, Proposition 49 and
Lemma 54 can then be used to show that νS.Tas(E) × Tas(H) ∼a νS.Tas(F ) × Tas(H)
for any agent H of ASCRP. Hence νS.E ∼×a νS.F .

Suppose now that Ei ∼×a Fi for all i ∈ I. To show
∑

i∈I Ei ∼×a
∑

i∈I Fi holds it suffices
to show that Tas(

∑
i∈I Ei)×Tas(H) ∼×a Tas(

∑
i∈I Fi)×Tas(H) holds for any agent H of

ASCRP. But now any transition of the component R, Tas(
∑

i∈I Ei)
a→ µ(a,R), E′ with

some given resource R comes from some R, Tas(Ei)
a→ µ(a,R), E′. By Lemma 55 this is

matched by R, Tas(Fi)
a→=⇒ µ(a,R), F ′ for some F ′ ∼a E

′. But then R, Tas(
∑

i∈I Fi)
a→

µ(a,R), F ′ and hence Tas(
∑

i∈I Ei)× Tas(H) ∼×a Tas(
∑

i∈I Fi)× Tas(H) by Lemma 55.
Now suppose that E ∼×a F. Consider the relation ∼′ on SCRPrν processes defined by

pairs of the form

Tas(G[fixX.E/Y]) ∼′ Tas(G[fixX.F/Y])

such that G is any ASCRP term with all free variables in Y. Define a further relation
∼′a by:

E ∼′a H ⇐⇒ ∃F,G. E ∼a F ∼′ G ∼a H

for all SCRPrν-processes E, F , G, H.
Below we show by induction that the property

if R, Tas(G[fixX.E/Y]) a→ µ(a,R), E′ then for some idle F ′ and G′ we have
R, Tas(G[fixX.F/Y]) a→=⇒ µ(a,R), G′ and E′ ∼′ F ′ ∼a G

′ .
(7)

holds.
It follows from property (7) that ∼′a is a WG-bisimulation, that is ∼′a ⊆ ∼a. Taking

G = Yi then gives the special case:

if R, Tas(fix iX.E) a→ µ(a,R), E′ then for some idle F ′ we have
R, Tas(fix iX.F) a→=⇒ µ(a,R), F ′ and E′ ∼a F

′ .

The symmetric property to this and the characterization of Lemma 55 then shows that
fix iX.E ∼×a fix iX.F, as required.

We now give the induction to prove property (7). The induction is on the inference of
R, Tas(G[fix iX.E/Y]) a→ µ(a,R), E′.

If G = Yi then R, Tas(fix iX.E) a→ µ(a,R), E′, and so R, Tas(Ei)[fixX.Tas(E)/X] a→
µ(a,R), E′ by a shorter inference. Then R, Tas(Fi)[fixX.Tas(F)/X] a→=⇒ µ(a,R), F ′ with
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E′ ∼′ H ′ ∼a F
′ for some idle H ′, F ′, by the induction hypothesis. Therefore there is a

transition R, Tas(fix iX.F) a→ µ(a,R), F ′.
We omit the case G = δ(G0) since δ is definable.
If G = a.G0 then we have R, Tas(G0[fixX.E/Y]) a→ µ(a,R), E′. This is the same as

R, a : δ(Tas(G0[fixX.E/Y])) a→ µ(a,R), δ(Tas(G0[fixX.E/Y])) with µ(a,R) defined. Then
R, a : δ(Tas(G0[fixX.F/Y])) a→ µ(a,R), δ(Tas(G0[fixX.F/Y])) and

δ(Tas(G0[fixX.E/Y])) = Tas(δ(G0[fixX.E/Y]))
∼′ Tas(δ(G0[fixX.F/Y]))
= δ(Tas(G0[fixX.F/Y]))

as required.
The product case G = G0 × G1 uses the Product rule to split product transitions

into pairs of transitions, the induction hypothesis on those pairs, the easy fact that ∼′ is
preserved by products and the fact that ∼×a is a congruence for × (the third part of the
first point of this Lemma).

The case G =
∑

i∈I Gi follows by a straightforward application of the induction hy-
pothesis.

Let G = νS.G0. Suppose R, Tas(νS.G0[fixX.E/Y]) a→ µ(a,R), E′. This is the same as
R, νS.Tas(G0[fixX.E/Y]) a→ µ(a,R), E′. There are two rules from which we may derive
such a transition. If we use the Hide-id rule with a = 1 and E′ = νS.Tas(G0[fixX.E/Y])
then evidently R, νS.Tas(G0[fixX.F/Y]) 1→ µ(a,R), F ′ and E′ ∼′ F ′ ∼a F

′ with F ′ =
νS.Tas(G0[fixX.F/Y]). On the other-hand, if the Hide rule was used to derive the given
transition then there must be some b, S′, E′

0 such that R ◦ S, Tas(G0[fixX.E/Y]) b→
µ(a,R) ◦ S′, E′

0, where a = νS.b, E′ = νS′.E′
0 and the side-conditions for the rule hold.

