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Abstract. As the world has evolved to become ever more dependent
on complex ecosystems of large, interacting systems, it has become ever
more important to be able to reason rigorously about the design, con-
struction, and behaviour not only of individual systems — which may
include aspects related to all of people, process, and technology — but
also of their assembly into ecosystems. In such situations, it is inevitable
that no one type of model — such as mathematical models of dynam-
ical systems, logical models of languages, or discrete event simulation
models — will be sufficient to describe all of the aspects of ecosystems
about which rigorous reasoning is required. We propose here a meta-
theoretical framework, the ‘triangle framework’, within which different
types of models may be categorized and their interactions, especially
during the construction of models, can be understood. Its explicit goals
are to facilitate a better understanding of the nature of models and to
provide a more inclusive language for the description of heterogeneous
models. Specifically, we identify three qualities of models, each derived
from modelling goals — conceptuality, mathematicality, and executabil-
ity — and explain how models will, typically, have all of these qualities to
varying extents. We also show how the framework supports an analysis
of how models can be co-designed by their various stakeholders within an
identified translation zone within the process of model construction. We
explore our ideas in the concrete setting of models encountered in a range
of surveyed security papers, drawn from a diverse collection of security
conferences. Although descriptive in nature, we envision this framework
as a necessary first step in the development of a methodology for hetero-
geneous model design and construction, diverse enough to characterize
the myriad of model types used in the field of information security while
at the same time addressing validation concerns that can reduce their
usability in the area of security decision-making.
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1 Introduction

There is a famous quote from Grace Hopper:
‘Life was simple before World War II. After that, we had systems.’

Now, systems are pervasive. They interact with and depend on each other and
we, in turn, depend on them. It has become important to be able to think about
not just a single system, but also its interactions with other systems — it has
become necessary to think of ecosystems.

From the perspective of security, it is particularly significant that our ecosys-
tems of concern are socio-technical, encompassing not only technical components,
but also economic, human, and policy or regulatory aspects.

It is of increasing importance to be able to reason rigorously about the de-
sign and behaviour of systems and ecosystems. In particular, is of increasing
importance to be able to reason rigorously about the security of systems and
ecosystems. A key approach to reasoning about systems is based on the idea of
modelling.

Systems models can take many forms. Here we discuss what, we shall argue,
are the key categories of models.

- Models may, of course, be expressed in the language of mathematics —
perhaps using tools such as differential and integral equations, stochastic
processes, or even the methods of abstract algebra — in order to understand
the structure of a system.

- Models may also be essentially computational, expressed in a programming
language for the purpose of being executed — perhaps as simulations, such
as in the Monte Carlo-style — in order observe the behaviours of the system.

- Models may be essentially conceptual, perhaps expressed using rigorous nat-
ural language or pictorial representation.

Different types of models are appropriate for capturing different types of
questions about different types of models. However, it is often the case that
combinations of different types of models are not only useful, but essential. For
example, within security economics, it may be necessary to combine an exe-
cutable model of a system, together with a mathematical/economic model of
the value of different policy régimes, all based on a conceptual model of the
choice of applicable policies and their implementation. See, for example, [14, 13,
11]. Similarly, Beautement et al.’s ‘compliance budget’ [8] combines a conceptual
model of employees’ behaviours within an organization and an economic model
of the consequences of their behavioural choices for productivity.

In this paper, we present a meta-theoretical framework within which we can
categorize the different types of ecosystem models that are available and under-
stand their relationships to one another in general and the interactions of types of
models of particular ecosystems. We argue that this framework represents an im-
portant first step in the development of a methodology for heterogeneous model
design and construction because it offers a common language for the description
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of basic properties of models from different research traditions. Furthermore, the
application of such a methodology on information security models requires an
important, yet often omitted debate about validation. To even be able to define
what validation is in the context of heterogeneous models requires at least a way
of describing model properties in relation to model goals and types of knowledge
employed. This is exactly what our framework focuses on. In the future, we hope
to produce more practical results such as correlations between a model’s goals,
the types of knowledge it employs, the means of design in its translation zone,
its triangle configuration, and its success of implementation and deployment in
the real world. However, the domain exploration carried out using this approach
in Section 5 shows that it manages to encompass the domain’s diversity, making
it a reasonable alternative for the description of information security models.

We begin, in Section 2, by considering the classical characterization of per-
spectives on modelling in terms Logical Empiricism and Relativism. We explain
some of the philosophical background of the two paradigms and describe the
methodological and practical issues that lead to a need for combining them in
the context of modelling ecosystems.

In Section 3, by introducing the ‘triangle’ framework, we construct a con-
ceptualization of the nature of models that characterizes the key categories of
models according to three anchor points of properties:

- Conceptuality: describing the components of an ecosystem, their inter-
relationships, and their evolution in informal, yet rigorous, terms. For exam-
ple, a careful description of a river system, including its sources, its estuaries,
and its flood plains, together with an explantion of the circumstance in which
they might be overwhelmed.

- Mathematicality: describing the components of an ecosystem, their inter-
relationships, and their evolution in the language of mathematics. For exam-
ple, a detailed hydro-mechanical description, using the mathematics of fluid
dynamics, of a system of sluices that controls flows within a water distribu-
tion network.

- Executability: describing the components of an ecosystem, their inter-relat-
ionships, and their evolution in languages that can be interpreted and ex-
ecuted by machines. For example, A computer program that simulates the
effects of excess rainfall within the watershed of a river system, demonstrat-
ing graphically the expected extent and duration of flooding.

We explain our interpretation of the properties and their qualitative nature
and provide some directions regarding the importance of the framework outside
its use for classification.

In Section 4, we explain how models are constructed within the context of
the triangle framework and how the role of co-design, within a translation zone
for the different stakeholders in the modelling process, is central to the use of
the framework.
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In Section 5, we explain how ideas we are suggesting play out in the setting
of security modelling. In particular, we report on how the triangle framework
gives an account of the modelling that can be found in a wide array of papers
in a diverse range of security conferences. Our choice of security for empirical
analysis is at once both specific and generic: although the papers considered deal
with specific security problems, the topic of security can be seen as providing a
generic perspective on the behaviour of systems.

