
Asset-Oriented Access Control through
Object-Oriented Principles

Anonymous Author(s)

ABSTRACT
The decision of whether to grant access to an asset has traditionally
been considered a matter for the system in which the asset resides.
Centralized approaches to access control can, however, be problem-
atic; in particular, for assets that are not always bound to one admin-
istrated system. Examples of such assets are beginning to be observed
in Internet of Things (IoT) settings, and there are instructive exam-
ples present in the context of file sharing, where data assets leave the
system for which they were originally specified. As an alternative
to centralized approaches, we propose a framework for empowering
assets with the ability to carry out their own access control. This
approach is quite distinct from, for example, DRM and laissez-faire.
To facilitate the shift in perspective from systems to assets, we adapt
principles from object-orientation. We use these principles to make
sense of an indicative IoT problem present in the literature. After
considering what lessons can be learned from assets in the file shar-
ing domain, we develop a further set of principles that ensure that
assets can make decisions according to their context. Collectively, all
of the principles come together to form what we call Asset-Oriented
Access Control. In the concluding part of the paper, we consider some
well-known policy models, give evidence of how they can fit into the
overall framework, and consider how they differ form our approach.
We also consider future directions for the work, such as providing a
logical foundation and a prototype implementation.

ACM Reference format:
Anonymous Author(s). 2019. Asset-Oriented Access Control through Object-
Oriented Principles. In Proceedings of ACM Conference, Washington, DC, USA,
July 2017 (Conference’17), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Access control (AC) has typically been understood at the level of
systems, often explicitly involving a notion of a central arbiter that
decides the sort of access that is allowed for each asset. Centralized
reference monitors, however, are ill-placed for dealing with assets
that are not bound to one administrated system. For example, in
the context of file sharing, where data assets need to regularly cross
system boundaries, there is no assurance that when an asset leaves
the system for which it was originally specified, it will continue to
be used in ways consistent with that specification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Digital rights management (DRM) technologies have attempted to
address this issue, but they often rely on access to a central provider
to receive a license (something not always possible) and a narrow
range of controls that are not interoperable with other providers
(something undesirable) [4, 32]. An alternative view is that rather
than attempting to make assets secure by locking them down to
systems and restricting their use, assets should have their intended
security and usability in as many contexts as possible.

It has also been amply demonstrated that the lack of flexibility
in current AC schemes drives non-compliance [6, 49]. For example,
when users are forced to sacrifice sharing rights to introduce files
into rigidly specified AC systems, they are naturally led to other
sharing methods (e.g., personal, unencrypted USB sticks) resulting
in weaker security. Similarly, readily-available access to public WiFi
hotspots means that is easy to work around strict policies insecurely.
Pallas [43] has analytically demonstrated the need for a more flexible
approach to AC in modern distributed organizations.

The laissez-faire policy model given in [34] is a non-centralized
AC approach for file sharing. Broadly, it suggests that control over
files should reflect current controls for emails. In particular, owners
should not need to sacrifice rights in order to share a file (requirement
of ownership), owners should be able to pass on rights to whomever
they please (requirement of delegation), and owners should be able
to see all changes to a file (transparency). While we recognize that
diminishing rights can lead to insecure behaviour, these properties
provide only minimal protection for files.

More recently, related issues have begun to emerge in the context
of Internet of Things (IoT) devices, either because they are free from
any one centrally administrated system, or because the AC schemes
they fall under are not adequately dynamic to allow for fast and easy
policy modification [20].

These examples show the need for a rethinking of AC from the
ground up, one that allows assets to be made secure dynamically
according to their context.

As an alternative approach, we propose inverting the control vec-
tor of AC by understanding AC not in terms of what can be done
to assets — but what assets can do themselves. Instead of passive
entities governed by centralized authorities, we seek to empower
assets to be capable of performing their own AC decisions based on
their context. Put another way, we want to empower each asset to
have the necessary structure for storing and processing its access
based on its properties, its relationship to other assets, and its broader
environment. In a sense, then, assets should contain their own ref-
erence monitors. Such an approach will allow dynamically secure
access contextually, in line with that given by Calo et al., [13].

To make this possible, we provide a framework with which to
specify the design of assets. This framework is in part based on
principles of object-oriented design that are used explicitly in the
security domain. These principles provide assets with the features
they need to perform their own AC. In order to mitigate potential

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Fi
gu

re
1:

Pr
in
ci
pl
es

fo
r
en

ab
li
ng

th
e
m
ov

em
en

tf
ro
m

tr
ad

it
io
na

lt
o
as
se
t-
or
ie
nt
ed

ac
ce
ss

co
nt
ro
l

Asset-Oriented Access Control (AOAC) Conference’17, July 2017, Washington, DC, USA

problems with this approach, we provide details for a further set
of principles that ensure that assets behave appropriately through
time. Collectively, the principles work together to form what we call
Asset-Oriented AC. We refer to this framework as ‘asset-oriented’ as
opposed to ‘object-oriented’ AC as the latter hascome to mean AC
for object-oriented systems, rather than AC that is object-oriented
(see, e.g., [24, 50]). An overview of the approach is given in Figure 1.

There has been a great deal of work on logical models of access
control régimes, perhaps the most influential being [2] and its devel-
opments. Logical models provide frameworks in which policies can
be specified and within which the compliance of system behaviour
with policy can be reasoned about, perhaps even verified or falsified.
We suggest that logical models can be very helpful in the setting
of AOAC and, Section 5, we discuss the kinds of logical approaches
that we think will be necessary, These include agency, location and
resource, announcement, and epistemic and doxastic ideas.

The structure of the paper is as follows: in the next section, we give
definitions for the principles of asset-oriented access control and use
them to understand a motivating IoT problem posed in [13]. In doing
so, we provide a set of basic features that assets require in order to
make their own access decisions. In Section 3, we broaden our scope
to explore data assets, using the principles as a conceptual analysis
tool to understand the related problems users face with files. This
leads us to generate a further set of principles needed for ensuring
assets behave appropriately in any context through time. We use this
set to refine the original IoT scenario, and give an example of robots
that are operating independently and being updated, showing the
breadth of design space that asset-oriented access control applies to.
We give a basic simulation implementation (in Python). In Section 4,
we show that currently existing AC policy models can be expressed
using the framework. We also give an indication of how faithfully
they capture the spirit of our approach. In conclusion, we consider
future directions for the work in Section 5 as well as some limitations.

2 THE PRINCIPLES OF ASSET-ORIENTED
ACCESS CONTROL (AOAC)

From an external perspective, AC involves three key elements: op-
erations, assets, and principals [48]. More specifically, AC can be
understood as the management of operations on assets performed
by principals. Internally, the details of how to carry out this man-
agement has been explored in different ways. In role-based access
control (RBAC), for example, the properties of principals (specifically,
their roles) provide the decision-making basis [25]. In attribute-based
AC (ABAC), the decisions depend on properties of the asset, principal,
and environment [31]. In Usage Control (UCON), obligations are also
considered, which add the fulfillment of certain actions to the access
calculation [47]. All of these approaches have, at their core, ideas
present from the 1970s [37].