By the induction hypothesis we have R◦S, Tas(G0[fixX.F/Y]) b→ µ(a,R)◦S′, F ′0 for some
F ′0, G

′
0 with E′

0 ∼′ F ′0 ∼a G
′
0. Then R, νS.Tas(G0[fixX.F/Y]) a→=⇒ µ(a,R), νS′.F ′0 by the

Hide rule (since the side-conditions are exactly the same as the previous side-conditions).
So R, Tas(νS.G0[fixX.F/Y]) a→=⇒ µ(a,R), F ′ with F ′ = νS′.F ′0. That E′ ∼′ F ′ follows
easily from E′

0 ∼′ F ′0, and F ′ ∼a G
′ follows from the fact that ∼a is a congruence for ν

(the fourth part of the first point of this Lemma).
Consider G = fix jZ.H where X, Y and Z have no variables in common. Suppose

that there is a transition R, Tas((fix jZ.H)[fixX.E/Y])) a→ µ(a,R), E′. This is identi-
cal to R,fix jZ.Tas(H[fixX.E/Y]) a→ µ(a,R), E′. Then there is a shorter inference with
R, (Tas(Hj [fixX.E/Y]))[(fixZ.Tas(H[fixX.E/Y]))/Z] a→ µ(a,R), E′. Letting G = fixZ.H

this is R, Tas(Hj [G/Z][fix iX.E/Y ]) a→ µ(a,R), E′. Then R, Tas(Hj [G/Z][fix iX.F/Y ]) a→
µ(a,R), G′ with E′ ∼′ F ′ ∼a G

′ for some idle F ′, G′ by the induction hypothesis. Then
R, Tas((fix jZ.H)[fixX.F/Y]) a→ µ(a,R), G′ as required.

Define the contexts, C[−], of ASCRP in the standard way: a context is a process term
of ASCRP but with multiple occurrences of a hole, [−], that may be plugged with any
process term. We define a binary relation by:

E ∼c
a F iff for all contexts C[−], Tas(C[E]) ∼a Tas(C[F ])

for all ASCRP-processes E and F .
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Proposition 59. For all ASCRP-processes E and F :

E ∼×a F iff E ∼c
a F .

Proof. If E ∼×a F then by Lemma 58 we have C[E] ∼×a C[F ] for every context C[−] of
ASCRP. By Lemma 57, Tas(C[E]) ∼a Tas(C[F ]) for every such context, and so E ∼c

a F .
If E ∼c

a F then taking the context [−] × G for any agent G gives Tas(E × G) ∼a

Tas(F ×G), and so E ∼×a F .

Write E ∼c
a F for any ASCRP-processes E and F with Tas(E) ∼c

a Tas(F ).

Theorem 60. The following are equivalent for all processes E and F of ASCRP:

1 E ∼c
a F ;

2 E ∼×a F ;
3 for all a ∈ Act and R ∈ R:

— if there is a transition R, Tas(E) a→ µ(a,R), E′ for some E′ in SCRPν then

R, Tas(F ) a→ 〈〉
=⇒ µ(a,R), F ′ for some F ′ in SCRPrν with E′ ∼a F

′;

— if there is a transition R, Tas(F ) a→ µ(a,R), F ′ for some F ′ in SCRPν then

R, Tas(E) a→ 〈〉
=⇒ µ(a,R), E′ for some E′ in SCRPrν with E′ ∼a F

′.

Moreover ∼c
a is a congruence, and if X contains all free variables of E and F , then E ∼c

a F

iff E[H/X] ∼c
a F [H/X] for all tuples H of agents of ASCRP with the same length as X.

Proof. The first two points are equivalent by Proposition 59. The second and third
points are equivalent by Lemma 55. The relation ∼c

a is then a congruence by Lemma 58.
The final property holds by Lemma 56.

Corollary 61. If E ∼a F then a.E ∼c
a a.F .

5.3. Asynchronous Parallel Composition

Although the calculus ASCRP has captured a class of agents that are asynchronous
(in the sense that all transitions are followed by idle states) it still contains a process
constructor for synchronous, rather than asynchronous, parallel composition. For some
purposes ASCRP is still too powerful: if one takes a product of prefix processes then the
resulting agent must perform both of the prefixed actions simultaneously. For example,
at most an ab-transition is possible for any state of the form R, Tas((a.1)×(b.1)). We now
introduce a further calculus APSCRP in which interleavings of such actions are allowed
(but not forced) by a parallel composition. This is done by replacing the synchronous
product × of ASCRP with an asynchronous parallel composition | .

The grammar of APSCRP is

E ::= X | a.E | δ(E) |
∑
i∈I

Ei | (E |E) | νR.E | fix iX.E

where, the notation for variables and processes is as before, and this calculus is to be
considered relative to a fixed (Act,R, µ, ν). We then give a semantics to this calculus by
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translating into SCRPν over the same (Act,R, µ, ν). Define, by recursion, a translation
T 0

aps : APSCRP −→ ASCRP by the clause

T 0
aps(E |F ) = (T 0

aps(E)× δ(T 0
aps(F ))) + (δ(T 0

aps(E))× T 0
aps(F ))

together with clauses such that T 0
aps passes through the other process combinators in the

evident way. Then define a translation Taps : APSCRP −→ SCRPν as the composite
map

Taps = Tas ◦ T 0
aps .