In Section 6, we consider the implications of using our framework for vali-
dating models, especially in the context of modelling large-scale ecosystems.

Finally, in Section 7, we summarize our contribution and briefly consider
some directions for developing further the ideas we have introduced.

2 Philosophical Aspects of Models

There are predominantly two traditions on the nature of models, logical em-
piricist and relativist, dating back to the rationalist and empiricist schools of
thought of the 16th century, and being further developed during the 19th and
20th century philosophical split between continental and analytical philosophy.

- Logical empiricism. Models are understood as an objective and absolute rep-
resentations of systems. Validation is a process that is formal, algorithmic,
and focussed on the accuracy of both the structure and outputs of the model.
A single structural misrepresentation is enough to invalidate the model, re-
gardless of its outputs. The overall modelling process is believed to reveal
the truth if performed adequately.

Relativism. Models are subjective; that is, they are just singular instantia-
tions from a continuum of possible representations of the system. Validation
is semi-formal, ‘a gradual process of building confidence in the usefulness
of a model’ [6]. Such models do not attempt to reveal absolute truth, but
rather produce a useful model given the modeller’s goals.

Neither of these two views can solely be used for constructing diverse enough
models for ecosystems security. Some of the reasons for this derive from some
quite basic problems with, or objections to, each of these views.

Problems with Logical Empiricism Theoretically, Logical Empiricism is strug-
gling to overcome the epistemic and methodological implications of Kuhn’s de-
scription of the acceptance of scientific theories and Popper’s theory of falsifi-
cation. Both the acceptance of Kuhn’s thesis — stating that scientific progress
is not achieved through the accumulation of knowledge but rather subjective
community paradigm shifts — and Popper’s view that scientific advancement
can only be achieved through falsification rather than proving absolute truths,
greatly reduce the focus on truth that logical empiricism held of a highest im-
portance. Additionally, some of its practical caveats come from the difficulty of
working with knowledge elements that have not been fully proven, completely
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accepted by the research community or that are yet unquantifiable because the
underpinning theoretical work is not mature enough.

In the specific case of security, the most common such elements are related to
the uncertainty introduced by human actors — either attackers or non-malicious
actors — or the discovery of new technical attack vectors.

Also, logical empiricism requires an extremely powerful validation process
which is not always possible in the case of complex cyber-physical systems.
Particularly the structural representation criterion can lead to the invalidation
of models that are producing seemingly viable results, which can be considered
a quality upper bound, but certain phenomenons introduced by humans do not
fit this type of approach because they lack the theoretical certainty.

In the best case scenario, a purely logical empiricist model can be used in well
defined and seemingly stable conditions, for example when used to determine the
trajectory of a rocket given the precise atmospheric conditions, but in today’s
cyber-physical ecosystems, this is rarely the case.

Problems with Relativism Under a different set of circumstances, relativist stances
hold the figuratively theoretic high ground in modern philosophy of science, in
the sense that the subjectivity of knowledge and truth and the social construc-
tion of reality are well established notions.

However, this interpretative way of viewing reality also suffers from multiple
caveats when singularly employed as paradigm for model construction.

First of all an ecosystemic model is composed of a high number of sub-models,
each with their own primary goal, resources, processes, etc. To be able to obtain
the relativistic notion of knowledge about those sub-systems, lengthy processes
of data collection — interviews, debates — must be carried out by the modeller
for the better understanding of the reality as seen by all the parts involved in the
system under study. Although methodologically this might not be considered an
actual problem, we must consider the fact that models are used today for tackling
real world issues in reduced time-frames. The early usage of predictive models
at the start of the Covid pandemic can be seen as a relevant example.

Secondly, and possibly the strongest advantage of this method, its openness,
can also be its biggest problem in practice. If each sub-model is constructed
with a different understanding of reality (the ones of the actors involved in it)
— this can be seen in studies about the formal and alternative power structure
of organisations — their integration becomes a serious issue. Albeit not directly
concerned with models constructed based on a relativist philosophy of science,
works such as [14], [13] or [11] provide a practical approach of this issue by using
interfaces to specify the desired type of output moving between sub models
without trying to alter the underlying notions of knowledge that led to the
production of that output.

Thirdly, models constructed in this paradigm are complicated to use when
trying to determine why certain decisions have been taken. Applying a simple
root cause analysis method on a decision taken by such a model might lead
either to a return to the real world simulated actors — if they are humans —
for further explanations or to uncertainty.
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On one hand, although methodologically sound, returning to the simulated
actors is a lengthy process that can end up greatly delaying model implementa-
tion and should only be used in cases where there exists an evidence of a lack of
understanding.

On the other hand, a model whose decisions cannot be certainly explained
will hardly be accepted by decision makers who might prefer to use their own
understanding of the system because it manifests a smaller degree of uncertainty.
Studying which method would outperform the other is not the goal of this paper.

A new perspective is needed As seen above, neither logical empiricism nor rela-
tivism alone offer a suitable methodology for modelling the dynamical systems
of today. In a certain sense, the former approach places models under a set of
too-powerful constraints, whereas the latter presents difficulties in choosing a set
of constraints or quality measures usable in practice.

The logical empiricist perspective can provide speed and trace-ability by
structure and method where the available system knowledge is suitable: the
main phenomenons to be included in the model have been previously studied by
the scientific community and an accepted theory has been formulated, and the
phenomenons can be translated to quantifiable data types.

On the other hand, the relativist perspective provides better descriptive
power and increases the overall comprehensibility of the model. Therefore, we
believe that the need of a modelling framework that balances both views is
justifiable.

In the next section, we introduce the Triangle Framework.