At a similar time, ideas surrounding object-orientation were begin-
ning to develop, initially for use in programming languages with the
goal of making code more robust, extensible, reusable, portable, and
easier to use [41]. These ideas have since emerged as a more general
set of principles for use in the analysis and design of software [9].
Bringing these two fields together, we can lay foundations for AC that
is suited for assets that carry out their own AC, as called for in [13].
We define the principles of AOAC as facilitating the management of

principal-asset operations that is class-based and exhibits inheritance,
encapsulation, and polymorphism. We unpack this definition while
analysing the following scenario developed in [13]:

It is already common for newly manufactured cars to have in-built
navigation systems capable of storing, and providing directions to, home
addresses and previous locations. Leaving access to these systems open
is a single point of failure security risk: an intruder can break into the
car, gather the additional sensitive information, and use it to commit
further crime.1 As cars get smarter, the consequences of this open access
vulnerability get more severe; keyless ignition systems, remote control
garage fobs, and other IoT devices present in the car increase the amount
of damage criminals can do.

Given that a car is, by its nature, independent of other systems (it may
even, from time to time, lose GPS signal), it cannot defer its AC decisions
to some external centralized authority; it must instead make the relevant
decisions itself. Furthermore, these decisions will be contextual, covering
a wide range of use cases. Most obviously, the car will need to allow
for different sorts of access to passengers as opposed to the owner. It
may need to allow for temporary access, for example in the case of car
hires, and it may even need to allow for exceptional circumstances, for
example, when emergency services need access because of an accident.

We will now see how the principles of AOAC can help to under-
stand this problem. For each principle, we will provide:

- a general definition explaining what the principle means for
arbitrary assets;

- a concrete, specific example drawing out the relevant features
of the principle;

- code written in the object-oriented language Python (2.7) that,
when executed according to its operational semantics, exhibits
behaviour that is interpreted as implementing the given concept;

- comments to clarify the principle and its intended meaning.

2.1 Class-Based
2.1.1 Definition

Every object is an instance of a class, which contains definitions
for its fields (properties) and methods (behaviours).

2.1.2 Example
To determine its own AC, the smart vehicle needs to keep track
of whether it is currently open and modify this property based
on the presence of the owner. As a class-based object, it can do
this by having a field that stores its access state together with
the methods necessary for changing this state under the right
conditions.

2.1.3 Code Example

class SmartCar:

def __init__(self , owner):

self.access = False

self.owner = owner

def unlock(self , user):

if self.authentication(user):

self.access = True

def authentication(self , user):

if user == self.owner:

return True

1Real-world cases of such events are already being reported [11].

Conference’17, July 2017, Washington, DC, USA Anon.

The class SmartCar has a constructor method (de f __init__)
that takes one argument, the owner. It is used to create an
instance of a smart car (an object) that has an owner attribute
and an access state (by default the car is closed). The class
has two other methods: authentication, which checks whether
the user is the owner, and unlock , which opens the car if the
authentication succeeds.

2.1.4 Remarks
By being class-based, assets (as objects) carry with them all
of their security relevant properties and behaviours. This is
a crucial first step towards assets being able “to generate and
manage their own access control policies dynamically on their
own.” [13, p.39]. For simplicity, we have abstracted away the
complexities of the authentication process by assuming that the
car has some way of identifying its owner. In practice, this could
take place through facial recognition technology, fingerprint
scanners, password protection, or some other authentication
procedure.

2.2 Inheritance
2.2.1 Definition

The fields and methods of a class transitively carry over to
subclasses.

2.2.2 Example
The car’s ignition and navigation systems are both entities that
require at least the same level of protection as the car itself
— otherwise, the car is at risk from the open access vulnera-
bility. The principle of inheritance ensures this by giving the
ignition and navigation systems all the security properties and
behaviours present in the overall car.

2.2.3 Code Example

class IgnitionSystem(SmartCar):

pass

class NavigationSystem(SmartCar):

def __init__(self , owner , home_address):

SmartCar.__init__(self , owner)

self.home = home_address

The class iдnitionSystem references the SmartCar class as an ar-
gument, inheriting its security fields andmethods. It has no addi-
tional fields and methods (hence pass). The NaviдationSystem
also inherits from SmartCar , but also has the home address
attribute.

2.2.4 Remarks
Inheritance allows the car-ignition relationship to work analo-
gously to the way it does in traditional car security: the owner
is needed to enter the car and also to start it. Traditionally this
has involved two separate uses of a key; here, this involves two
separate authentications. As a result, gaining illegal entry into
the car does not grant immediate access to the ignition system.
Access to the car navigation system works in much the same
way, though this system contains additional information, in
particular the home address location.

2.3 Encapsulation
2.3.1 Definition

The fields of an object are modifiable only through that object’s
own methods.

2.3.2 Example
The remote control garage fob is a standalone device that may
either be present in the car or simply carried by the owner. In
the latter case, the fob should assume access, but in the former,
it should base its decision on the car’s access. The principle of
encapsulation ensures that only the fob’s request sets its new
access state and, likewise, only the car’s send method gets the
car’s access state.

2.3.3 Code Example

class SmartCar:

...

def send_access(self):

return self.access

class GarageFob:

def __init__(self):

self.access = True

def request(self , nearest_object=None):

if nearest_object != None:

self.access = nearest_object.send_access ()

The GaraдeFob class has a method request that looks for a
nearby object. If an instance of the SmartCar class is nearby,
it will give its access state to the remote control garage fob
through the send_access method.

2.3.4 Remarks
This principle emphasizes the fact that central to object-orienta-
tion is the idea of messaging between objects. In the context
of security broadly, encapsulation is vital to ensuring that ex-
ternal entities cannot modify the inner states of an object. For
smart assets in particular, encapsulation meets Research Chal-
lenge 4 of allowing assets “in the environment to be aware of
other devices in the environment” [13, p.46] and doing so in a
standard way that avoids obvious security exposures. In more
complex situations, the remote control could defer access to
other devices and base the decision on further conditions. For
example, it could request access via Bluetooth through an app
on the owner’s phone that authorizes access with a fingerprint.

2.4 Polymorphism
2.4.1 Definition

The functioning of an object’s method may vary according to
the number and nature of its arguments (overloading) and will
depend upon the definition present in the object’s class before
any identically named definitions present in inherited classes
(overriding).

2.4.2 Example
Access to a car is typically not limited to the car’s owner; pas-
sengers should also be able to enter the car, as long as the owner
is with them. By default, however, passengers should not have
access to the ignition system. The principle of polymorphism
allows for both of these situations: firstly, access to the car can
depend upon the number and nature of the users, and secondly,

Asset-Oriented Access Control (AOAC) Conference’17, July 2017, Washington, DC, USA

access to the ignition system can behave differently from its car
superclass.

2.4.3 Code Example

class SmartCar:

...

def unlock(self , *users):

for user in users:

if self.authentication(user):

self.access = True

class IgnitionSystem(SmartCar):

def __init__(self , owner):

SmartCar.__init__(self , owner)

def unlock(self , user):

if self.authentication(user):

self.access = True

The SmartCar class now has a newunlock method that can take
arbitrarily many arguments, which will change its behaviour
(overloading). The Iдnition class inherits unlock but modifies
its behaviour by redefining the method (overriding).

