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Abstract. The use of logical systems for problem-solving may be as diverse

as in proving theorems in mathematics or in figuring out how to meet up
with a friend. In either case, the problem solving activity is captured by

the search for an argument, broadly conceived as a certificate for a solution

to the problem. Crucially, for such a certificate to be a solution, it has be
valid, and what makes it valid is that they are well-constructed according to

a notion of inference for the underlying logical system. We provide a general

framework uniformly describing the use of logic as a mathematics of reasoning
in the above sense. We use proof-theoretic validity in the Dummett-Prawitz

tradition to define validity of arguments, and use the theory of tactical proof
to relate arguments, inference, and search.

1. Introduction

The definition of a system of logic may be given proof-theoretically as a collection
of rules of inference that, when composed in specified ways, determine proofs; that
is, formal constructions that establish that a conclusion is a consequence of some
assumptions or axioms. In other words, proofs are objects regulated by rules of a
system that determine the inference of a conclusion from premisses that have been
established:

Established Premiss1 . . . Established Premissk
Conclusion

w�
We call this proof-theoretic formulation deductive logic.

Deductive logic is useful as a way of defining what proofs are, but it does not re-
flect either how logic is typically used in practical reasoning problems or the method
by which proofs are found. In practice, proofs are typically constructed by starting
with a desired, or putative, conclusion and applying the rules of inference back-
ward. Read from conclusion to premisses, the rules are sometimes called reduction
operators, and denoted

Sufficient Premiss1 . . . Sufficient Premissk
Putative Conclusion

~w
We call the constructions in a system of reduction operators reductions. Crucially,
the space of reductions contains proofs and objects that are not proofs — specifi-
cally, reductions that cannot be continued in a way that eventually reaches a proof.
This proof-theoretic formulation has been dubbed reductive logic [33].

Reductive logic more closely resemble what mathematicians do when proving
theorems and, more generally, how people solve problems using formal representa-
tions. It is also the paradigm on logic used for diverse applications in informatics
and other systems-oriented sciences, including, but not limited to, areas such as
program and systems verification, natural language processing, and knowledge rep-
resentation. Indeed, it is the reductive perspective that underpins the use of logic
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in proof assistants — for example, LCF, HOL, Isabelle, Coq, Mizar, Twelf, and
more [45]. More generally, it is the paradigm capturing the deployment of logic
in the context of capturing human reasoning, which is discussed extensively in, for
example, the work of Kowalski [23] and Bundy [6].

There are semantics of proofs, which give abstract accounts of object that certify
a statement as being valid in a logic, with a prime example given by the categorical
treatment of the BHK interpretation of intuitionistic logic. But, importantly, re-
ductive logic is concerned not only with what proofs but more generally with things
that may be continued to form proofs through reduction. The semantics of proofs
do not treat this bigger space of objects, but these are central in the use of logic as
a mathematics of reasoning. Therefore, given the widespread application of reduc-
tive logic as a reasoning technology, we require a semantic framework explicating
the meaning of reductions in the context of reasoning. Reciprocally, we require
a general framework stating what valid reasoning is relative to a certain problem
domain. Such a framework would provide a basis for understanding and analyzing
the aforementioned wide-ranging applications of logic in practical reasoning tasks,
which is analogous to the use of semantics for programming languages.

A general framework supporting the mechanization of reductive logic is the the-
ory of tactical proof introduced by Milner [28]. While little developed mathemati-
cally, the theory is sufficiently general to encompass as diverse reasoning activities
as proving a formula in a formal system and seeking to meet a friend before noon on
Saturday. It does not concern finding the best way to reason about a goal (e.g., min-
imizing the prospect of failure), though these things are important, instead it makes
precise how concepts used during reasoning — such as ‘goal,’ ‘strategy,’ ‘achieve-
ment,’ ‘failure,’ etc. —relate to one another. Crucially, the theory of tactical proof
is a very general meta-theoretic framework that subsumes specific procedures such
as focusing, uniform proof-search, resolution, matrix methods, and so on. It is
tactical proof that delivers systematically the various proof-assistants mentioned
above.