3 The Triangle Framework

The development of the logical empiricist and relativist views of models was
driven by a desire to understand the nature, method of obtaining and validation
of scientific truth. These perspectives were developed before the advent of com-
putational modelling, which includes approaches to understanding dynamical
systems such as discrete event modelling and Monte Carlo simulation.

Although computational models exhibit aspects of both logical empiricist
and relativist views, we argue that their executable aspects give rise to a distinct
perspective. As a result, we propose a new framework — the triangle framework
— in which the perspective provided by executable models stands alongside that
provided by the logical empiricist and relativist views of models with equivalent
significance.

The triangle framework, as depicted in Figure 1, identifies the key or core
components of models, and the relationships between them, in terms of three
qualities: conceptuality, mathematicality, and executability.

- Conceptuality — Aligned with the cognitive science perspective, we define
concepts as mental representations of phenomena. The conceptuality of a
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Fig.1: The Triangle Framework

model then refers to the degree to which its core components and the rela-
tionships between them exist and are directly expressed as such representa-
tions, through rigorous natural language, pictures, or diagrams, for example.
In relation to the other qualities, the degree of conceptuality decreases as the
key components of the model are expressed in an increasingly mathematical

or executable way.
- Mathematicality — This refers to the degree to which the elements and

relationships of a model are expressed using mathematical constructs. For
example, models might be expressed as systems of equations or logical for-

mulae.
- Ezecutability — This represents the degree to which the elements and rela-

tionships of a model are simulated in a physical or computational environ-
ment.

These qualities can exist in combination — models may have components that
exhibit characteristics of all three. They also trade off against one another; that
is, a highly conceptual model will be less mathematical and executable, or a
highly executable one will be less conceptual and mathematical. Although we
talk about degree, we don’t mean a strict measure — there are no units of math-
ematicality, executability, or conceptuality, and they are quantified subjectively.
However, these qualities, and the triangle framework more generally, give us a
language for organizing and talking about models. Figure 1 illustrates how we
think of these three types of model and their relationships: in a given model,
the relative significance of each of the components determines, by proximity, the
position of the model within the triangle; furthermore, the position of the model
may change as it evolves during its construction.

We explore empirically the appropriateness of these qualities for describing
the components of models, in the setting of security, in Section 5.
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We suggest that the importance of our proposed framework goes beyond
use for categorization, and hence understanding the relationships between,

extant models and types of models. Specifically, we suggest that it can

guide an on-going modelling process, helping the stakeholders to decide on
what property to focus, to increase the chance of better representing the
system, in accordance to their goals;

reduce the risk of producing a model that cannot be practically used to
achieve the goals of the modelling;

can be used as common reference point during co-design: stakeholders from
various domains will have a common point for their arguments; serves as a
common language for structuring the process;

offer a way of analysing a model through all the design and construction
stages rather than just at the end and therefore, complement an agile test-
ing methodology, providing the following advantages: reduced development
time because both the customer and modeller have a common way of under-
standing how the model evolves and can offer focussed feedback or directions,
easier for the customer to formulate requirements, constant focus on com-
mon quality metrics derived from the framework, ability to assess the model
at any time; and

lead to a way of comparing models based on the properties of sub-models.

We have mentioned again here the role of co-design in the modelling process
and how the triangle framework serves to support it. We consider this issue in
greater detail in Section 4.

4

Model Construction

Whereas the previous section was focussed on model description and interpreta-
tion according to a small subset of properties, the current one will examine the
necessary methodological elements for the construction of ecosystem models.

Traditionally, in mathematical modelling, models have been constructed us-

ing the classical construction cycle depicted in Figure 2. Succinctly, this repre-
sents an iterative process based on multiple stages:

observing the phenomenon domain,

constructing a candidate model based on the observations,

deducing the mathematical consequences of the model,

interpreting the consequences of the model in the domain, and

comparing, for validation, the correspondence between these interpretations
and the observed reality of the domain.

These stages are repeated until a criterion of adequacy for the intended pur-

pose of the model, often determined by the judgement of the modellers, is passed
and the model is considered to be a good enough representation of the system
under study. Classical examples of this modelling approach can be observed in [5]
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Fig.2: The classical mathematical modelling cycle (see, e.g., [33])

as an application for global supply chain management, [46] as a tool for analysing
credit scoring or [23] production scheduling.

The efficacy of this modelling process depends on certain key, usually un-
stated, assumptions about the modelling task:

- The structure and behaviour of the domain is clearly understood in concep-
tual or engineering terms. For example, the corrosion over time of a metal
piston inside a diesel engine is a well-researched phenomenon attributed to
the formation of sulphuric acid at the contact between low-grade fuels and
water. Such a phenomenon is a good candidate for mathematical modelling,
perhaps in the context of testing different materials for the construction of
engine parts.

- The data that can be collected about the domain is essentially unambigu-
ously identified. For example, modelling an organization’s employees pro-
ductivity levels for the sake of improving them might prove an extremely
complicated task for mathematical modelling since, essentially, employees
might be motivated by extremely subjective concerns and the interpretation
of those concerns might differ from person to person.