2.4.4 Remarks
The flexibility afforded by polymorphism is vital for dynamic
AC. Through overloading, the same method may change its
functioning given almost identical stimuli. A more detailed
example could be that the ignition system does not grant access
if the owner is present but intoxicated. Similarly, if the owner
is under duress, perhaps in the presence of an actor judged to
be malicious, the car denies access.

Through overriding, inheritance can be limited, allowing many
properties and behaviours to be inherited, but not all. By requir-
ing as few changes as possible to be made, this could reduce
the policy burden on a human manually changing policy or a
computationally-limited machine learning it.

This section has explained how converting assets to objects us-
ing the object-oriented paradigm can empower them to make their
own AC decisions. In summary: being class-based ensures that assets
carry the security relevant properties and behaviours they need in
order to perform their own AC within themselves; inheritance al-
lows distinguished assets to transfer their properties and behaviours;
encapsulation ensures that objects can behave in a secure manner
no matter where they are, through secure messaging; and polymor-
phism gives assets a level of dynamism in behaviour necessary to be
context-aware. Consequently, assets (as objects) are modular, capable
of interacting together to perform complex AC.

The general nature of the AOAC principles means that they are also
applicable to the other scenarios described in [13]. For example, in
the Partner Information Access Scenario, the need for remote access
could be met by having each service be class-based, determining
access individually without assuming constant connectivity. The
need for histories may potentially be met through inheritance, basing
AC decisions on previous superservices. The importance of context
of operations despite identical end-points suggests that overloading
may be a useful principle here. Elastic Data Centers might exhibit
encapsulation to “only allow requests from the tier ahead of it” [13,
p.41] and exhibit polymorphism broadly to allow for the dynamic
updates necessary for each tier. The Client Side IoT Security Scenario
also stresses the importance of emergency situations where “security

norms may need to be violated” [13, p.42]. This is something that we
will look at in more detail later on.

3 FURTHER PRINCIPLES OF AOAC, DATA
ASSETS, AND MORE SCENARIOS

In the previous section, we saw that the principles of AOAC facilitate
assets to be secure objects that interact with themselves, each other,
and their environment in order to make their own AC decisions. In
particular, we saw how this could work for device assets in an IoT
setting. As the principles apply to assets generally, it is possible to
apply them also to data assets, in particular to files. Unlike devices,
we do not normally think of files as independent entities free from
an underlying system, but we do observe them regularly crossing
system boundaries, which means that the same issue of enforcing
policies in a decentralized manner arises.

In this section, we will apply the principles of AOAC to the file
sharing domain. This will lead us to consider some familiar ways
in which security lapses occur, forcing us to consider a further set
of principles to mitigate these problems. In the final part of this
section, we will apply the principles back to the original IoT scenario
and consider a further scenario, with the aim of avoiding analogous
problems for non-data assets.

Email was not originally designed for secure file sharing [42]. De-
spite this, it has since become “by far the most reported method for
sharing files” [51, p.223]. That nearly everyone has access to an email
account, means that it is often the go-to platform for users wishing
to initiate a share for the first time, and there is some evidence that
email’s universality makes it the common fallback platform when
other file systems fail users [19]. While email clients are not particu-
larly object-oriented, emails do exhibit some degree of structure by
bundling file attachments together with recipient information and
messages. As we shall see, this allows for the expression of intended
AC policy, albeit problematically.

Unix-like OSs exhibit some object-oriented design by treating
every entity as a file (even attached devices) that carries around its
own AC in the form of permission bits. Sub-files can be made to
exhibit security inheritance, but encapsulation is not strictly possible
because security bits rely on the underlying OS to be interpreted
correctly. While intra-system file shares work well — assuming that
the required sharers are all present on the system — extra-system
shares (i.e., shares from a Unix to another system) can be problematic.

Lastly, a Wiki — in particular, Wikipedia — is a technology and
website[40] in which pages act as shared files for collaboration. Files,
as understood, exhibit a high degree of structure, storing an article
together with its history and discussion pages. Fine-grained AC is
possible, and history pages indicate when changes are made and by
who, using timestamps and IP or username signatures.

We refer to the set of further principles drawn out by consider-
ation of these cases as permanence, identifiability, autonomy, and
transparency. We follow the structure of the previous section, again
providing (1) a general definition, (2) a concrete application, (3) an
object-oriented implementation, and (4) further comments.

3.1 Permanence
3.1.1 Definition

An object retains the structure of its fields and methods through
time.

Conference’17, July 2017, Washington, DC, USA Anon.

3.1.2 Example
Alice sends an email to Bob with an attached file. Within the
body of the email, she includes the words “FOR INTERNAL
USE ONLY” to encourage Bob to only share the file within the
company. Bob downloads the attachment to his phone. Three
weeks pass, Bob forgets Alice’s request, and he shares the file
with a non-employee. Permanence denies objects the ability to
separate their fields and methods, ensuring that Alice’s policy
request remains associated with the file.

3.1.3 Code Example
class Email:

def __init__(self , message , attachment):

self.data = attachment

self.metadata = message

def download(self , device): # improper

return self.data # decoupling

def download(self , device):

return self.data , self.metadata

The download method should return both the attachment (data)
and the message (metadata), rather than just the attachment
(as shown in the commented out code).

3.1.4 Remarks
While the principle of encapsulation does put limits on how
an asset’s fields are modified, it does not stop an asset from
removing its own policies or the internal information that help
it to make AC decisions. A better approach would be akin to
what we see with Wikipedia, where an articles page maintains
a strong connection to its history page. While edits can be
made to the article, each of these edits are recorded, as well
as previous states of the article. For data assets understood as
objects, most of the asset’s fields will refer to metadata, and
“embedded metadata has the advantage of keeping the metadata
with the file it describes, ensuring the file is understandable
in new contexts.” [46, p.14]. Permanence forces all an asset’s
methods to continue the strong coupling of data and metadata,
but relies on encapsulation to ensure that these are the only
methods that can modify these fields.

3.2 Identifiability
3.2.1 Definition

External entities referenced by an object persist through time
and retain their meaning.

3.2.2 Example
Every file on a Unix-like system carries with it its operation
permissions (read, write, and execute) for three types of user
(owner, group, and everyone). When a file is transferred to
another system, however, there is no guarantee that the second
system will interpret the permissions correctly, because the
meaning of ‘owner’, ‘group’, and ‘everyone’ will likely not be
consistent between the two systems. Consistency will not occur
even if both systems are Unix-like under the likely circumstance
that the two systems have different users. Identifiability requires
that such user references always point to the same entities
irrespective of where the asset is and for as long as necessary
for the intended usage of the asset.

3.2.3 Code Example
def UnixFile:

def __init__(self , data):

self.data = data

def read(self , user_alice): # non -permanent

self.data = new_data # reference

def read(self , permanent_reference):

self.data = new_data

The read method requires a permanent_re f erence argument
as opposed to the specific user_alice .