In this paper, we use the theory of tactical proof to give a general account of the
relationship between arguments — that is, abstract entities representing reasoning
— and inference in a logic. In so doing, we provide a semantic framework for
logic in practical reasoning problems, as witnessed by tactical proof. Importantly,
we do not say that this framework is how one should go about using logic as a
mathematics of reasoning, but rather we aim to describe how logic is typically used
in the literature. We justify the framework by some coherence theorems relating
arguments, reductive reasoning (witnessed by tactics), and inference, and then give
a series of examples where the framework is implicit in the literature. While tactical
proof connects inference and arguments, the semantics of reasoning is given in the
paradigm of proof-theoretic semantics (P-tS).

Introduced by Dummett [13] (based on results by Prawitz [32]) and developed
by Schroeder-Heister [35, 37], proof-theoretic validity is a semantics of derivations
(i.e., objects constructed inductively using rules of a formal system) in Gentzen’s
NJ [40]. A derivation in NJ is (proof-theoretically) valid if and only if every closure
— the result of substituting its open assumption for proofs — of it reduces á la
Prawitz [32] to a normal proof. The priority of normal proofs is justified according
to the principle that the introduction rules of Gentzen’s NJ act as definitions of
the logical constants they introduce — see Schroeder-Heister [37] for a discussion.
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The details are given in Section 3. In this paper, we generalize the notion of proof-
theoretic validity to accommodate the full potential of the theory of tactical proof.

The philosophy on which P-tS is based is inferentialism, the view that rules
of inference confer meaning to expressions — see Brandom [4]). This background
renders P-tS the appropriate way (i.e., in contrast to, for example, model-theoretic
semantics) for understanding reductive logic and reasoning because it ensures that
the meaning of a reduction depends on the accepted use within the activity of
reasoning.

The paper begins in Section 2 with a terse but complete introduction to the setup
of logic needed in this this paper. It continues with a definition of proof-theoretic
validity for intuitionistic propositional logic, which motivates later work. Following
this, we present the theory of tactical proof and discuss its application to logic.
In Section 5, we briefly explain what semantics of proofs have so far achieved and
the way in which they are limited for understanding the use of logic as a reasoning
technology. In Section 6, we propose a semantic framework that consider the entire
space of reductions, which proceeds through a general account of proof-theoretic
validity. We justify the framework by a correctness theorem and through a series
of examples from the literature in which it is implicit. The paper concludes in
Section 7 with a summary of results.

2. Logic as Consequence

In this paper, we study logics generally, which is to say that instead of considering
a specific logic, we develop a general framework uniformly applicable across logics.
This requires us first to define what we mean by a logic. Doing this is controversial.
We choose to err on the side of being over-encompassing, so almost any logic in the
literature is readily captured.

Moreover, we also require a notion of inference. There are many paradigms we
may consider, such as inter alia, natural deduction systems, axiomatic systems (i.e.,
Hilbert calculi), and tableaux systems. The sequent calculus format is sufficiently
expressive to capture all these and is, therefore, the paradigm used in this paper.

2.1. Consequence. A logic is captured by a relation called consequence over data
structures called sequents. We will insist on nothing about these structures, and
we do not impose any particular properties of the consequence relation. Addi-
tional restrictions are often helpful in practice but are not required for the general
framework presented herein.

Fix a set S of data-structures called sequents.

Definition 1 (Consequence). A consequence relation is a predicate on a set of
sequents.

We think of consequence as a judgement asserting that a certain sequent is valid
in the logic. Typically, such as in Example 2, sequents can be thought of as tuples
of data structures so that we may refer to consequence as a relation between these
structures.

Example 2 (Intuitionistic Sequents). Fix a set of atomic propositions P. The set
of formulas F (over P) is constructed by the following grammar:

φ ::= p ∈ P | φ ∨ φ | φ ∧ φ | φ→ φ | ⊥
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An intuitionistic sequent is a pair Γ . φ in which Γ is a list of formulas and φ is a
formula.