- The questions that the model is intended to address are identified inde-
pendently of the detailed design choices required for the construction of a
model. For example, building a model for the purpose of optimizing the pro-
duction time of hardware components in a fully automated manufacturing
environment is well suited for the traditional modelling methodology de-
scribed above. Contrarily, simulating the same system for the purpose of
understanding its behaviour and only then deciding what can be optimized
— for example, for a reduction of costs — would be more suited to a different
approach.
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The ecosystems with which modellers in the modern world are presented
pose much richer challenges for the form, design, and construction of models.
Such ecosystems contain not only components that are clearly susceptible to
mathematical modelling, but also include components — such as people and
organizations, policies, and economic influences — which require models to have
conceptual and computational (i.e., executable) components. In [39], Pidd puts
this diversity of components on behalf of the design of human activity systems
and Mingers [35] argues for a ‘multimethodological” approach for the exploration
of such systems. For example, one might imagine a model investigating the im-
pact of malware infection on an organization’s profits. However, the probability
of infection of a machine is influenced both by the behaviour of the employees
given a security policy and by technical elements such as the last installed patch
on the machine. Furthermore, the malware spreading pattern heavily depends
on network segmentation or existing countermeasures and the impact cannot be
directly computed because of factors such as reputation loss. Therefore, one can
easily observe that to understand the phenomenon of malware infection and its
impact on an organization using a model requires distinct approaches for at least
the above described components — employee behaviour, security policy, state of
patching, network configuration, reputation loss.

domain side model side

induction

i 1 LU translation zone candidate ot
availability model

interpretation

validation deduction
domain model
consequences consequences
interpretation

Fig. 3: Co-design in the translation zone
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Moreover, it is in the very nature of such domains that the assumptions upon
which the basic mathematical modelling cycle depends, as sketched above, do
not necessarily hold:

- The structure and behaviour of the domain may depend on the behaviours of
individuals and organizations, subject to incentives and policy constraints.

- It may be unclear what data is available for collection.

- It may be unclear, prior to the observation of the ecosystem, what questions
can be properly formulated, depending on behaviours and the availability of
data.

The key consequence is that a richer methodology of model construction is re-
quired in order to establish the cycle of model construction. A wide-ranging col-
lection of articles on approaches to modelling and its challenges may be found
in [19].

In the absence of such a priori foundations, we argue that a methodology that
is grounded in the principles of co-design is required. What does this mean in
the setting of ecosystems modelling? First, the classical modelling cycle, which
need not be restricted to wholly mathematical models, should not be abandoned.
Once a candidate model has been established, it provides the basis of the cycle
of development that leads to an acceptable model. Second, it must, however, be
adapted to account for the co-design process by which an initial candidate model
is established.

Three key changes are required, all of which constitute proper generaliza-
tions of their counterparts in the basic modelling cycle. First, the observation of
the domain involves essentially the discovery of the domain’s structure and be-
haviour. Second, the initial postulation of candidate models is contingent upon
this discovery process. Third, there is an induction-interpretation feedback loop
between domain observation and candidate model postulation. This situation is
depicted in Figure 3.

In the literature regarding organizational learning, this type of problem-
structuring as continuous exploration has been explored in works such as [4]
or [29] and represents an important element of modelling methodologies such
as Checkland’s soft systems methodology [15], cognitive mapping [18] [1], or
qualitative system dynamics [47].

These structural alterations to the methodology are not, however, sufficient
alone. Whereas in the basic modelling cycle experts in the domain will have
a relatively limited réle of supplying information to the modellers, in the co-
design sub-cycle their role is one of equal significance, forming a component of
the modelling process, by identifying the structure and behaviour of the domain
together with its policy constraints alongside the modellers’ ability to model
both the domain and its policies.

Thus, the cycle of domain observation and candidate model construction, as
depicted in the upper half of Figure 3, forms the translation zone of the dialogue
between the domain experts and the modelling experts, which may have different
perspectives and understandings of the domain and of models, and use different
languages for expressing those perspectives. The translation zone enables the
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development of a shared understanding — in a controlled way that is focussed
on the needs of the modelling project, managing the expectations of both the
domain experts and model experts — as a consequence of the process.

Overall, this establishes a co-design process that

- ensures the participation of both modellers and domain experts, whose re-
quirements are identified, characterized, and (possibly) modified according
to the constraints of model design, construction, and deployment,

- identifies modelling objectives, including questions about the domain that
are to be addressed, according to the identified requirements,

- designs and constructs appropriate models, and

- ensures that the available data that are identified during the process support
the requirements of the models that are constructed.

As with the basic (mathematical) modelling cycle, as depicted in Figure 2, the
description of the co-design cycle — with a translation zone, as depicted in Fig-
ure 3 — does not specify the exit criteria for determining that a sufficiently
accurate model has been constructed. In both cases, the criteria must be de-
termined case-by-case, but always respecting a few key general considerations
relative to which the notion of accuracy must be calibrated: remembering that
‘the map is not the territory’ [30]; appropriate level of detail; timeliness; and
cost-effectiveness.

We argue that the triangle framework provides a conceptual setting within
which the development of models through co-design in the translation zone can
be characterized. First, the triangle offers the prospect of a common conceptual
space — to some extent, even, a common language — to the domain and model
experts. Second, while the three properties that anchor the corners of the triangle
are difficult to quantify, the modeller, together with the domain expert, must
nevertheless decide what spread of properties is required in order to deliver the
objectives of the project: this is an essential aspect of modelling complex, socio-
technical ecosystems, for which a model of one conceptual type is unlikely to be
adequate in most situations. Third, as the co-design process via the translation
zone proceeds, the choices presented in the initial model will, typically, evolve,
thereby moving the model’s location within the triangle.

A model’s evolution during its construction can be seen as a sequence of
configurations of the three qualities, with the evolution being driven by the co-
design interaction of the stakeholders in the translation zone of Figure 3.

As an example of this, recent (as yet unpublished [12]) work focuses on mod-
elling the surge capacity of hospital emergency departments to help them prepare
for major incidents, when a large number of seriously-injured patients arrive in
a short amount of time. Building such a model requires the combined exper-
tise of modellers and medical professionals and results in a model with concep-
tual, mathematical, and executable components. From the medical side, detailed
knowledge of which procedures are needed by patients with different types of in-
juries and how teams of hospital staff with different skill sets are assembled
(and reassembled, as patient flows evolve) to treat them is required. Gathering
and using this information provide a good illustration of the translation zone
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and the way models change as they are constructed. Initially, largely conceptual
‘paper-based’ models were used in interviews with medical professionals, who
explained their strategies for assigning teams of staff to treat patients. These
were then codified initially into sets of rules and eventually embedded within
executable models of the hospital emergency department. These rules and mod-
els — all considered candidate models — were presented to medical staff and
evolved based on this feedback.