2.2.4 Remarks
There are a number of different sorts of entity an asset may refer
to. The example above focuses on principal entities and shows
that Unix-like file sharing is only reliable within one system:
“while content placed in a shared folder can be restricted to
allow access only by certain users, such restrictions can only be
done for hosts in a single administrative domain.” [51, p. 222]
While throwaway email accounts are common, so too are perma-
nent ones, owned and maintained by the same user for decades
[19]. Email addresses would therefore be more suitable than
references to users, if indefinite sharing of a file is acceptable.
More broadly, the identifiability requirement suggests that con-
textual references should be preferred over definite descriptions.
Spatial and temporal references fit well into this category. In
2.3.2, the remote control garage fob deferred its AC to nearby
devices. Other proximity-based approaches have been proposed
[35], but this approach continues to rely on a central specifica-
tion of trusted agents and their locations. Similarly, restricting
access to times of the day or for a set period (transient access)
is in keeping with the requirement of identifiability. The prop-
erties of assets may also be considered identifiable features; for
example in the form of tagging in photo sharing [30, 36, 54].

3.3 Autonomy
3.3.1 Definition

All deliberation processes that justify an AC decision should
occur within the object.

3.3.2 Example
A file in any of the systems mentioned is operated upon only
through the system within which it is situated. As a result,
access to the file is fundamentally constrained by access to
the system: access to an email assumes access to the client;
access to a Unix file assumes access to the OS; and access to a
Wikipedia webpage assumes access to Wikipedia. Autonomy is
the requirement that only the file itself is the barrier to access.

3.3.3 Code Example
#class Entity: # e.g., underlying system

def __init__(self):

self.access = False

self.file = "data"

def access(self): # access relies

if self.access == True: # on external

return self.file # entity

class File:

def __init__(self , data):

self.data = data

Asset-Oriented Access Control (AOAC) Conference’17, July 2017, Washington, DC, USA

def access(self):

return self.data

Access to the file is dependent only on the File method access ,
not also on the commented-out access method of the Entity
class.

3.3.4 Remarks
AOAC empowers files with the mechanisms they need to make
their own AC decisions, but it does not stop them being placed
within systems that further constrain their access. For certain
files (e.g., system files) this might be appropriate, but it is su-
perfluous and unhelpful for files that are intended to leave the
system. More broadly, as assets cannot rely on the presence
of other entities, be they systems or other assets, autonomy is
required. They can, like the example in 2.3.2, base their AC on
other assets, but they should be capable of working without
them, in principle. In practice, a balanced relationship between
day-to-day autonomy and irregular updates to AC appears most
sensible. An asset that is behaving insecurely, for example, will
need modifying, perhaps through DRM-style technologies.

3.4 Transparency
3.4.1 Definition

Contraventions of encapsulation and permanence can occur
in exceptional circumstances. They must do so in an auditable
manner through internal or external logging by a suitably cre-
dentialled, suitably behaving agent, validated by the system to
override the asset’s control in such exceptional circumstances.

3.4.2 Example
Anyone can edit almost2 any Wikipedia article and, in keeping
with the permanence requirement, all previous states of an arti-
cle are stored in its history page. As a result, it is possible for
illegal, highly sensitive information to be stored indefinitely on
a page, such as the leaking of military secrets. Transparency
allows the deletion of such sensitive information, even from an
article’s history page, as long as the act of deletion and justifica-
tion is recorded by a suitably credentialled user (administrator).

3.4.3 Code Example
class WikiFile:

def __init__(self):

self.data = ""

self.history_meta = []

self.talk_meta = []

def edit(self , new_data , cause=None):

if cause == None:

self.history_meta.append(self)

self.data = new_data

else:

self.data = new_data

self.history_meta.append(cause)

TheWikiFile class has a method edit that will append an old
page (data) to its history page history_meta unless a cause (i.e.,
justification) is given, in which case it will not append the old
page and simply record the justification.

3.4.4 Remarks
This is a requirement that Wikipedia already meets, but it is not

2Exceptions include articles relating to current events being editable only by logged in
users, and the IP banning of users who repeatedly damage pages [52].

widespread across file sharing platforms. The ability of system
administrators on Unix to arbitrarily raise privileges (i.e., in
non-exceptional circumstances), for example, means that it is
prone to misuse. While email is often used for sharing when
other platforms fail, the sharing is similarly non-transparent.
‘Break-glass’3 mechanisms have been deemed necessary by [43],
both for individuals as well as organizations. The work of [12]
demonstrates how traditional AC approaches can be extended
to accommodate such thinking.
It is also important to stress the exceptional nature of trans-
parency. The case of Windows UAC, where users bombarded
with permission requests are more likely to accept them blindly,
shows that break-glass mechanisms cannot be the norm [21]. A
further consideration is that when a file needs deleting, there
is little point in recording this fact to a log stored in the file. In
such cases, an external log is necessary. When we provide a
full definition of AOAC shortly, we provide further comments
about how transparency relates to the other principles.

This section has outlined a further set of principles that assets
need in order to mitigate issues that arise when viewing assets as
objects. Each of them build on the original principles of AOAC to
ensure security. Permanence requires that assets retain the features
that allow them to make their AC decisions through time; identifia-
bility requires that their relationship to external entities is reliable
in any context; autonomy requires that assets are self-governing;
and transparency allows for break-glass mechanisms in exceptional
circumstances through responsible means.

In summary, an AOAC specification consists in the fol-
lowing:

- having all of the the object-oriented principles of
being class-based, exhibiting inheritance, encapsu-
lation, and polymorphism;

- having all of the additional principles of perma-
nence, identifiblility, and autonomy.

Additionally, the transparency principle can be used —
by suitably credentialled, suitably behaving agents —
to override permanence and encapsulation, which prin-
ciples are able to hide control of access from agents
requiring access in exceptional circumstances.

We have seen an example of override of permanence in our dis-
cussion of Wikipedia and we shall give an example of override of
encapsulation in Section 3.6. In future work, we will explore the
possible need for override of other principles.

These principles are actually very difficult to meet for data assets.
This is in part because the system-centred view has been so dominant
in the field of AC, and in part because of the nature4 of data. Having
said this, there have been attempts to secure data assets in ways

3As described in [44, p.198], “the term ‘break-glass’ is derived from fire alarms that
require breaking a glass cover for triggering an alarm.”
4An analogy can be made to physical documents. The prototypical way of trying to
ensure a document is protected from mis-shares is to use classification labelling; for
example, by having “CONFIDENTIAL” written in big letters at the top of the document.
Permanence is hard because it is easy to remove such labelling; identifiability is hard
because it cannot be assumed that the labelling will be understood correctly by everyone
who encounters the document; autonomy is hard because the labelling does not affect the
use of the document (e.g., a wax seal would be better at ensuring autonomy); transparency
is hard because it is easy to share the document without generating an audit trail.