The operational semantics is inherited from SCRPν in a similar way to ASCRP,
using SCRPν-transitions of the form

R, Taps(E) a→ µ(a,R), E′ .

Lemma 62.

Taps(δ(E |F )) ∼ Taps(δ(E) |F ) ∼ Taps(E |δ(F )) ∼ Taps(δ(E))× Taps(δ(F ))

The proof of the above lemma is straightforward using Proposition 44.

Proposition 63. If R, Taps(E) a→ µ(a,R), F then there is some agent E′ of APSCRP
such that F ∼ δ(Taps(E′)).

Proof. The proof is by induction on inference of the given transition. Most cases are
straightforward. The asynchronous product case uses Lemma 62.

Note that in contrast to CCS, simultaneous actions are possible in APSCRP which are
not pure synchronizations: compound actions are allowed. This is similar to the situation
for the encoding of CCS in SCCS. In that situation, however, one may sequentialize
compound actions and so prove an appropriate (asynchronous) simulation between CCS
processes and their encodings. It remains an open problem to do this for a SCRP-like
calculus. The resource based form of hiding we have adopted does not, in general, allow
us to replace composite actions by a sequence of atomic actions corresponding to that
composite.

5.4. Value-passing

In many process algebras, the ability to pass values into and out-of processes is an im-
portant modelling mechanism — the first chapter of (Milner 1989) contains an extended
example. In this section we extend the asynchronous product language above with value-
passing actions to give a calculus APVSCRP. This can be regarded as a collection of
abbreviations (from SCRPν) for efficiently expressing models of asynchronous situations
with value-passing. We allow atomic actions that simultaneously input and output values
in contrast to the standard treatment in CCS and SCCS (Milner 1980, Milner 1983).

We assume a collection V of values, ranged over by v, which contains a set B of
boolean values, b, including special values true and false. We assume a collection of
(value) variables x, not to be confused with the process variables. We assume a set F of
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function symbols f , each with a specified natural number, called the arity. We generate
a set E of (value) expressions ε by

ε ::= v | x | f(ε1, . . . εn)

where f is any function symbol of arity n, for any n. Assume that all expressions without
variables evaluate to a unique value. For any expression ε containing no free variables
let vε be the value to which it evaluates. Write a vector of value variables as x and of
expressions as ε.

The actions of the language are assumed to include atoms of the form

αx1,...,xm
ε1,...,εn

for any integers m,n ≥ 0 and sequences ε1, . . . , εn and x1, . . . , xm of expressions and
variables such that none of the xi occurs free in any of the εj . The variables written as
superscripts are said to be inputs to the action and the expressions written as subscripts
are said to be outputs. Let ActV be the monoid that is freely generated from such actions.

We omit the superscripts when actions have no inputs, and the subscripts when actions
have no outputs. In some situations only actions of the form αx1,...,xm and αε1,...,εn

are
required. We say that the former are input actions and the latter output actions, and
in such situations we have essentially the standard form of value-passing (as for CCS).
Actions without parameters can be treated as special cases of outputs.

The grammar of APVSCRP is as follows:

E ::= a.E | αx
ε .E |

∑
i∈I

Ei | (E |E) | νR.E | A(x1, . . . , xn) | if b then E .

where a ∈ ActV contains no input variables.
In a process αx

ε .E the input variables x are bound with scope E. The output variables
ε are not bound by this occurrence.

The process if b then E is a conditional. A conditional of the form if b then E1 else E2

is definable by (if b then E1) + (if ¬b then E2) where ¬ is Boolean negation.
We write E[a/α] for the (capture-avoiding) result of replacing every occurrence of

the free variable α in E by a. We write E[β/α] when α is of the form αε1,...,εn
and we

substitute βε1,...,εn
for α in E. We write E[ε/x] for the process that results from replacing

every occurrence of the free input variable x appearing in E with the expression ε. We
use the usual extension of this notation to simultaneous substitution for several distinct
variables.

The process A(x1, . . . , xn) is a process constant with distinct value variables x1, . . . , xn.
We have chosen to use a process constant in order to be closer to the value-passing
language of (Milner 1989). Process constants are an alternative way of presenting fixed-
points, see (Pym & Tofts 2006, Pym & Tofts 2007) for a discussion of this in SCRP.
Constants are declared in families

A1(x1, . . . , xn) = E1

...
Am(x1, . . . , xn) = Em



Collinson and Pym 54

APVSCRP APSCRP

αx1,...,xm
ε1,...,εn

.E (s.t. 1 ≤ m)
∑

(w1,...,wm)∈Vm

αw1,...,wn
vε1 ,...,vεn

.T 0
apv(E[w1/x1, . . . , wn/xn])

a.E a.T 0
apv(E) (where a contains no input variables)

∑
i∈I Ei

∑
i∈I T 0

apv(Ei)

E1 | E2 T 0
apv(E1) | T 0

apv(E2)

A(ε1, . . . εn) Aε1,...,εn

if b then E

{
T 0

apv(E) if vb = true

0 otherwise

Fig. 9. Translation T 0
apv

where the Ei are process terms of APVSCRP containing no free value variables except
x1, . . . , xn, no free agent variables, and no constants other than those of this family.