Some of these ideas will be illustrated in Section 5, where we consider a range
of security examples.

5 Modelling in Security

In the previous sections, we have described the modelling triangle theoretically,
and have explained how models move around the triangle during their construc-
tion.

In this section, we explore the modelling triangle in the concrete setting of
security, exploring where different types of security models are placed within the
triangle. We do this by looking at existing models published in recent security-
related conferences and placing them on the triangle. This has several purposes:
we want to get a sense of the types of models used in security, we want to
understand if there is a relationship between the intended purpose of a model
and its location on the triangle, and, lastly, we want to test the triangle approach.

5.1 Methodology

We select papers from five security conferences from 2020: BlackHat USA, NSPW|
ACSAC, WEIS, and Gamesec. We select these conferences as they cover a range
of topics and security traditions; we look at all the papers from each conference
in 2020. In total, we look at 212 research papers encompassing a range of security
topics: behavioral and security management, security policy, technical exploits,
machine learning, economics, and more.

For each paper, we want to: (1) determine whether or not it contains a model;
(2) understand the purpose and type of model; and (3) determine an appropri-
ate location on the triangle for the model. As a methodological basis, we use
a grounded theory approach. Grounded theory has two variants: one that fo-
cuses on the emergence of properties from the data coding process guided by a
theoretical understanding of the domain of study and another that denies the
need of any prior domain exploration. Kelle [28] illustrates both approaches.
Since we did perform a prior domain-exploration by analysing the main philo-
sophical positions regarding models and know the properties we are looking for
— conceptuality, executability, mathematicality — we adopt the first method
and perform the selective coding and classification processes with the properties
described above in mind.

We have chosen this study methodology for a number of reasons:
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1. Grounded theory is integrative as long as the coding process is consis-
tent. This is extremely important, since it allows the analysis of models
constructed using various methodologies. ‘According to Ralph, Birks, and
Chapman [42], grounded theory is ”methodologically dynamic” in the sense
that, rather than being a complete methodology, grounded theory provides
a means of constructing methods to better understand situations humans
find themselves in.’

2. Grounded theory provides ecological validity. This means that theory pro-
duced using this approach is representative of the underlying body of litera-
ture surveyed. Although not as powerful as when conducted through inter-
views with practitioners — since in that case additional questions about the
subject of study could have been asked — the novelty of the papers shows
the ‘state of the art’ in the security field at the moment.

3. Grounded theory maintains parsimony. Namely, in a situation where multi-
ple hypothesis exist about a certain phenomenon, the one with the smallest
amount of assumptions is preferred. This allows us to maintain a relatively
small number of properties, since we aim to provide practical and simple ex-
planations of complex phenomena by attempting to link those phenomena to
abstract constructs and hypothesizing relationships among those constructs.

4. Although employing both qualitative and quantitative techniques, the na-
ture of the analysis remains qualitative and facilitates the interpretation of
conceptual aspects of the models under study.

We followed the following process. First, we analysed every paper to decide
whether or not it contains a model, according to our definition from Section 1.
We used a broad understanding of ‘model’ to ensure we captured conceptual
as well as technical and formal models and as such were quite inclusive in the
papers we accept. For example, papers that construct and reason about a struc-
tured representation of the phenomenon under study, even if descriptive, were
considered models. Papers that did not include such a representation, such as
those focussed on problem solving or tool building in a very specific and mostly
technical focussed case were not included. Lastly, some papers included small
models used for explanatory purposes, such as showing where their work fits
within a system. These are also included in our analysis.

For the papers that contain models, we performed subjective coding focusing
on the model description, the techniques employed in the model construction,
the model purpose, and the topic. Since we wished to maintain some of the
grounded theory ethos, we did not use a pre-established coding scheme in this
step, and instead generated the codes as we went through the papers.

After that, we performed selective coding by linking the previously computed
codes with our three primary categories — conceptuality, executability, math-
ematicality. At this point, we derived the ‘triangle configuration’ of the model
under study, with the important note that we did not simply quantitatively anal-
yse the size of the resulted categories. Deciding the relevance of the underlying
codes with respect to the overall modelling goal remains a qualitative process
and therefore the constructed configuration is subjective.
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5.2 Findings

The intent of this study is to understand better the nature of the models em-
ployed in the information security field in 2020. Following the methodology de-
scribed above, we discovered that 67% (142) of the total 212 surveyed papers did
indeed employ models. The initial topic analysis and coding have produced 65
different topics that were further reduced to 35. For example, topic codes such
as ‘social behaviour’, ‘social engineering’, ‘community analysis’, ‘problem solv-
ing’ or ‘human oriented design’ were included in the ‘human oriented security’
category. Table 1 illustrates the most encountered five topics for models in each
conference, ranked by their total number of occurrences and having duplicates
removed. Subsequently, the most encountered topics were ‘attacks/exploits’ and
‘privacy’.

It is important to note that a model is not limited to a single topic: if one
specifically focuses on attacks that affect user privacy, it would be assigned as
having both the ‘attacks/exploits’ and ‘privacy’ topics. Also, the development
of models for the purpose of better understanding machine learning in general
can be seen as an interesting attempt at using descriptive models to understand
other models.

By analysing the model’s topic, goal, and construction procedure, we have
produced triangle configurations for each of the surveyed conferences, which can
be observed in Fig 4. These configurations largely correspond to the publicly
described conference tradition — for example, the models in Gamesec had a
tendency towards mathematicality — with an interesting aspect identified in
Blackhat: even though the models tackled many ‘attacks/exploits’ and ‘hard-
ware security’ aspects — as it can be seen in Table 1 — they are complemented
by models with a tendency towards conceptuality that attempted to explain
their functionality. Furthermore, we classified the models according to their con-
struction method and modelling goal into five categories.