We have presented a definition of consequence that is, perhaps, overly generous.
Nonetheless, this definition means we readily capture any logic within the litera-
ture. Refining the definition is challenging because logics may have quite diverse
data-structures, ranging from the familiar list/multiset/set contexts of classical and
intuitionistic logics, to the structurally complex bunched contexts of relevance log-
ics, and beyond, rendering refinements quite subtle in order to not be arbitrarily
exclusive. The more substantial point is that we do not require such refinement.
Hence, restricting our notion of consequence according to some ideological principle
would be excessive and needless. Crucially, the definition of consequence coheres
naturally with the level of generality offered by the theory of tactical proof (see
Section 4), which is the framework we use in this paper to capture the deployment
of logic as a reasoning technology.

It is all very well to have a logic. It remains to define what reasoning steps the
logic supports. In this paper, what we mean by reasoning step is inference in a
calculus for consequence.

2.2. Sequent Calculi. Taking the perspective on logic in Section 2, an inference is
the process of beginning with some sequents — thought of as a putative consequence
of a logic — and ending with another sequent — thought of as being entailed,
according to our logic, by the original sequents. These inferences are understood
as instances of rules.

Definition 3 (Rule). A rule is a relation r on sequents.

That r(s, s1, . . . , sn) obtains may be denoted by inference schemas:

s1 . . . sn
s

r

The sequent s is said to be conclusion and the sequents s1, . . . , sn the premisses.
A rule that has no premisses (i.e., a predicate on sequents) is called an axiom-rule.

With this notion of rule, we give the standard treatment of sequent calculi proofs
— see, for example, Troestra and Schwichtenberg [42].

Definition 4 (Calculus). A calculus is a set of rules containing at least one axiom-
rule.

Definition 5 (Proof). Let L be a calculus. The set of L-proofs is the set of rooted
trees of sequents inductively constructed as follows:

Base Case. If there is an axiom-rule a ∈ L such that a(s), then the tree of just
the node s is an L-proof.

Induction Step. If P1, . . . ,Pn are L-proofs with roots s1, . . . , sn, respectively,
and there is a sequent s and a rule r ∈ L such that r(s, s1, . . . ., sn) obtains, then the
argument P with root s and immediate sub-trees P1, . . . ,Pn is a proof.

The notion of proof from a calculus induces a notion of provability from the
calculus, which is a consequence relation:

Definition 6 (Provability). A sequent is L-provable iff there is a L-proof that con-
cludes it.
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Γ .∆
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Γ′ .∆′

Γ .∆
e

Γ . φ Γ . ψ

Γ . φ ∧ ψ
∧R

φ,Γ .∆

φ ∧ ψ,Γ .∆
∧1L

ψ,Γ .∆

φ ∧ ψ,Γ .∆
∧2L

φ,Γ .∅
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¬R

φ,Γ .∆ ψ,Γ .∆

φ ∨ ψ,Γ .∆
∨L

Γ . φ

Γ . φ ∨ ψ ∨
1
R

Γ . ψ

Γ . φ ∨ ψ ∨
2
R

Γ . φ

¬φ,Γ .∅
¬L

φ,Γ . ψ

Γ . φ→ ψ
→R

Γ1 . φ ψ,Γ2 .∆

φ→ ψ,Γ1,Γ2 .∆
→L

φ . φ
ax

Figure 1. System LJ

We say that a calculus L characterizes a logic when L-provability coincides with
the consequence relation of the logic. To be precise, this coincidence has two di-
rections: soundness and completeness. The calculus is sound for the logic when it
only proves the consequences of the logic, and it is complete when it can prove all
of the consequences of the logic.

Definition 7 (Soundness and Completeness). Let ` be a consequence relation and
L be a calculus.

- Calculus L is sound for ` iff, for any s ∈ S, if `L s, then ` s.
- Calculus L is complete for ` iff, for any s ∈ S, if ` s, then `L s.