Conference’17, July 2017, Washington, DC, USA Anon.

to meet the principles. Sticky Policies [14] is one approach. They
enforce permanence by encrypting files together with their machine-
readable policies for later decryption with a key issued from a trusted
authority. This is not an ideal solution for two reasons. Firstly, the
trusted authority is a third party that, like DRM, may not always
be available. Secondly, permanence is only enforced up to the point
of decryption, meaning that once the file is accessible to the user it
remains accessible from that point onwards. Consequently, if a user
wants to share on the file without any controls, they are free to do so.
Data Usage Control [38, 39] enforces permanence by first establishing
that the file is received by a system that has comparable controls to
the sending system. This is clearly only possible if the receiving
system is known beforehand, and as such is only appropriate for a
small proportion of circumstances.

3.5 Returning to the Car Scenario
Devices, however, have a significant advantage over data assets in
that they are already understood as independent entities with the
potential to control their own interactions.

Returning to our initial car IoT scenario, designs must take the
permanence requirement seriously so that car functions do not sup-
press or remove access conditions. This suggests that car users —
even the owner — should be inhibited from removing AC features
arbitrarily. For example, if the owner wishes to delegate access to
another driver, the car itself should facilitate this securely, instead
of the owner being forced to temporarily remove access conditions,
resulting in diminished security.

Identifiability becomes relevant to the design of the authentication
and authorization mechanisms by ensuring that owner attributes and
environmental conditions are as stable and contextual as possible. If,
for example, facial recognition hardware and software are used, it
will presumably only be as accurate as similar technology present at
border controls, so profile updates will need to be as regular as those
for passport photos.

Taking autonomy seriously means that such mechanisms should
not be designed as separate objects that could potentially become
disconnected. Instead, face and voice recognition should be designed
as properties of the car as opposed to communicable assets; in terms
of access, these are the eyes and ears of the car, and must be strongly
coupled to the brain that makes the AC decisions. Pragmatic auton-
omy can occur in the case of hire cars, where, if there is time to sign
documentation for a temporary driver, there is also time to update
the AC aspects of the car for the new profile.

Transparency may possibly enter into the design process to allow
for the exceptional case of an emergency. If such situations are al-
lowed, then they should be justified, either through request to a next
of kin or identification as an emergency worker (examples of suitably
credentialled and behaved agents); as much information as possible
should be recorded, both in the car and at some remote server.

3.6 Robot Example
Iot devices have more independence than data assets, but less than
robots. According to the IEEE [33]:

A robot is an autonomous machine capable of sensing its
environment, carrying out computations to make deci-
sions, and performing actions in the real world.

Figure 2: Basic elements of the robot example simulator show-
ing diagnostic box.

A robot needs perceptive capabilities to sense the relevant features
around itself and the ability to change its internal states according
to its perceptions. It also needs motive powers to enact observable
changes, to move and to signal. All of these idea can come to bear on
a robot carrying out AC decisions.

More concretely, consider a robotics manufacturer wanting to
design multiple robots for use in an arbitrary environment where the
majority of the robots, the workers, perform a primary task (collecting
resources, say), and one robot, the supervisor, performs checks on the
workers to make sure they are functioning correctly. These checks,
or updates, need to be carried out at regular intervals and securely.
Occasionally, the supervisor is required to go back to some central
station to receive secure updates of their own.

We provide a 2D simulator5 for this scenario that uses the prin-
ciples of AOAC we have described. Figure 2 is an image taken from
one run of the simulator with annotations showing the basic entities
involved. The basic idea is that workers navigate around the map
collecting resources until their internal clock tells them they need
an update, at which point they stop and request one. The supervisor
finds the worker in need of the update and, when they meet, they
exchange messages in order to update securely. Once the update is
complete, the edited worker goes back to collecting resources and
the supervisor looks for another worker in need of an update. More
rarely, the supervisor returns to the centre of the map to receive an
update from the system.

We will now describe how each of the AOAC principles enable
the assets (worker and supervisor robots) to make their own AC
decisions.

Class-Based
First, we define a general class Robot that contains the basic security
features for every robot.
class Robot:

def __init__(self):

self.access_state = False

self.internal_clock_start = time.time()

self.time_up = random.randint (2,30)

self.log = []

self.color = (0,0,0)

def get_access(self , asker):

if asker.color == (255 ,0 ,0):

if random.randint (1 ,100) != 1:

5For the full code and example usage, including videos, see https://github.com/cora711/
2D-Simulator-for-Robot-Example. Graphics developed using the Python Image Library
(PIL), through Pillow [15].

https://github.com/cora711/2D-Simulator-for-Robot-Example
https://github.com/cora711/2D-Simulator-for-Robot-Example

Asset-Oriented Access Control (AOAC) Conference’17, July 2017, Washington, DC, USA

self.access_state = True

return True

def update(self , msg):

self.access_state = msg[0]

self.internal_clock_start = msg[1]

self.time_up = msg[2]

In particular,
- the access_state field tells the robot whether its internal states
can be modified

- the internal_clock_start and (random) time_up fields tell the
robot when it needs an update

- the methods дet_access and update allows the robot to change
its access according to what it ‘sees’ (the color of the robot) and
rewrite its fields respectively.

Being class-based, each robot can thus decide whether to allow an
update or not (via its access field) and when (via its time fields),
depending on whether it receives the right input (via its methods).

Inheritance
Second, we define two subclasses Worker and Supervisor which
inherit the basic security features as described above. On top of
this, they can contain their own fields and methods peculiar to their
intended operations.

class Worker(Robot):

def __init__(self):

Robot.__init__(self)

class Supervisor(Robot):

def __init__(self):

Robot.__init__(self)

self.time_up = 30

self.update_message = [

False ,

time.time(),

100]

def request_access(self , recipient):

if recipient.color == (0,0,0):

if recipient.get_access(self):

recipient.update(self.update_message)

In particular,
- the workers have no additional security fields or methods
- the supervisors have a different update time setting (time_up)
and an update_messaдe field that is used in updating workers

- the supervisor also has a request_access method used to au-
thenticate the worker and update it if it allows.

Inheritance allows the security features common to all robots to
be held by the Robot class and specific features to be held by the
subclasses.

Encapsulation
Third, we make sure that updates are in principle only possible by
the robot that is being updated. More specifically, each update works
according to the following protocol:

- supervisor authenticates worker
- supervisor requests access to worker
- worker receives request and authenticates supervisor
- if authentication is successful, worker sends accept signal to
supervisor

- supervisor receives accept signal and sends update message

Figure 3: Three consecutive states of a simulation showing the
supervisor updating a worker. Note the new update time for
the worker.

- worker receives update message and updates its own setting
based on the message.

The results of worker update are shown in Figure 3. In the first state,
the stationary worker is waiting for an update; in the second, the
supervisor and worker follow the protocol described above; in the
third, the worker goes back to finding and collecting resources, and
the supervisor looks for more workers to update.

More broadly, encapsulation means that every security method of
a robot is protected in a way that restricts direct manipulation.

Polymorphism
Fourth, we let the robots have to have one update method to cover
two situations.
class Supervisor(Robot):

...

def update(self):

Conference’17, July 2017, Washington, DC, USA Anon.

self.update_message = system_update_message

self.internal_clock_start = time.time()

self.time_up = 100

system_update_message = [

False ,

time.time(),

300]

In particular,
- the update method in Supervisor overrides the one defined in
after a call to a supervisor, allowing the supervisor to return
to the central station and update according to the system’s
specification rather than wait to be updated like the worker

- worker update is unaffected.
Polymorphism gives the designer flexibility to define such a method
twice, changing its behaviour according to the context.