We now show how to translate this value-passing calculus over ActV into an asyn-
chronous fragment of APSCRP over another action monoid Act. We assume that Act

contains every member of the family (αw1,...,wm
v1,...,vn

| vi, wj ∈ V) for each αx1,...,xm
ε1,...,εn

in ActV,
and every a ∈ ActV that contains no input variables.

The translation T 0
apv takes expressions of APVSCRP that contain no free value vari-

ables to processes in APSCRP. The clauses that recursively define this translation are
given in Figure 9. The constant term Aε1,...,εn

of APSCRP is defined to be the fixed
point expression fix iX.T 0

apv(E) for the appropriate i, where E is the tuple of declarations
in which Aε1,...,εn = Ei was defined. Define the translation Tapv from APVSCRP to
SCRPν to be the composite map Taps ◦ T 0

apv.

As an example of the above translation T 0
apv, consider the term

αx.βy.γx+y.1
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of APVSCRP. This translates as:

T 0
apv(αx.βy.γx+y.1)

=
∑

v∈V α
v.T 0

apv(βy.γv+y.1)

=
∑

v∈V α
v.

∑
w∈V β

w.T 0
apv(γv+w.1)

=
∑

v∈V α
v.

∑
w∈V β

w.γv+w.T 0
apv(1)

=
∑

v∈V α
v.

∑
w∈V β

w.γv+w.1

in APSCRP, which illustrates the difference between the inputs and outputs.
Once again, the calculus is closed under transitions up to ∼. The proof is essentially the

same as that for Proposition 63, except where prefixes of atomic actions now translate as
sums, so a transition of the translation of a value-passing prefix is one of the component
transitions of the outermost sum.

Proposition 64. If E is an agent of APVSCRP and R, Tapv(E) a→ µ(a,R), E′ for
some R, then E′ ∼ δ(Tapv(E′′)) for some agent E′′.

It seems that in most situations mixed input-output actions are not required. Even
where such mixed actions appear necessary they can often be eliminated by extending the
resource monoid to give temporary storage locations, and replacing each mixed action
with a pair of input and output actions which access the same cell in the temporary
storage.

5.5. A Programming Language

It is possible to define parallel programming languages in the SCRP-family of languages
by an appropriate modification of Milner’s technique for CCS. The idea is to translate
the phrases of some programming language P into phrases of the process algebra. The
language P then inherits a precise operational semantics from the process algebra. The
translation of any program should capture the intended operational behaviour. Axioms
regarding such intended behaviour, for example the associativity of parallel composition,
should be validated by the appropriate asynchronous congruence of the process algebra.
Examples of this for CCS can be found in (Milner 1980, Milner 1989). The example in
(Milner 1989) is a simple imperative programming language extended with parallelism
and recursive, concurrent procedures. Thus the language allows a rather complicated form
of shared-variable concurrency. In this sketch we do not do quite as much, for example
we omit the concurrent, recursive procedures.

The grammar of P is shown in Figure 10. The language includes value expressions
ε, program variable declarations D and imperative commands C, including a parallel
command par . The value expressions are formed from program variables Y , atomic
values v (including integers) from a set Vals, and from a collection of function symbols
F of given arity.
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ε ::= v | Y | F (ε, . . . , ε)

C ::= skip | Y := ε | C;C′ | if ε then C else C′ | while ε do C |
C par C′ | input Y | output ε

Fig. 10. Syntax of P

The main task in providing a translation for a programming language into a member
of the SCRP-family is to define, within the process algebra, appropriate structures and
mechanisms for handling the flow of control and transfer of values from expressions to
procedures. We use the the notation from the value-passing process calculus APVSCRP
in conjunction with semaphore-like resources to make such definitions. Thus the calculus
underpinning this work is SCRPν (with the more general notion of modification and the
Hide-id rule, but without the side-condition regarding piggybacking on the Hide rule), and
the translation that defines the operational behaviour of terms written in the notation of
APVSCRP takes terms into SCRPν. Note that here we are using APVSCRP terms
merely as a convenient macro notation for SCRPν terms.

The resource monoid R consists of triples (Rst , Rsm , Rbu) where the store, Rst , is
a partial function from program variables to values, Rsm is a partial function from a
countable set, Sem, to the set {0, 1}, and Rbu is a partial function from a set Buff to
values. The components Rsm and Rbu represent the current states of sets of semaphores
and value-buffers. A resource R can be regarded as a partial map from the disjoint union
of the sets of program variables, semaphores and buffers.

For any partial function f let dom(f) be the set of arguments of f at which f is defined.
For any sets X, Y , partial function f : X −→ Y , x ∈ X, and y ∈ Y write f ⊕{f(x) = y}
for the partial function g : X −→ Y such that: g(x) = y, and for all x′ ∈ X, g(x′) = f(x′)
if f(x′) ↓ and x′ 6= x, and g(x′) ↑ if f(x′) ↑ and x′ 6= x. Write the empty partial map
(from any source to any target) as ∅. A partial function ∅x,y : X −→ Y is defined for any
sets X, Y , and any x ∈ X, y ∈ Y by taking ∅x,y = ∅ ⊕ {∅(x) = y}.