Of course, several different calculi may characterize a logic, some of which may
differ substantially. One way to generate new calculi from old is by including rules
that are conservative over provability. Such rules are said to be admissible — that
is, r is admissible in L iff `L∪{r} is sound with respect to `L. More generally, a rule
can be admissible for a logic when it preserves validity in the logic — that is, that
is, r is admissible for ` iff, for any s, s1, ..., sn ∈ S, if r(s, s1, ..., sn) obtains and ` s1,
. . . , ` sn, then ` s. Observe that if L is sound for `, then it is necessarily the case
that all the rules in L are admissible for `.

Example 8 (Example 2 cont’d). Calculus LJ is given by the rules of Figure 1,
in which Γ and Γ′ are understood to be permutations of each other as lists. This
calculus characterizes intuitionistic logic (IPL) — that is, an intuitionistic sequent
Γ . φ is a consequence in IPL iff it is LJ-provable. Gentzen [40] proved that the
following rules is admissible for IPL:

∆ . φ φ,Γ . χ

∆,Γ . χ
cut

This concludes a terse but complete account of a general perspective of logic and
its proof-theoretic formulation as required in this paper.

Our position is that the objects constructed in various paradigms of argumenta-
tion (e.g., natural deduction, dialogue games, etc.) are meaningful precisely to the
extent that they represent reasoning in a logic. In this paper, we take ‘reasoning in
a logic’ that to mean proof in a sequent calculus characterizing a logic. For exam-
ple, consider the tree-like constructions from Gentzen’s NJ (see Section 3), which
are supposed to represent intuitionistic reasoning — indeed, we may say that they
are a natural representation of reasoning (see, for example, Tennant [41]). We take
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the view that what makes them valid in intuitionistic logic is their relationship to
intuitionistic consequence, as captured by the relationship to Gentzen’s LJ. We use
the theory of tactical proof to make this idea of the relationship between reasoning
and logic precise.

3. Proof-theoretic Validity for Intuitionistic Propositional Logic

Central to this paper is the paradigm of proof-theoretic semantics (P-tS). We de-
fer an explanation of the relevance of P-tS to the problem of this paper to Section 5,
and presently give an account of it for intuitionistic propositional logic (IPL). This
will facilitate the more general discussion of the subject below and motivate later
work.

3.0.1. Intuitionistic Propositional Logic. We begin by fixing the terminology for
IPL as used in this paper; this extends the setup of Example 2 and Example 8.

Definition 9 (IPL Formula). Fix a set of atomic propositions P. The set of IPL
formulas F (over P) is constructed by the following grammar:

φ ::= p ∈ P | φ ∨ φ | φ ∧ φ | φ→ φ | ⊥

We use the following abbreviations:

Γ̂ :=
∧
φ∈Γ

φ ¬φ := φ→ ⊥

Definition 10 (IPL Sequent). An IPL sequent is a pair Γ . φ in which Γ is a set
of formulas and φ is a formula.

We will characterize the consequence relation for IPL by proof in Gentzen’s
NJ [40]. To this end, we introduce some terminology for the paradigm of argument
known as natural deduction.

Definition 11 (Natural Deduction Argument). A natural deduction argument is a
rooted tree of formulas in which some (possibly no) leaves are marked as discharged.

An argument is open if it has undischarged assumptions; otherwise, it is closed.

In this section we will simply say argument to mean natural deduction argument.
The leaves of an argument are its assumptions, the root is its conclusion. That A
has open assumptions Γ, closed assumptions ∆, and conclusion φ may be denoted
as follows:

A
φ

Γ, [∆]
A

Γ, [∆]
A
φ

Intuitively, an argument A with open assumptions Γ and conclusion φ, is an
argument for the sequent Γ . φ. We call this sequent the consequence of the argu-
ment. We use a system of natural deduction to define a class of arguments whose
consequence precisely coincide with consequences of IPL.

A natural deduction system is given by rules governing the composition of ar-
guments. We follow the standard treatments (see, for example, van Dalen [44] or
Troelstra and Schwichtenberg [42]), doubtless already familiar.

