Logic and Systems Modelling

  1. F. Dahlqvist and D. Pym. Coalgebraic completeness-via-canonicity for distributive substructural logics. Journal of Logical and Algebraic Methods in Programming 93 (2017) 1–22. Manuscript.

  2. S. Docherty and D. Pym. A Stone-type duality theorem for Separation Logic via its underlying bunched logics. Proc. MFPS 2017, ENTCS. Manuscript.

  3. S. Docherty and D. Pym. Intuitionistic layered graph logic. Short version of IJCAR paper to appear in IJCAI 2017 Sister Conference Best Paper Track. Manuscript.

  4. D. Galmiche, P. Kimmel, and D.Pym. A Substructural Epistemic Resource Logic. Proc. ICLA 2017. LNCS 10119: 106–122, 2017. Manuscript.

  5. G. Anderson, G. McCusker, and D. Pym. A logic for the compliance budget. Proc. GameSec 2016, LNCS 9966: 370–381, 2016. Manuscript.

  6. S. Docherty and D. Pym. Intuitionistic layered graph logic. Proc. IJCAR 2016, Coimbra Portugal. LNCS 9706: 469–486, 2016. Manuscript.

  7. G. Anderson and D. Pym. A Substructural Modal Logic of Utility. Accepted, J. of Logic & Computation, 2016. Manuscript.

  8. J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities. Theoretical Computer Science, 637, 30–58, 2016. Manuscript.

  9. G. Anderson and D. Pym. A Calculus and Logic of Bunched Resources and Processes. Theoretical Computer Science 614:63-96, 2016. Published version.

  10. T. Caulfield and D. Pym. Modelling and Simulating Systems Security Policy. Joint work with Tristan Caulfield. In Proc. SIMUTools 2015, ACM Digital Library, ACM Digital Library.

  11. F. Dahlqvist and D. Pym. and Completeness via canonicity for distributive substructural logics: a coalgebraic perspective. Proc 15th Int. Conf. on Relational and Algebraic Methods in Computer Science (RAMiCS 2015), LNCS 9348: 119-135, 2015. Manuscript.

  12. G. Anderson and D. Pym. Substructural modal logic for optimal resource allocation. Paper 5, Proc. Strategic Reasoning 2015, St. Catharine’s College, Oxford, September 21-22, 2015.

  13. G. Anderson and D. Pym. Trust Domains in system models: algebra, logic, utility, and combinators. J. of Logic & Computation, 2015: doi: 10.1093/logcom/exv030.

  14. M. Collinson, K. McDonald, and D. Pym. Layered Graph Logic as an Assertion Language for Access Control Policy Models. J. of Logic & Computation, 2015. doi: 10.1093/logcom/exv020.

  15. M. Collinson, K. McDonald, and D. Pym. A Substructural Logic for Layered Graphs. J. of Logic & Computation 24 (4):953-988, 2014. doi: 10.1093/logcom/exu002. Erratum: J. of Logic & Computation, 2015. doi: 10.1093/logcom/exv019.

  16. D. Pym, E. Ritter, and E. Robinson. A Proof-theoretic Analysis of the Classical Matrix Method. J. of Logic & Computation 24 (1): 283-301, 2014.

  17. M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Modelling. College Publications, 2012. Buy at Amazon.

  18. M. Collinson and D. Pym. Algebra and Logic for Resource-based Systems Modelling. Mathematical Structures in Computer Science 19:959-1027, 2009. doi:10.1017/S0960129509990077. Manuscript.

  19. M. Collinson and D. Pym. Algebra and Logic for Access Control. Formal Aspects of Computing 22(2), 83-104, 2010. Erratum: Formal Aspects of Computing 22(3-4), 483-484, 2010. Available as an HP Labs Technical Report (with erratum incorporated): HPL-2008-75R1.

  20. M. Collinson, B. Monahan, and D. Pym. Semantics for Structured Systems Modelling and Simulation. Proc. Simutools 2010. ACM Digital Library and EU Digital Library. doi: 10.4108/ICST.SIMUTOOLS2010.8631.

  21. A. Beautement et al. Modelling the Human and Technological Costs and Benefits of USB Memory Stick Security. In Managing Information Risk and the Economics of Security. M. Eric Johnson (editor), Springer, 2009: 141–163.

  22. M. Collinson, D. Pym, and E. Robinson. Bunched Polymorphism. Mathematical Structures in Computer Science 18(6), 1091–1132, 2008. Manuscript.

  23. G. McCusker and D. Pym. A Games Model of Bunched Implications. Proc. CSL ’07, LNCS 4646: 573–588.

  24. D. Pym, P. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics of BI. Theoretical Computer Science 315(1):257–305.

  25. C. Führmann and D. Pym. On Categorical Models of Classical Logic and the Geometry of Interaction Mathematical Structures in Computer Science, 17, 957–1027, 2007.

  26. M. Collinson and D. Pym. Bunching for Regions and Locations. In: Proc. MFPS 2006, S. Brookes and M. Mislove (editors), Electronic Notes in Theoretical Computer Science, 2006. Manuscript.

  27. C. Führmann and D. Pym. On the Geometry of Interaction for Classical Logic (Extended Abstract). Proc. LICS 04, IEEE Comp. Soc. Press, 2004, 211–220.

  28. C. Führmann and D. Pym. Order-enriched categorical models of the classical sequent calculus. Journal of Pure and Applied Algebra, 204(1), 21–78, 2006.

  29. Didier Galmiche, Daniel Méry, and David Pym. The Semantics of BI and Resource Tableaux. Math. Struct. Comp. Sci. (2005) 15, 1033–1088. Manuscript.

  30. M. Collinson and D. Pym. On Bunched Polymorphism (Extended Abstract). Proc. CSL 05. LNCS 3634:36–50, 2005. Manuscript.

  31. David Pym and Eike Ritter. A games semantics for reductive logic and proof-search. Proc. ETAPS 05 Workshop on Games for Logic and Programming Languages, Edinburgh, April, 2005. Manuscript.

  32. D.J. Pym, P.W. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics of BI. Theoretical Computer Science

  33. J. Harland and D. Pym. Resource-distribution via Boolean constraints. ACM Transactions on Computational Logic 4(1), 56–90, 2003.

  34. D. Pym, E. Ritter, and L. Wallen. On the intuitionistic force of classical search. Theoretical Computer Science 232 (2000) 299-333.

  35. D. Pym, E. Ritter, and L. Wallen. Proof-terms for classical and intuitionistic resolution. Journal of Logic and Computation 10(2), 173–207, 2000.

  36. P. O’Hearn and D. Pym. The Logic of Bunched Implications. Bull. Symb. Log. 5(2), 215–243, 1999.