1. Descriptive models: Models in this category are mainly constructed using
natural language descriptions, qualitative reasoning and sometimes graphs,
charts or other means of visual representation. They construct a subjective
representation of reality which can vary in complexity and can include both
qualitative and quantitative studies as a starting point. Their primary goal
is to simply describe or analyse phenomenons that are hard to quantify and
therefore focus on topics such as ‘human aspects of security’, ‘security man-
agement’, ‘philosophical aspects of security’ or ‘security policies’. However,
the analysis process has revealed that such models can be used also for de-
scribing other models, not necessary phenomenons directly. As illustrated in
Table 2 and Figure 5a, models in this category represented roughly 21% of
the total models encountered and had a strong tendency to be placed close
to the upper corner of the triangle because of their highly descriptive nature.

2. Simulation models: This category contains two different types of models
that have a common construction method — experimental simulations and
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practical demonstrations. They are comprised of interpretative executable
code, constructed manually by a developer and reflecting a human interpre-
tation of a certain phenomenon. With respect to their goal, they can either be
used for experimentation, such as simulation based models coming from the
dynamic systems tradition, attack demonstrations or enforcing qualitative
reasoning. They focus on topics such as ‘IoT’, ‘network security’, ‘software
security’, ‘operation systems emulation’, ‘malware’ or ‘attacks/exploits’ be-
cause the phenomenon under study can be quantified and represented using
graph-like structures. As illustrated in Table 2 and Figure 5b, models in this
category represented roughly 26% of the total models encountered — the
largest category — and were placed closer to the center of the triangle. They
did not manifest a higher tendency towards the left corner because the model
construction was manual and in some cases, the model was run a single time
to illustrate that a certain attack was possible.

Statistical models: Models in this category are constructed using exe-
cutable code that includes statistical algorithms, data science techniques,
natural language processing, and even some traditional machine learning
techniques not including deep learning. They construct a complex, stochas-
tic interpretation of reality, usually employed for better understanding or
making predictions about a phenomenon that is either extremely complex
or would take too much time or analysis power to be understood individually.
Furthermore, their most relevant aspect is that their method of producing
results can be traced back and understood, with the important note that the
results do not directly lead to some automated real world consequence, but
require additional interpretation. The most relevant topics to this category
were ‘privacy’, ‘security management’, ‘economics’ and ‘human oriented se-
curity’. As shown in Table 2, statistical models represent almost 20% of the
total surveyed models and Figure 5e depicts them as having balanced trian-
gle configurations, with some slight tendencies towards either conceptuality
or mathematicality based on the nature of their input data. For example, a
model employing natural language processing and principal component anal-
ysis techniques over qualitative data obtained from interviews was placed
closer to the conceptuality corner, whereas a Bayesian analysis of security
investments was placed closer to the mathematicality corner.

Deep Learning models: Models in this category are constructed using
deep learning and neural networks approaches and they construct a repre-
sentation of reality that is similarly to statistical models, with the primary
difference being the difficulty of interpreting or justifying the produced re-
sults. Because of this, they tend to be used for automated problem solving in
areas such as offensive security or threat detection. Their triangle placement
can be similar to that of simulation models, as Fig 5d with the important
difference that they do not manifest the slight conceptuality tendency since
their phenomenon interpretation is particularly hard to understand. How-
ever, they do manifest the strongest tendency towards executability, and rep-
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resent almost 20% of the total models surveyed. However, taken into account
the current focus on the development of artificial intelligence explainability
methods, we could observe a significant amount of models moving from the
deep learning category to the statistical models one.

5. Game-theoretic models: This category is primarily comprised of math-
ematical models constructing game-theoretic interpretations of phenomena.
Some of the observed models did produce analytical solutions for solving
the represented games, whereas others were simply used for problem setting.
In the second case, other types of model were used to produce the desired
strategies in the game setting. They were usually employed in areas such
as ‘network security’, ‘risk’ or ‘attacks/exploits’, but mostly provided the
theoretical setting for another type of model to interpret. We observed the
interpretation they produced was used as a setting for either deep learning
or simulation models. For example, a game theory model was used to for-
malise the concept of cyber deception as a multi-party stochastic game and
then a simulation model was used to illustrate a successful winning strategy.
However, another approach was to construct a deep reinforcement learning
model of the involved parties and execute it in multiple epochs such that
the actors could develop increasingly better strategies while learning from
their own mistakes. As 2 and Fig 5c illustrate, these models can have both
balanced triangle configurations and heavy tendencies towards mathemati-
cality and represent roughly 13% of the models surveyed.

Moreover, some additional observations can be drawn when analysing the
average and complete model types placement on the triangle in figures 6a and
6b. For example, the conceptual, deep learning and game-theoretic models can
be seen as having the strongest manifested tendencies towards the triangle’s
corners. Subsequently, the simulation and statistics models manifested the most
balanced configurations for two different reasons: simulation models had the
most open approach and used internal sub-models that would have been assessed
differently in isolation — for example a stochastic module for agent behaviour
or an economics module for determining the risk of an actor’s action — but
produced balanced overall models, whereas statistical models used extremely
varied input data that introduced an additional degree of conceptuality to the
mathematical methods used.

However, Fig 6b clearly shows that the model categories are not entirely
delimited by their triangle configuration: for example, models in Kaczmarczyck
et al. [27], Noor et al. [34] and Xiao et al. [48] have similar, central triangle
placements even though they are members of the deep learning, statistical and
respectively simulation categories. Furthermore, even though their topics are also
different, namely automated malware family identification, illustrating a mech-
anism for key distribution on automotive networks and analysing the forensic
validity of approximated audit logs, they all obtain a more balanced configura-
tion by introducing qualitative reasoning about their inner workings.
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We believe that this balancing process leads to models that are easier to un-
derstand, and therefore that become more suitable for security decision-making,
but that requires further work to be validated. However, at the end of this ex-
ploration of the information security domain, we can draw several conclusions.