Definition 12 (Natural Deduction System NJ). The natural deduction system NJ
is composed of the rules in Figure 2.
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φ ψ

φ ∧ ψ
∧I

φ ∧ ψ
φ
∧1E

φ ∧ ψ
ψ

[ψ]
φ

φ→ ψ
→I

⊥
φ
⊥E

φ

φ ∨ ψ ∨
1
I

ψ

φ ∨ ψ ∨
2
I

φ ∨ ψ
[φ]
χ

[ψ]
χ

χ ∨E
φ φ→ ψ

φ
→E

Figure 2. Calculus NJ

Definition 13 (NJ-Derivation). The set of NJ-derivations is defined inductively as
follows:

Base Case. If φ is a formula, then the one element tree φ is a NJ-derivation.
Inductive Step. Let r be a rule in NJ and D1, ...,Dn be NJ-derivations. If D

is an argument arising from applying r to D1, ...,Dn, then D is an NJ-derivation.

A closed NJ-derivation in a calculus is an NJ-proof. The existence of such proofs
characterizes IPL.

Proposition 14 (Gentzen [40]). There is an NJ-derivation of Γ . φ iff Γ ` φ.

To give an account of proof-theoretic validity for IPL in the Dummett-Prawitz
tradition, we require some auxiliary definitions.

The rules of NJ with subscripts I and E are the introduction rules (I-rules) and
elimination rules (E-rules), respectively.

Definition 15 (Detour). A detour in a derivation is a sub-derivation in which a
formula is obtained by an I-rule and is then the major premise of the corresponding
E-rule.

Example 16. The following is a detour for conjunction:

D1

φ

[φ]
D2

ψ

φ→ ψ
→I

ψ
→E

Definition 17 (Canonical Derivation). A derivation is canonical iff it contains no
detours.

Prawitz [32] proved that canonical NJ-proofs are complete for IPL. The argument
uses a reduction relation  that precisely eliminates detours; for example, detours
with implication are reduced as follows:

D1

φ

[φ]
D2

ψ

φ→ ψ
→I

ψ
→E

 

D1

φ
D2

ψ

The reflexive and transitive closure of  is denoted  ∗. This reduction relation is
normalizing and its normal forms are canonical derivations.

Proposition 18 (Prawitz [32]). There is a canonical NJ-derivation of Γ . φ iff
Γ ` φ.
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This establishes the relevant syntax and proof theory required for IPL in this
paper. In following subsection, we present proof-theoretic validity for natural de-
duction.

3.0.2. Proof-theoretic Validity. It was Dummett [13] who first realized the philo-
sophical significance of the normalization result by Prawitz [32] (i.e., Proposi-
tion 18). This begins the development of proof-theoretic validity as a semantics
of arguments. We follow the account given by Schroeder-Heister [35].

When introducing natural deduction, Gentzen [40] offered the following remarks:

The introductions represent, as it were, the ‘definitions’ of the sym-
bols concerned, and the eliminations are no more, in the final anal-
ysis, than the consequences of these definitions. This fact may be
expressed as follows: In eliminating a symbol, we may use the for-
mula with whose terminal symbol we are dealing only ‘in the sense
afforded it by the introduction of that symbol’.

The following corollary of the normalization result (Proposition 18) supports this
view:

Corollary 19. There is a canonical NJ-derivation of Γ . φ concluding with an
introduction rule iff Γ ` φ.

Together, the above suggest an inferentialist semantics of arguments according
to the following principals:

- canonical proofs are a priori valid
- closed derivations are valid as a consequence of them reducing to canonical

proofs
- open derivations are regarded as placeholders for closed derivations accord-

ing to their possible closures.

What we are calling proof-theoretic validity is a specific realization of this se-
mantic brief. To definite it, we must define what is meant by the closure of a
derivation.

The idea is that we substitute open assumptions for closed derivations. However,
an argument may contain open assumptions that are not consequences of IPL and
thus (by Proposition 14) do not admit NJ-proofs. How are such things closed?
Therefore, to form the semantics, we consider validity in possible extensions of NJ
that can handle such assumptions.

If the open assumptions of an argument are complex formulas, then one may use
rules of NJ to produce something simpler. What remains to consider is the case
where the open assumptions are atomic propositions. In this case, their meaning is
supplied by an atomic base.