The set of stores is made into a resource monoid as follows. For each Rst and Rst ′, the
composite Rst ◦Rst ′ is defined just when dom(Rst) is disjoint from dom(Rst ′): the graph
of Rst ◦Rst ′ is then the union of the graphs of Rst and Rst ′. The unit is ∅. The semaphores
and buffers are made into resource monoids in a similar way. The resource monoid of
interest is the product of the store, semaphore and buffer monoids: resource composition
is given by (Rst , Rsm , Rbu)◦(Rst ′, Rsm ′, Rbu ′) ' (Rst ◦Rst ′, Rsm ◦Rsm ′, Rbu ◦Rbu ′) for all
resources (Rst , Rsm , Rbu) and (Rst ′, Rsm ′, Rbu ′). The unit resource is then e = (∅, ∅, ∅).

The action monoid for the value-passing calculus is freely generated from the actions

inx pb(i)x get(Y )x

and

outε ps(i) qs(i) qb(i)ε put(Y )ε resε done

indexed by value variables x, value expressions ε ∈ E , program variables Y , and i ∈ N.
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µ(inv, R) = µ(outε, R) = µ(resε, R) = µ(done, R) = R

µ(ps(i), R) =

{
R⊕ {Rsm(i) = 0} if Rsm(i) = 1

↑ otherwise

µ(pb(i)v, R) =

{
R⊕ {Rbu(i) = 0} if Rbu(i) = v

↑ otherwise

µ(qs(i), R)) =

{
R⊕ {Rsm(i) = 1} if Rsm(i) ↓
↑ otherwise

µ(qb(i)v, R) =

{
R⊕ {Rbu(i) = v} if Rbu(i) ↓
↑ otherwise

µ(get(Y )v, R) =

{
R if Rst(Y ) = v

↑ otherwise

µ(put(Y )v, R) =

{
R⊕ {Rst(Y ) = v} if Rst(Y ) ↓
↑ otherwise

Fig. 11. Modification function on atoms used for the translation of P

Notice that only input and output actions are required (and no mixed input-output
actions).

There is a corresponding modification which ensures that: qs(i) increments and ps(i)
decrements the ith semaphore; qb(i)ε increments the ith buffer to hold the value corre-
sponding to ε provided it currently holds 0; pb(i)x sets the value in the ith buffer to 0,
but note that because of the way values are passed, the value initially held in the ith
buffer is bound to x in the process term; put(Y )ε alters the store so that the memory
allocated to the program variable Y holds the value corresponding to the expression ε;
the action get(Y )x retrieves the value stored at Y and binds it to x. The definition of
the modification on the corresponding atomic actions in Act for SCRPν is shown in
Figure 11.
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The atomic actions have sets of roots as follows:

Roots(inv) = Roots(outv) = Roots(resv) = Roots(done) = {e}

Roots(get(Y )v) = {(∅Y,v, ∅, ∅)}

Roots(put(Y )v) = {(∅Y,w, ∅, ∅) | w ∈ N}

Roots(ps(i)) = {(∅, ∅i,1, ∅)}

Roots(qs(i)) = {(∅, ∅i,0, ∅)}, (∅, ∅i,1, ∅)}

Roots(pb(i)v) = {(∅, ∅, ∅i,v)}

Roots(qb(i)v) = {(∅, ∅, ∅i,w) | w ∈ N} .

By Proposition 22, this defines a modification. The family is coherent because composi-
tion works as non-overlapping union.

The atomic value expressions are given a semantics as processes in the asynchronous
value-passing calculus in such a way that every translation issues an action resv for a
unique value v immediately before it terminates, if it terminates, and no earlier. For
atomic expressions this is done as follows:

JvK = resv.0 JY K = get(Y )x.resx.0

where v is not a program variable. Complex expressions have the form F (ε1, . . . , εn)
where each εi is an expression and F is an n-ary function symbol of the programming
language. Each such function symbol is assumed to be tracked by a given n-ary function
f on the set of values. We then define

JF K = pb(1)x1 . · · · .pb(n)xn .resf(x1,...,xn).0

for function symbols. The application is defined by

JF (ε1, . . . , εn)K = ν(R1 ◦ . . . ◦Rn).(Jε1K[qb(1)/res] | . . . | JεnK[qb(n)/res] | JF K)

where each resource Ri mentioned has Ri = (∅, ∅, Rbu
i ) and the Rbu

i , qb(i), pb(i) are
distinct from all other buffers used within the term. In particular, Rbu

i (j) is defined for
a unique j, say ji, and Rbu

i (ji) = 0, and Rbu
k (ji) ↑ for all 1 ≤ i, k ≤ n and k 6= i. This

definition is not compatible with the piggybacking restriction on hiding from SCRPrν.