1. Models are an important tool for information security today.

2. Usually, models remain focussed on very specific problems.

3. Some models directly interact with or complement other models. This raises
the question of how should models communicate with one another.

4. Some meta-modelling attempts exist, but only at theoretical level. For ex-
ample, highly mathematical or conceptual models of machine learning algo-
rithms.

5. Simulation models seem to provide a good base for constructing models with
components of different types.

Blackhat|Nspw|ACSAC|WEIS|GameSec|Total

Attacks/Exploits 19 1 12 2 3 37
Privacy 5 3 17 1 2 28
TIoT 5 0 14 1 3 23
Human oriented security 7 5 5 3 2 22
Network Security 7 0 8 1 6 22
Economics 1 0 4 12 3 20
Policy 6 2 7 2 1 18
Hardware Security 10 0 3 0 4 17
Software Security 5 2 8 0 1 16
Machine Learning (as topic) |6 2 6 0 1 15
Theoretical Security 0 0 2 1 10 13
Systems architecture 6 0 2 0 4 12
Risk 2 0 4 4 1 11
Management 2 0 3 5 0 10
Game Theory 1 0 0 0 8 9

Table 1: Top 5 topics per conference

|Blackhat|Nspw|ACSAC|WEIS|GameSec|Total per type

Simulation Models 8 1 25 2 1 37
Descriptive Models 21 6 1 2 0 30
Statistical Models 2 0 15 11 1 29
Deep Learning Models|6 1 15 0 6 28
Game Theory Models |0 0 0 0 18 18
Total per conference (41 8 58 15 26 142

Table 2: Model types per conference
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6 Implications for Validation

In the previous sections, we have focussed on constructing an integrated mod-
elling framework for characterizing models according to three primary properties
— conceptuality, mathematicality, and executability — that are directly linked
to the relevant philosophical and modelling literature. We have described how
these properties change during the model-construction cycle and have attempted
to use this approach to explore a part of the present-day space of information
security models. In the sequel, we seek to understand some of the implications
that our vision might have on the ongoing debate regarding the validation of
models, especially in the case of modelling large-scale ecosystems.

The validation of a model, at a general level, consists in the deployment of
a set of processes that is used for testing that the model performs according
to its original goal. As expressed in [6], models can be separated into at least
three categories according to their primary goal: modelling for the purpose of
improving a certain performance indicator of a system, modelling for testing a
scientific theory, and modelling for the sake of understanding or learning about
a certain system.

However, it is not the goal alone that determines the type of model to be
constructed, but also the nature of the system or phenomenon under study and
the available input data types and their collection process. These elements —
the goal, the available data and the nature of the phenomenon under study —
corroborated with the underlying philosophical implications illustrated in Sec-
tion 2 — have led to the development of different and sometimes opposing model
validation methodologies in disparate domains of science. To illustrate some of
these differences, we present some arguments from the economics, management
science, and system dynamics literature that are of great importance for an
information security context.

Starting with the management science domain, it can easily be observed that
a singular position with respect to validation does not exist. For example, Naylor
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et. al. [37] argue for a validation process that combines rationalist, empiricist and
positive economics [21], but has a primary empiricist assumption: ‘A simulation
model, the validity of which has not been ascertained by empirical observation,
may prove to be of interest for expository or pedagogical purposes, but such a
model contributes nothing to the understanding of the system being simulated’
[37]. Their position is furthermore aligning to the logical empiricist ethos by
the utilisation of a truth based criterion for validation. Oppositely, work such
as Mitroff [36] place validation under the philosophical spectrum of experimen-
talism and focus on the relativity of the philosophy of science position held by
the modeller. As Mitroff [36] states, ‘a researcher’s philosophy of science is as
characteristic of him as it is of the phenomena he typically studies’ and the
same elements chosen as relevant for the construction of the model should be
the same ones used for validation. A more practical position, directly related to
the need of validating large scale models in a reasonable amount of time can
be seen in House and McLeod [24]. There, the authors follow Friedman’s princi-
ple [21] that assumptions can serve as scientific hypotheses even if ‘unrealistic’
as long as they can produce significant predictions and focus on the utility of
a model rather than its relationship with truth. In the authors’ own words ‘A
businessman cannot afford to discount a “hoped-for” infinite return as the result
of an unknown expenditure for a near perfect model today. Our business world
exists in the present, so the businessman will be satisfied to buy a somewhat less
than a perfect model for a known cost.’

The same heterogeneity of positions with respect to validation can be seen
in the economics literature. As already described, Friedman’s position with re-
spect to the need of validation for scientific hypothesis is of great importance.
In the author’s view, scientific assumptions do not need to be verified since they
can only be validated by their own predictive power. Since models can be con-
sidered a preliminary step in the formation of scientific theories — see Grim
and Rescher [22] for a more detailed discussion — Friedman’s assumption has
been translated to models. A subtle distinction from this criterion of predictive
power can be seen in the work of Cyert and Grunberg [16]. Following Popper’s
falsification thesis [40], the authors believe that a model’s predictive power does
not necessary validate its position as scientific truth. Therefore modelers should
rather focus on constructing models with high descriptive power. Nevertheless,
different variations of these criteria can be found in comprehensive literature
overviews such as Dhrymes et al. [17] or Radzicki [41]. Of a particular relevance
is the conclusion of Dhrymes et al.: ‘validation becomes a problem-dependent
or decision-dependent process, differing from case to case as the proposed use of
the model under consideration changes’ [17].