Definition 20 (Base). A base is a finite set of rules over atomic propositions,

p1 ... pn
c

The premisses of the rule may be empty; that is, the rule may be an axiom.

The atomic rules are not necessarily closed under substitution. To see how they
confer meaning to atomic propositions, consider the statement ‘Tammy is a vixen’.
What does it mean? Intuitively, it means, somehow, that ‘Tammy is a vixen’ and
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‘Tammy is a fox’. In the current setup, this is to say that we have base containing
the following rules:

Tammy is a fox Tammy is female

Tammy is a vixen

Tammy is a vixen

Tammy is female

Tammy is a vixen

Tammy is a fox

This is because the sense of ‘and’ in the above heuristic is made precise by the
inferential semantics of ∧, defined by the rules ∧I, ∧1E, and ∧2E, which are emulated
by the above rules.

Definition 21 (Derivation in a Base). Let B be a base. The set of B-derivations
is inductively defined as follows:

Base Case. If p ∈ P is an atom, then the one element tree consisting of p is a
B-derivation.

Inductive Step. Let r be a rule in B and D1, ...,Dn be B-derivations. If D is
an argument arising from applying r to D1, ...,Dn, then D is a B-derivation.

Relative to a base (including the empty base) one has a simple proof-theoretic
semantics for the formulas of IPL: a formula is valid (relative to the base) iff it
admits a valid argument (relative to the base).

Definition 22 (Validity Natural Deduciton Argument). Let B be a base. The
B-valid of an argument A is inductively defined as follows:

- A is a closed B-derivation
- A is a closed canonical NJ∪B-derivation whose immediate sub-derivations
A1, ...An are B-valid

- A is a closed non-canonical NJ ∪ B-derivation that reduces to a B-valid
canonical derivation A′

- A is an open derivation and, for every C ⊇ B, any extension of A by
C -valid arguments of the assumptions C1...., Cn is a C -valid argument.

An argument is valid iff it is B-valid for every base B.

Schroeder-Heister [35] has relativized this definition to the atomic system con-
sidered and to the set of justifications (proof reductions) considered. In Section 6.1,
we go further and relativize it to the notion of argument too.

This concludes the definition of proof-theoretic validity for IPL. In the next
section, we explain what it has to do with reasoning in IPL and the rôle of tactics
in relating natural deduction to consequence for the logic.

Intuitively, the rules of NJ are instructions for constructing arguments. When
reasoning in NJ, we begin with an argument for a putative conclusion and use the
rules of NJ backwards to construct a closed NJ-derivation. What makes each rea-
soning step valid is that an admissible rules witness it. The relationship suggested
here between NJ- and LJ-proofs justifying this is, of course, well-known — see, for
example, Gentzen [40]. It may be summarized as saying that constructions in NJ
are intuitionistic proofs and constructions in LJ are constructions of intuitionistic
proofs. We use the theory of tactical proof to make this idea precise.

4. The Theory of Tactical Proof

The theory of tactical proof is a meta-theoretic framework supporting reduc-
tive logic and its mechanization. Indeed, tactical proof is sufficiently general to
encompass diverse reasoning activities at various levels of formality, which may be
as widely different as proving a theorem in a mathematical theory, seeking to win
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at chess, and arranging to meet a friend before noon on Saturday. The point is
that all such reasoning activities, different in domain and formality, can be articu-
lated in terms of a uniform language that a user may express insight into reasoning
methods and delegate routine, but error-prone, work to a machine. In the words of
Milner [28]:

Here it is a matter of taste whether the human prover wishes to see
this performance done by the machine, in all its frequently repulsive
detail, or wishes only to see the highlights, or is merely content to
let the machine announce the result (a theorem!).

Following Milner [28], we introduce the theory at the full level of generality at
first and then concentrate on it in the context of proof-search in logics.