We now turn to the denotation of commands. Processes used to denote commands are
constructed in such a way that they send out an action done before terminating, if they
terminate, and these actions occur only immediately prior to termination.
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JY := εK = JεK Into(x) put(Y )x. Done

JC;C′K = JCK Before JC′K

Jif ε then C else C′K = JεK Into(x) (if x then JCK else JC′K)

Jwhile ε do CK = W , where W = JεK Into(x) (if x then (JCK;W ) else Done)

JC par C′K = JCK Par JC′K

Jinput Y K = inx.put(Y )x. Done

Joutput εK = JεK Into(x) (outx. Done)

JskipK = Done

Fig. 12. Semantics of commands of P

Define auxiliary control operators as follows:

Done = done.0

E Before F = νRi.(E[qs(i)/done] |ps(i).F )

E Par F = ν(Ri ◦Rj). (E[qs(i)/done] | F [qs(j)/done] |
(ps(i).ps(j). Done + ps(j).ps(i). Done + ps(i)ps(j). Done))

E Into(x) F = νRk.(E[qb(k)/res] | pb(k)x.F )

where Ri and Rj each represent fresh semaphores (unused by actions in E and F )
initialized to 0. In particular, Ri = (∅, Rsm

i , ∅) with Rsm
i (n) defined for a unique n = ni,

and withRsm
i (ni) = 0. The process Done is a simple terminating process. The combinator

Before is used to sequence processes. This is done by ensuring that E increments the
semaphore Ri (using qs(i)) immediately before termination, if that happens, and that
the semaphore must be decremented (using ps(i)) before F begins. The combinator Par
is used to parallel compose processes. The term ps(i)ps(j). Done is necessary in Par
because the parallel process combinator | allows for the possibility that E and F complete
in synchrony. The combinator Into(x) takes a process E that outputs a value and
transfers this value into a second process F through the private, mediating buffer Rk.
The resource Rk represents a fresh buffer with Rk = (∅, ∅, Rbu

k ), with Rbu
k(n) defined

for a unique n = nk, and with Rbu
k (nk) = v, where v is the value signalled by the output

resv of E.
The semantics of commands is given in Figure 12.
Let R0 = (Rst

0 , ∅, ∅) be the resource with Rst
0 (Y ) = 0 for all program variables Y .

A program of P is taken to be a command C. The behaviour of C is then determined
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ε := . . . | ε.i

C ::= . . . | Y := ε.i | ε.i := ε′ | Y := cons(ε, ε′)

| dispose(ε) | with i when ε do C endwith

Fig. 13. Syntax of commands of PH

by the operational behaviour of the translation of JCK into SCRPν, considered in the
environment R0. Thus if Tapv is the translation from the asynchronous value-passing
notation into SCRPν then the semantics of the program is determined by transitions of
R0, Tapv(JCK).

The method above can be extended to allow block commands of the form

begin D ; C end

containing local variable declarations of the form D ::= Var Y . A semantics can then
be given by first extending the domain of the store component of each resource R with
a disjoint countable set TVar of temporary variables, giving a partial function Rst :
GVar ∪ TVar −→ Vals, where GVar is the set of global variables. One then extends
the definition of µ so that the Y in put(Y )v and get(Y )v ranges over both global and
temporary variables. We then take

JVar Y ;CK = νRY ′ .JCK[Y ′/Y ]

where Y ′ is a fresh temporary variable which we substitute for Y , and the resource
RY ′ = (Rst

Y ′ , ∅, ∅), with Rst
Y ′(X) = 0 if X = Y ′ and Rst

Y ′ is undefined for all other global
and temporary variables X. Localization of variables is then realized as an instance of
hiding. We have not attempted to extend the method to allow for procedure declarations
in D.

5.6. Heap Manipulating Commands

We form a language PH by adding commands for manipulating pointers to P. These
commands are similar to those found in languages used to illustrate Concurrent Sepa-
ration Logic (O’Hearn 2007). In particular, the language has commands for assignment
from a heap cell, update of a heap cell, pointer creation, pointer disposal, and conditional
critical regions that are protected by semaphores.

The set of values is extended to include a countable set Loc of locations, ranged over
by l. The extensions to the syntax are shown in Figure 13. Note that locations are
expressions. The expression ε.i extracts the ith component of a location defined by ε,
and is undefined if ε does not evaluate to a location. The command Y := ε.i stores the
contents of ε.i at the global variable Y . The command ε.i := ε′ sets the contents of ε.i
to the value of ε′. The command Y := cons(ε, ε′) inserts the values ε and ε′ at some
fresh location l and stores the value l at the global variable Y . The command dispose(ε)
removes the location ε from the heap. The command with i when ε do C endwith
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µ(remv, R) =

{
(Rst , Rsm , Rbu , Rhp 	 v) if Rhp(v) ↓
↑ otherwise

µ(allocv, R) =

{
R⊕ {Rhp(v) = (0, 0)} if Rhp(v) ↑ and v ∈ Loc

↑ otherwise

µ(puth(j)v,w, R) =

{
R⊕ {Rhp(v)(j) = w} if Rhp(v) ↓
↑ otherwise

µ(geth(j)w
v , R) =

{
R if Rhp(v)(j) = w and v ∈ Loc

↑ otherwise

Fig. 14. Modification function on atoms for heap manipulation

executes the command C when both ε evaluates to true and the ith semaphore is free;
the command C then owns the ith semaphore whilst executing, and the disjointness
condition on semaphores in resource composition means that no other command which
requires the ith semaphore can make progress whilst C does.