Last but not least, we discuss some of the validation approaches employed in
the system dynamics literature. Compared to management science or economics,
the system dynamics literature is much more comprehensive in its attempts to
tackle philosophical aspects of model validation. An important starting point
is the work of Forrester [20], which can be seen as a relativist take on system
dynamic validation that was primarily done in a logical empiricist fashion be-
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fore him. Forrester makes the claim that ‘the validity of a model should not be
separated from the validity and the feasibility of its goals’ [20], and since the
feasibility of the goals cannot be determined through a formal process, valida-
tion becomes ‘a problem of social discussion’ [7]. Furthermore, following a thesis
similar to Kuhn’s [31], he argues that ‘Any “objective” model validation proce-
dure rests eventually at some lower level on a judgment or faith that either the
procedure or its goals are acceptable without any objective proof.” [20] and that
qualitative model validation techniques must be used in practice, given the fact
that ‘a preponderant amount of human knowledge is in non quantitative for’ [20].
However, Forrester’s position was contested by works such as Ansoff & Slevin
[3] or Nordhaus [38] that deem it unscientific on a logical empiricist basis and
ask questions such as ‘Does it represent the judgmental approach of a particular
scientist?’ [3]. Furthermore, Ansoff & Slevin [3] point out that Forrester does not
clearly states a clear criterion of validity or a specific degree of correspondence
between the model and the represented system. Additional details about this
philosophical debate in the system dynamics field can be found in [2], [9], [10],
[44], [43] or [45].

As seen above, the fields of economics, management science and system dy-
namics have been encountering this philosophical debate on model validation
for a long period of time, and yet a singular integrative approach has not been
designed. What is more interesting is that economic, management science and
system dynamics models have been consistently used in information security
without the necessary debate about validation.

The field of information security manifests, as shown in Section 5, the di-
versity of encompassing all these different types of models, with respect to both
goals and method. For example, Yeo et al. [49] construct a system dynamics
model for the sake of reducing the negative impact of security policies on the
effectiveness of operations in ports, conceptual work such as Inglesant and Sasse
[25] complemented by the modelling in Beautement et al. [8] has infirmed the
theory that cyclic password ageing techniques lead to increased password secu-
rity and the executable, language based model of Jachim et al. [26] can be used
for understanding the behaviour changes of Twitter trolls during the Covid-19
pandemic.

Although a handful of examples, these are already enough to manifest differ-
ent approaches on validation: [49] uses a system dynamics paradigm and both
structural and behavior oriented validation techniques, [8] construct a model
that can be placed in between the economics and management science traditions
but admits the need of further validation stemming from the subjectivity of the
input data obtained from interviews and [26] uses traditional machine learning
validation metrics such as k-fold cross-validation.

However, none of the above examples are truly about ecosystems. One can
imagine the need of constructing an information security model that combines
multiple of the above described directions. Efforts in producing a practical, mod-
ular modelling approach that is both open to qualitative interpretation and at
the same time constructed on a rigorous mathematical foundation can be seen in
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[13] or [14]. The relevant aspect of the method presented is that sub modules can
be constructed using significantly different philosophical assumptions as long as
the produced output is standardised by the use of interfaces.

Nevertheless, validating a model with sub-modules built according to dif-
ferent philosophic assumptions will not be a trivial task. Given the researched
streams of literature concerning validation, it is a plausible assumption to make
that such a process will not be unitary in nature. Therefore, the model descrip-
tion offered by the framework described in Section 3 and Section 4 becomes
a road-map for the selection of validation techniques on a case by case basis
— [44], [6] and [32] offer comprehensive overviews of practical validation tests.
Therefore, our position is close to Dhrymes et al. [17], with the addition that the
model description given by our framework can be used for guiding the selection
of validation tests. In a certain sense, Mingers’ ‘multimethodology’ [35] idea is
being translated to the issues of validation. Additionally, this can facilitate the
construction of validation loops from the early model design and implementation
phases, thus bringing the advantages of an agile testing methodology. Further-
more, our belief is that the analysis procedure required to construct the model
description and the process of choosing validation tests according to it can in-
crease the believability in the usefulness of the constructed model, by design.

However, the modularity offered by this method comes with a need of using
both sub-module validation and overall model validation. The selection of valida-
tion tests for sub-modules is guided by the description offered by the above pre-
sented framework. When considering overall validation, more experimentation
with the framework is required for an attempt to derive a criterion. Nonetheless,
our belief is that such a criterion should take into account both descriptive power
and believability and cannot be purely based on logical empiricism.

7 Concluding discussion

As the world has evolved to become ever more dependent on complex ecosystems
of large interacting systems, it has become ever more important to be able to
reason rigorously about the design, construction, and behaviour not only of in-
dividual systems — which may include aspects related to all of people, process,
and technology — but also of their assembly into ecosystems. In such complex
situations, it is inevitable that no one type of model — such as mathematical
models of dynamical systems, logical models of languages, or discrete event sim-
ulation models — will be sufficient to describe all of the aspects of ecosystems
about which rigorous reasoning is required.

We have proposed here a meta-theoretical framework, the ‘triangle frame-
work’, within which different types of models may be categorized and their
interactions, especially during the construction of models, can be understood.
Specifically, we have identifed three qualities of models — conceptuality, math-
ematicality, and executability — and have explained how in practice models
typically have all of these qualities to varying extents. We have conducted an
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empirical study of the models deployed in a range of security conference papers
and have classified these models according to the framework.

We have also discussed how the triangle framework supports an analysis of
how models can be co-designed by their various stakeholders within an identified
translation zone within the process of model construction. We have explored how
our ideas play out in the concrete setting of models that we find in range of se-
curity papers, drawn from a diverse collection of security conferences. Lastly, we
have started the much needed debate on validation methods that the information
security field has been avoiding for far too long.

Much further work is suggested, including on the following;:

- the structure of the triangle and its component models;

- the evolution of models within the triangle as they are developed, especially
in respect of the roles of the stakeholders;

- the structure of the translation zone, again, especially in respect of the roles
of the stakeholders; and

- empirical studies of the co-design process in the context of the triangle and
the roles of the stakeholders.

Moreover, as we have already discussed, we hope to produce practical results
such as correlations between a model’s goals, the types of knowledge it employs,
the means of design in its translation zone, its triangle configuration, and its
success of implementation and deployment in the real world.

The results of these studies should be expected to inform a reformulation of
the triangle, the co-design process, and their integration.
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