Through these principles, we make it possible for the robots to
determine their own access based on their context. To mitigate po-
tential problems that may still arise, however we also implement the
following further principles.

Permanence
While the robots need methods to modify their access, they should
not have methods that remove it, or otherwise render it useless. For
example, the robots should be precluded from

- removing their access states
- removing their ability to authenticate other robots.

Permanence forces the robots to continue to base their access deci-
sions on their internal features through time.

Identifiability
The means by which the robots authenticate other robots should
reliable in any context, as should the location of the supervisors
central station. More specifically,:

- recognition of a robot is done locally (i.e., by the relevant robot)
through visual means

- the central station has fixed coordinates.
More broadly, any of the conditions that a robot is basing its access
decision on will need to be intelligible whatever the context.

Autonomy
The barriers to access should be limited to the robots and not also
external entities. In particular:

- the ability to authenticate robots exists in each robot visually,
and not through some system command (e.g., the entity.__class__
system function);

- supervisors only need to ask workers for permission and not
also a central authority.

Autonomy requires that there are not further barriers to entry than
those present in the robots themselves. Note that this does not pre-
clude updates to the supervisor’s AC.

Transparency
The design should also allow for exceptional circumstances. Suppose
a supervisor attempts to update a worker, but the worker (incorrectly)
denies access. (Note: this is possible, although unlikely, given how
we defined дet_access in the class Robot (see specifically the line
i f random.randint(1, 100)! = 1)). Owing to encapsulation, in principle
there is nothing more the supervisor can do; the worker will be stuck

operating abnormally. In such extreme circumstances, the suitably
credentialled and well-behaved supervisor has no choice but to:

- contravene encapsulation to force the worker to update, and
- record the incident in its log and the worker’s log.

This can be allowed for with the following code:

class Supervisor(Robot):

...

def force_update(self , recipient):

recipient.access_state = True

recipient.internal_clock_start = time.time()

self.log.append(

(time.time(),

recipient ,

action = "Forced␣Update",

reason= "Denied␣Access"))

recipient.log.append(

(time.time(),

self ,

action= "Forced␣Update",

reason= "Denied␣Access"))

def request_access(self , recipient):

if recipient.color = (0,0,0):

if recipient.get_access(self):

recipient.update(self.update_message)

else:

self.force_update(recipient)

Transparency allows design to cover such exceptional circumstances
in an auditable manner.

In terms of independence, data assets lie at one end of the spec-
trum, robots at the other, with devices somewhere in between. AOAC
provides a framework for all three. The set of properties ensure that
the principles of AOAC allow assets to continue to make decisions
based on their context through time.

4 AOAC AND POLICY MODELS
We have considered a theory of how AC can work from the asset’s
perspective, but in practice, of central importance is the analysis of
specific policies. We want to know whether a given asset is following
the prescribed behaviour intended by a policy. This is where AC
policy models come in: they allow us to reason — formally, in some
cases — about whether a system correctly implements a given policy.
From this perspective, schemes like RBAC and ABAC are general
frameworks through which policies can be expressed; in themselves,
they express no official dogma, but they do frame the discussion in
such a way as to facilitate some. It is in this sense that we say that
AOAC has facilitated assets to make their decisions in any context. In
the previous sections, we generated a further set of properties. Unlike
the principles of AOAC, these do dictate some amount of policy.
Consequently, it is possible to state classical models using AOAC and
show how they disagree with the properties of the previous section.

For example, while the Bell-LaPadula model [8] can be expressed
through the principles of AOAC, it does not meet the set of further
properties. In particular, as classification levels do not have universal
meaning, they are not identifiable. This means that implementing
Bell-LaPadula for assets that are free to leave their system boundaries
will be problematic. For example, if we apply Bell-LaPadula to the
Robot Example of the previous section by insisting that every robot
and resource in the system has a classification label, and interaction
is determined by the “read-down rule”, the robot will be unable to

Asset-Oriented Access Control (AOAC) Conference’17, July 2017, Washington, DC, USA

interact with resources outside of the system. This problem is anal-
ogous to the one experienced when labelled documents leave some
secure system and are used insecurely. We can use AOAC to recognize
the problem as well as its potential solution, namely that the robot
would itself need to determine the classification level of the resource,
assigning it a label based on the context.

Similar remarks can be made for the Clark-Wilson [16] and Laissez-
Faire [34] models. As supplementary material, we include code that
expresses the three policy models.6

5 FURTHERWORK
We have identified, exemplified, and discussed the core concepts of
AOAC, starting from object-oriented principles. In this section, we
consider two main directions for further work.

First, in order to test the practical viability of AOAC, a protoype
should be implemented. This could take shape in several forms:

- Simulation of an IoT device, and its security protocols, that
interacts with its environment according to the principles and
properties described above;

- A modelling tool that can be directly applied to the design and
analysis of devices in distributed systems;

- A prototype operating system that implements an AOAC file
system and/or email environment (cf. [34]).

Such tools could be a basis for usability studies in the sense of [53].
Second, in order to reason about the properties and behaviours of

systems of access control that embody these principles, it would be
helpful to have formal logical models of AOAC. Such models might
support the characterization of specific access control policies and
the verification and falsification of the compliance of the behaviour
of systems with policies.

There is a substantial literature on logical models of access control.
We consider here the most pertinent contributions for our purposes.
The work of Abadi, Burroughs, Needham, & Plotkin [2] introduces
the says modality, facilitating reasoning about delegation in the dis-
tributed systems setting. Subsequent work of Abadi [1] gives further
refinements to the logic to prevent undesirable (from the point of
view of security) logical consequences in the original system.

The work of Collinson and Pym [18] employs a resource–process
algebra, in which systems are modelled as processes which evolve
relative to available resources, together with its associated modal
logic. In this context, the ’says’ modality can be seen to characterize
a process combinator that represents the one principal acting in the
role of another. This set-up can be enriched with a notion of location
that enables the modelling of architecture of distributed systems [17].

More recent modal logic based work of Genovese & Garg [27] and
Genovese [26] (in collaboration with many others [10, 28, 29]) consid-
ers new access control modalities in the distributed systems setting
(corresponding to control, permission and ratification), and gives a
unified approach to the semantics and proof theory of authorization
logics via modal correspondence theory and labelled deduction.

While this work provides a useful starting point for logical mod-
elling of AOAC, some key features of AOAC are not readily handled.
First, interaction between an asset and its local environment in order
to support local about about access to the asset by entities in the
environment. This requires a representation of the local environment
6See also the github repository: https://github.com/cora711/aoac-policies.

in some part of the broader global context, in a manner similar to
that which is captured by the frame rules of separation logics [45, 55],
which enable reasoning about the effects of program execution by
restricting attention to that part of the global memory state that is
manipulated by the program. Second, local reasoning by assets about
their interaction with their environments requires representations of
knowledge and beliefs in the sense of epistemic and doxastic logics
[23]. Third, assets must maintain models of their state and environ-
ment as they and their environments evolve. This requires the logic to
incorporate a notion of ‘model update’, such as in dynamic epistemic
logics [22]. Further, capturing the notion of message passing requires
more sophisticated notions of update from the literature, for example,
private announcements [5]. Last, the representation of assets is based
on object-oriented principles, so the associated logics must handle at
least some aspects of object-oriented design. Approaches can be seen
in Beckert & Platzer [7], Abadi & Leino [3], among others.