Resources R now take the form (Rst , Rsm , Rbu , Rhp) where the store, semaphore and
buffer components are as before and the heap, Rhp , is a partial function from Loc to pairs
of values (said, conventionally, to be contained in cells). The heap Rhp is assumed to be
finite in the sense that it is defined at only finitely many locations. We write Rhp(l)(j) for
the jth component of the pair at location l. Note that pointers can be stored at program
variables and in cells because the set of values contains locations. The composite of two
resources is defined just when the stores, semaphores, buffers and heaps defined at one
resource are disjoint from the stores, semaphores, buffers and heaps defined at the other
resource: under such circumstances it is defined by the union of graphs.

To the atomic actions above we add,

remε allocε puth(i)ε,ε′ geth(i)x
ε ,

where i = 1, 2, to the set of atomic actions and generate a new action monoid. Note that
mixed input-output actions (of the form geth(i)x

ε ) are now present.
For any partial function f : X −→ Y and x ∈ X define f 	x : X −→ Y by f 	x(x′) '

f(x′) if x′ 6= x and f 	 x(x) ↑.
The modification µ is chosen so that the action puth(i)ε,ε′ puts the value ε′ at the ith

component of the cell at location ε; the action geth(i)x
ε retrieves the value stored at the

ith component of the cell at location ε and binds it to x; the action allocε is used in the
allocation of a location ε, and is undefined if the location is not fresh; the action remε

removes the heap cells at location JεK. In each of these, the expression ε must evaluate to
some location, otherwise the modification is undefined at every resource. The extensions
of the modification to the new atomic actions is shown in Figure 14. It is worth noting
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JY := ε.iK = Jε.iK Into(x) (put(Y )x. Done)

Jε.i := ε′K = JεK Into(z) (Jε′K Into(x) (puth(i)z,x . Done))

Jdispose(ε)K = remJεK. Done

Jwith i when ε do C endwithK = ν(∅, ∅i,1, ∅, ∅). if JεK then JCK

JY := cons(ε, ε′)K = Jε′[y/x]K Into(y) (JεK Into(x) A(x, y)) , where

A(x, y) =
∑

l∈Loc allocl.put(Y )l.puth(1)l,x.puth(2)l,y. Done

Fig. 15. Semantics of commands of PH

that the action of the modification at allocv is incompatible with the simple-extension
property, and so we use SCRPν rather than SCRPr.

The roots of the atomic actions are as follows:

Roots(remv) = {(∅, ∅, ∅, ∅v,w) | w ∈ Vals ×Vals}

Roots(allocv) = {e}

Roots(puth(j)v,w) = {(∅, ∅, ∅, ∅v,v′) | v′ ∈ Vals ×Vals}

Roots(geth(j)w
v ) = {(∅, ∅, ∅, ∅v,v′) | v′ ∈ Vals ×Vals and v′(j) = w} .

The modification that follows from the data in Figure 14 is then defined as in Proposi-
tion 22.

We extend the semantics of expressions above to translate the components of expres-
sions that evaluate to locations by taking

Jε.iK = JεK Into(z) geth(i)x
z .resx.0 .

for i = 1, 2. The extension of the semantics of commands is in Figure 15. The resource
(∅, ∅i,1, ∅, ∅) represents the ith semaphore (set to 1).

Milner evaluated his translation of a programming language into CCS by proving that
the intended algebraic and logical structure of programs holds in the translation. It re-
mains an open problem to define a calculus in the SCRP-family for which a well-behaved
asynchronous equivalence exists, and in which one may prove expected program equiva-
lences using a semantics of P or PH in the style above. We anticipate a close connection
between the Hennessy-Milner logic MBIc in this context and Concurrent Separation
Logic (O’Hearn 2007), which is a Floyd-Hoare logic with a BI-fragment as assertion lan-
guage. Given a translation of the programming language into a SCRP-calculus, any triple
{φ}C{ψ} corresponds to an assertion of the form φ −→

∧
a1...an∈A(JCK)([a1] . . . [an]ψ),

where A(JCK) is the (finite) set of all finite sequences of actions which the translated
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process JCK can make. It would therefore be interesting to see whether the Concurrent
Separation Logic rules can be derived from our logic.

6. Directions

There are a great many open problems and possible avenues in this area. In this section,
we outline a few of these.

The process constructors of SCRP seem natural, and appear to be sufficiently powerful
for the description of many (if not most) concurrent situations. We have not, however, yet
proved any kind of completeness result. This could, perhaps, be done by either proving a
result along the lines of (de Simone 1985), or by finding a suitable resource monoid such
that there is a well-behaved translation of SCCS into SCRP. Equally, it would be very
interesting to see if the process constructors we have defined emerge naturally as universal
constructions in a fibred category following the methodology described in (Winskel &
Nielsen 1995). It may be that a presheaf semantics for SCCS (Hildebrandt 1999) may also
have useful connections — sheaves and presheaves can be used to interpret multiplicative
conjunction (Pym 2002). Such approaches would also be helpful in assessing the value of
further rules.

The availability of good model-checking procedures has been fundamental to the suc-
cessful application of process algebras and modal-logics. Preliminary work has been done
on implementing prototype systems for the automatic construction of SCRP-transitions
and for model-checking formulae of MBI. Recall that the general model-checking prob-
lem is to decide whether a given state satisfies a given formula. We note that the model-
checking problem for the whole of SCRP and MBIc is much harder than traditional
model-checking for process algebras. The essential difference is that multiplicative for-
mulae demand that subformulae must be checked against states that are outside the
transition structure generated by the given state. In particular, this involves unbounded
searches across infinite sets of states. Strategies for bounding such searches, such as the
use of the underlying order and properties of the modification function will be critical to
establishing better algorithms.