The existing work on logic for access control fails to meet our prop-
erties for the following reasons: first, we require a suitable frame-
work for local reasoning; second, the modalities we require must
reason about local properties, unlike the ’says’ modality of [1, 2, 27]
which makes global assertions; third, the logic must incorporate a
notion of ‘model update’; and, finally, reasoning about some aspects
of object-oriented structure is necessary. We require a logic which
appropriately incorporates all of these features. Such a logic would be
used to reason about the properties and dynamics of systems that im-
plement AOAC — for example, questions of correctness and emergent
behaviour through techniques such as model checking.

This program of logical work is substantial and beyond the scope
of this paper.

6 CONCLUSION
In this paper, we have set out a framework for designing assets that
can make their own AC decisions. The framework (AOAC) is in part
based on principles adapted from object-orientation. These principles
allow assets (as objects) to store and perform AC (by being class-
based), pass over security features (through inheritance), message
indirectly (through encapsulation), and have dynamic behaviours
(through polymorphism). We have applied these principles to make
sense of a problem in the literature that is indicative of the type
that IoT devices are beginning to face. More specifically, we have
addressed the need for assets to make decisions based on their context
dynamically, a problem recognized by the community (cf. [13]).

We have also shown how the principles can be applied to data as-
sets, and have pointed out specific ways the approach must be refined
to mitigate security issues. This has led us to formulate a further set
of properties that ensure that assets retain their class-based structure
(permanence), remain capable of interacting with their environment
(identifiability), are not limited by external access conditions (auton-
omy), and behave exceptionally responsibly (transparency). We have
provided definitions for each of the principles and properties, exam-
ples that show in what circumstances they apply, and implemented
source code in an object-oriented language showing their behaviour.
Collectively, the principles and properties form what we have termed
Asset-Oriented Access Control (AOAC).

By describing traditional access control policy models — such as
Bell–LaPadula and Clark–Wilson, as well laissez-faire — within our
framework, we have begun to demonstrat the flexibility of the AOAC

https://github.com/cora711/aoac-policies.

Conference’17, July 2017, Washington, DC, USA Anon.

approach. This work also indicates some ways in which these models
can be made to accommodate asset-oriented ideas.

Finally, we have described some potential directions for future
work, specifically some approaches prototype implementations and
logical modelling as formal basis for AOAC.

REFERENCES
[1] M. Abadi. 2008. Variations in access control. LNCS 5076: 96–109.
[2] M. Abadi, M. Burrows, B. Lampson and G. Plotkin. 1993. A calculus for access

control in distributed systems. ACM Trans. Program. Lang. Syst. 15, 4, 706–734.
[3] M. Abadi and K. Rustan and M. Leino. 2003. A logic of objected oriented programs.

In Verification: Theory and Practice, LNCS 2772, 11–41.
[4] Adobe Systems Incorporated. 2015. Adobe Content Server. Retrieved February 7,

2019 from http://www.adobe.com/solutions/ebook/content-server.html.
[5] A. Baltag, L. Moss and S. Solecki. 1998. The logic of public announcements, common

knowledge and private suspicions. Proc. TARK ’98, Morgan Kaufmann, 43–56.
[6] A. Beautement, M. Angela Sasse and M. Wonham. 2009. The compliance budget:

managing security behaviour in organisations. In Proceedings of the 2008 New
Security Paradigms Workshop (NSPW’08). ACM Press, New York, NY, 47–58.

[7] B. Beckert and A. Platzer. 2006. Dynamic logic with non-rigid functions: a basis for
object-oriented program verification. Proc. IJCAR ’06, LNAI 4130:266–280.

[8] D. Bell and L. LaPadula. 1973. Secure computer systems: mathematical foundations.
MITRE Technical Report 2547, Vol. I.

[9] S. Bennett, S. McRobb and R. Farmer. 1999. Object-oriented systems analysis and
design using UML (2nd Ed.). McGraw-Hill Publishing Co., New York.

[10] G. Boella, D. Gabbay, V. Genovese, L. van der Torre. 2009. Fibred security language.
Studia Logica 92, 395–436.

[11] British Broadcasting Corporation. 2019. Hundreds of popular cars ‘at risk of
keyless theft’. Retrieved February 7, 2019 from https://www.bbc.co.uk/news/
business-47023003.

[12] A. Brucker and H. Petritsch. 2009. Extending access control models with break-glass.
SACMAT ’09: Proceedings of the 14th ACM on Symposium on Access Control Models
and Technologies, ACM, New York, NY, USA, 197–206.

[13] S. Calo, D. Verma, S. Chakraborty, E. Bertino, E. Lupu and G. Cirincione. 2018.
Self-Generation of Access Control Policies. Proc. SACMAT ’18. ACM, New York,
39–47.

[14] D. Chadwick and S. Lievens. 2008. Enforcing “sticky” security policies through-
out a distributed application. In MidSec ’08: Proceedings of the 2008 workshop on
Middleware security, ACM, New York, NY, USA, 1–6.

[15] A. Clark and Contributors. 2019. Pillow (PIL fork). Retrieved February 7, 2019 from
https://pillow.readthedocs.io/en/stable/.

[16] D. Clark and D.. Wilson. 1987. A comparison of commercial and military computer
security policies. Proc. 1987 IEEE Symp. on Security and Privacy, 184–184.

[17] M. Collinson, B. Monahan and D. Pym. 2012. A Discipline of Mathematical Systems
Modelling. College Publications.

[18] M. Collinson and D. Pym. 2010. Algebra and logic for access control. Formal Aspects
of Computing 22, 2, 83–104, 22(3-4), 483-484, 2010.

[19] B. Dalal, L. Nelson, D.Smetters, N. Good, A. Elliot. 2008. Ad-hoc Guesting: when
exceptions are the rule. In UPSEC’08 Proceedings of the 1st Conference on Usability
Psychology and Security, USENIX Association, Berkeley, CA, USA, Article 9.

[20] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. Gunter, X. Zhou, M. Grace. 2017.
HanGuard: SDN-driven protection of smart home WiFi devices from malicious
mobile apps. WiSec ’17, ACM, New York, 122–133.

[21] J. DeVaan. 2009. Update on UAC. Retrieved February 7, 2019 from https://blogs.
msdn.microsoft.com/e7/2009/02/05/update-on-uac/.

[22] H. van Ditmarsch, J. Halpern, W. van der Hoek and B. Kooi (eds.). 2015. Handbook
of Epistemic Logic. College Publications.

[23] H. van Ditmarsch, W. van der Hoek and B. Kooi. 2008. Dynamic Epistemic Logic.
Synthese Library 337, Springer Netherlands.