The model-checking of the multiplicative conjunction raises another issue. In order to
check that some relation R,E � φ1 ∗φ2 is satisfied, it is necessary to find R1, R2, E1 and
E2 with R = R1 ◦R2, E ∼ E1 ×E2, R1, E1 � φ1 and R2, E2 � φ2. In general, the global
bisimulation will not be decidable. An alternative is to use the structural congruence ≡
between processes. This is the congruence generated from associativity, commutativity
and unit axioms for the sum and product constructors. These axioms are all true for global
bisimulation when the frame rule is admissible (that is, the simple-extension property
for transitions holds), so the global bisimulation must contain the structural congruence.
The structural congruence is decidable. Hence, a better alternative for the interpretation
of multiplicative conjunction might be to use: R,E � φ1 ∗ φ2 iff ∃R1, R2, E1, E2. R =
R1 ◦R2 and E ≡ E1 ×E2 and R1, E1 � φ1 and R2, E2 � φ2 for all R,E, φ1, φ2. Suppose
that we also change the interpretation of the multiplicative unit to R,E � I iff R =
e and E ≡ 1, for all R,E. Then:

— Theorem 26 holds with ≡ in place of ∼;



Collinson and Pym 64

— the axioms of BI are all soundly interpreted.

We intend to investigate this promising avenue further, in particular for model-checking.
We note that (Cardelli & Gordon 1998) also contains a version of multiplicative conjunc-
tion, written |, which is interpreted by splitting processes using a structural congruence.

It appears that boundedness and convergence properties of modifications will be of
help in dealing with some of these model-checking problems. They may also be the kind
of properties that we wish to check. To this end we have constructed a version of SCRP
that works over a topological, rather than ordered, resource space and have shown how
to interpret MBIi as open sets of a space induced on states. However, this requires
placing certain continuity conditions on SCRP-constructors and it remains to evaluate
the practicality of the approach. This work dovetails rather well with our goal of studying
the relationship between process algebras and other mathematical models of dynamical
systems. In connection with this, we have also produced results regarding preservation
results of dynamical and logical properties under transformation of the resource base.
We imagine that this will have applications to the study of data refinement.

Open problems exist in establishing precise correspondences between the algebraic no-
tions of equivalence (simulations) and logical equivalence. Is there a logic that character-
izes the relation ∼, at least on some reasonable class of resource monoids? Alternatively,
is there a simulation relation bigger than ∼, but smaller than ≈, such that suitable ver-
sions of Theorem 26 and Theorem 35 both hold for that simulation and for the whole
language MBI?

The questions of completeness of the interpretation of MBIc, MBIq and of the equa-
tional theory of ∼ all remain open.

A good question is what the relation ∼ is for, from an operational (rather than logical)
point of view, given that ≈ characterizes observational and denotational equivalence
(Pym & Tofts 2007, Collinson et al. 2007). In many modelling situations, resources are
real-valued quantities. In such situations evolutions may be dependent upon functions
that have rather wild behaviour. It is important to understand, and be able to make
guarantees about, the stability properties of such functions under small perturbations.
There is a great deal of literature on this topic, but, for example, the recent paper (Hoyrup
2007) studies various notions of stability and computability, with a view to understanding
those systems that admit reliable computer simulations. A careful reading of Example 34
shows that the logical connectives 〈a〉 and −−∗ make assertions about perturbations of
the resource component during the evolution of the state. The relation ∼ can be seen to
identify processes that have equivalent behaviour under all such perturbations of states
that occur during evolution. It remains to evaluate to what extent SCRP, MBI and ∼
(or topological variants thereof) are practical modelling tools for problems in this area.

We have presented proof systems for variants of MBI. We have not considered the
completeness of these proof systems with respect to their transition structure semantics.
Indeed, since we are concerned only with one particular underlying structure, namely
that generated by SCRP-transitions for each choice of (R,Act, µ, ν), a complete axiom-
atization may be difficult. We have so far paid little attention to proof-theoretic aspects
of MBI, for example, cut-elimination. The problem of finding decision procedures for
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this logic is particularly important because of the difficulties involved in model-checking.
A full analysis of the logical rules and models for multiplicative quantification remains
to be worked out. We expect that the models should be instances of (pre)sheaf models
of predicate modal logic and that our previous work on multiplicative quantification,
(O’Hearn & Pym 1999, Pym 1999, Pym 2002, Collinson, Pym & Robinson 2008), should
provide some guidelines.

Further developments of the process calculus should also prove valuable. The addition
of weights on actions (for priority and probabilistic distribution) along the lines of (Tofts
1994) is essential if the calculus is to be developed into a mature and sufficiently expressive
modelling tool. We have begun a further refinement of the calculus to one in which states
carry a component signifying location. This location is intended as an additional guard
against action, but will evolve in a different way to resource in most of the modelling
situations we have in mind. In particular, practical modelling work suggests that such
an explicit notion of location would be of use in describing certain security properties of
large-scale distributed systems.
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