[24] W. Eßmayr, G.Pernul and A. Min Tjoa. 1998. Access controls by object-oriented
concepts. In Database Security XI: Status and Prospects, IFIP Conference Procs. 113,
Chapman & Hall, 325–340.

[25] D. Ferraiolo, J. Cugini, D. Richard Kuhn. 1995. Role-based access control (RBAC):
Features and motivations. In Proceedings of 11th Annual Computer Security Applica-
tions Conference, IEEE Computer Society Press, 241–48.

[26] V. Genovese. 2012. Modalities for Access Control: Logics, Proof-Theory and Applica-
tions. PhD Thesis. Universitié du Luxembourg.

[27] V. Genovese and D. Garg. 2011. Newmodalities for access control logics: permission,
control and ratification. Proc. STM 2011, LNCS 7170: 56–71.

[28] V. Genovese, D. Garg and D. Rispoli. 2012. Labeled sequent calculi for access control
logics: countermodels, saturation and abduction. In CSF ’12: IEEE 25th Computer
Security Foundations Symposium, IEEE, 139–153.

[29] V. Genovese, L. Giordano, V. Gliozzi and G. Pozzato. 2011. A conditional constructive
logic for access control and its sequent calculus. Proc. TABLEAUX 2011, LNCS 6793:
164–179.

[30] M. Hart, C. Castille, R. Johnson and A. Stent. 2009. Usable privacy controls for
blogs. In 2009 International Conference on Computational Science and Engineering,
IEEE, 401–408.

[31] V. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller and K. Scarfone.
2014. Guide to Attribute Based Access Control (ABAC) Definition and Considerations.
NIST Special Publication 800–162.

[32] G. Heileman and P. Jamkhedkar. 2005. DRM interoperability analysis from the
perspective of a layered framework. In DRM ’05: Proc. of the 5th ACM Workshop on
Digital Rights Management, ACM, New York, 17–26.

[33] IEEE. 2018. What is a robot?. Retrieved February 7, 2019 from https://robots.ieee.
org/learn/.

[34] M.Johnson, S. Bellovin, R. Reeder and S. Schechter. 2009. Laissez-faire file sharing:
Access control designed for individuals at the endpoints. Proc. NSPW’09, ACM, New
York, 1–10.

[35] M. Kirkpatrick, M. Damiani and E. Bertino. 2011. Prox-RBAC: a proximity-based
spatially aware RBAC. In SIGSPATIAL GIS ’11: Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, ACM,
New York, NY, USA, 339-348.

[36] P. Klemperer, Y. Liang, M. Mazurek, M. Sleeper, B. Ur, L. Bauer, L. Cranor, N. Gupta
and M. Reiter. 2012. Tag, you can see it!: Using tags for access control in photo
sharing. Proc. of the SIGCHI, ACM, New York, 377–386.

[37] B. Lampson. 1971. Protection. In Proceedings of the 5th Princeton Symposium on
Information Sciences and Systems, 437-443. Reprinted in Operating Systems Review 8,
1, January 1974, 18–24.

[38] F. Kelbert. 2013. Data usage control for the cloud. In CCGRID 2013: Proceedings of
the 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
IEEE Computer Society, 156–159.

[39] F. Kelbert and A. Pretschner. 2013. Data usage control enforcement in distributed
systems. In CODASPY ’13: Proceedings of the third ACM conference on Data and
Application Security and Privacy, ACM, New York, NY, USA, 71–82.

[40] B. Leuf and W. Cunningham. 2001. The WIKI WAY. Quick Collaboration on the Web.
Addison Wesley.

[41] B. Meyer. 1997. Object-Oriented Software construction (2nd Ed.). Prentice Hall.
[42] C. Partridge. 2008. The technical development of internet email. IEEE Annals of the

History of Computing 30, 2, 3–29.
[43] F. Pallas. 2009. Information Security Inside Organizations: A Positive Model and Some

Normative Arguments Based on New Institutional Economics. PhD Thesis, TU Berlin.
[44] H. Petritsch. 2014. Break-Glass: Handling Exceptional Situations in Access Control.

Springer.
[45] J. Reynolds. 2002. Separation Logic: A logic for shared mutable data structures.

Proc. LICS ’02, IEEE Computer Society, Washington, DC, 55–74.
[46] J. Riley. 2017. Understanding metadata. National Information Standards Org..

Retrieved http://www.niso.org/publications/press/UnderstandingMetadata.pdf.
[47] R. Sandhu and J. Park. 2003. Usage control: A vision for next generation access

control. Proc. MMM-ACNS 2003, LNCS 2776: 17–31.
[48] R. Sandhu and P. Samarati. 1994. Access Control: Principles and Practice. IEEE

Communications Magazine 32, 9, 40–48.
[49] D. Smetters and N. Good. 2009. How Users Use Access Control. In SOUPS ’09:

Symposium on Usable Privacy and Security, ACM, New York, Article 1.
[50] T. Tachikawa, H. Higaki, and M. Takizawa. 1997. Purpose-oriented access control

in object-based systems. In Austral. Conf. Information Sec. and Privacy.
[51] S. Voida, W. Keith Edwards, M. Newman, R. Grinter and N. Ducheneaut. 2006. Share

and share alike: exploring the user interface affordances of file sharing. Proc. CHI
’06 ACM, New York, 221–230.

[52] Wikipedia contributers. 2019.Wikipedia Banning Policy. Retrieved on February 7,
2019 from https://en.wikipedia.org/wiki/Wikipedia:Banning_policy.

[53] T. Whalen, D. Smetters, and E. Churchill. 2006. User Experiences with Sharing and
Access Control. (CHI’06).

[54] C. Au Yeung, L. Kagal, N. Gibbins and N. Shadbolt. 2009. Providing access control to
online photo albums based on tags and linked data. In Social Semantic Web: Where
Web 2.0 Meets Web 3.0. AAAI Spring Symposium., 9–14.

[55] H. Yang and P. O’Hearn. 2002. A semantic basis for local reasoning. Proc. FoSSaCS
2002, LNCS 2303: 402–416.

http://www.adobe.com/solutions/ebook/content-server.html
https://www.bbc.co.uk/news/business-47023003
https://www.bbc.co.uk/news/business-47023003
https://pillow.readthedocs.io/en/stable/
https://blogs.msdn.microsoft.com/e7/2009/02/05/update-on-uac/
https://blogs.msdn.microsoft.com/e7/2009/02/05/update-on-uac/
https://robots.ieee.org/learn/
https://robots.ieee.org/learn/
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
https://en.wikipedia.org/wiki/Wikipedia:Banning_policy

	Abstract
	1 Introduction
	2 The Principles of Asset-Oriented Access Control (AOAC)
	2.1 Class-Based
	2.2 Inheritance
	2.3 Encapsulation
	2.4 Polymorphism

	3 Further Principles of AOAC, Data Assets, and More Scenarios
	3.1 Permanence
	3.2 Identifiability
	3.3 Autonomy
	3.4 Transparency
	3.5 Returning to the Car Scenario
	3.6 Robot Example

	4 AOAC and Policy Models
	5 Further work
	6 Conclusion
	References