4.1. Tactics and Tacticals. One has two classes of prime entities: goals and
events. The two classes are carried by the sets GOALS and EVENTS, respec-
tively. The goals and events are related by a notion of achievement ∝⊆ GOALS×
EVENTS that determines what events witness what goals. The idea is that an
event E achieves goal G as it satisfies the description that the goal has desig-
nated.Heuristically, an event achieves a goal when it satisfies the description that
the goal has designated. For example, the goal G that Alice and Bob meet before
noon on Saturday is achieved by the event E is that Alice and Bob meet under the
clock at Waterloo station at 11:53 on Saturday.

We take reasoning about a goal as the process of replacing it with new goals
that suffice to produce the original. In the nomenclature of reductive logic, such
replacements are captured by reduction operators, which may be taken as a partial
function from goals to lists of goals:

ρ : GOALS⇀ list(GOALS)

The goals produced by applying a reduction operator to a given goal are said to be
subgoals.

What renders a reduction from a goal to a list of subgoals valid is that any events
possibly witnessing the subgoals yield an event possibly witnessing the original goal.
This justification is witnessed by a procedure,

π : list(EVENTS) ⇀ EVENTS

Returning to the example above concerning Alice and Bob, the goal G may be
reduced to the following sub-goals:

G1 : Alice arrives under the clock at Waterloo Station before noon on Saturday
G2 : Bob arrives under the clock at Waterloo Station before noon on Saturday.

This reduction is justified by the fact that G1 and G2 are achieved by the following
events, respectively, which yield E through the procedure of waiting :

E1 : Alice arrives at Waterloo Station at 11:57 on Saturday
E2 : Bob arrives at Waterloo Station at 11:53 on Saturday.

Thus, one step of reasoning amounts to applying a (partial) mapping takings
goals to subgoals together with a procedure,

τ : G 7→ 〈[G1, . . . , Gn], π〉
These mappings are called tactics. According to the above discussion, we have the
following notion of validity:
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Definition 23 (Valid Tactic). Let ∝ be a notion of achievement. A tactic τ is
∝-valid iff, for any G,G1, . . . , Gn ∈ GOALS and E ,E1, . . . ,En ∈ EVENTS, if τ :
G 7→ 〈[G1, . . . , Gn], π〉 and E := π(E1, . . . ,En), and Ei ∝ Gi obtains for 1 ≤ i ≤ n,
then E ∝ G obtains.

Of course, a goal typically requires several iterations of reasoning of the above
form such that subgoals are resolved into further subgoals, and so on. For example,
suppose Alice starts from Andover and Bob starts from Birmingham; then, to
reason about G, one requires many component tactics that collectively bridge the
distance both physical and temporal — for instance, one may have the subgoal G′1
for G1 that ‘Bob takes the tube to Waterloo Station from Euston Station’, which
is witnessed by the event ‘Bob takes the 11:46 southbound Norther Line service
from Euston to Waterloo on Saturday.’ Hence, we require a notion of composition
of tactics.

A composition of tactics is called a tactical. A tactical is valid when it preserves
the validity of the tactics it combines:

Definition 24 (Valid Tactical). A tactical is valid iff it preserves the validity of
tactics; that is, if ◦ is a tactical and τ1,. . . ,τn are ∝-valid, then ◦(τ1, . . . , τn) are
∝-valid.

The foregoing is a complete account of tactical reasoning as introduced by Mil-
ner [28]. To be precise in the semantics presented in this paper, we supplement the
above with some additional definitions.

Definition 25 (Tactical System). A tactical system T is a collection of tactics and
tacticals that are valid relative to some notion of achievement.

We have opted to present the theory in its full generality. In the sequel, we apply
it to the context of the use of logic as a reasoning technology. We follow the account
in Milner [28], which is the basis of many automated reasoning technologies using
logic, such as the proof assistants mentioned in Section 1.

Let ` be the consequence relation for IPL — see Section 3. We have the following
setup:

- a goal is a sequent Γ . φ in which Γ is a list of formulas and φ is a formula
- an event is a consequence ∆ ` ψ
- the achievement relation ∝ is as follows:

(∆ . ψ) ∝ (Γ . φ) iff φ = ψ and ∆ v Γ and ∆ ` ψ

(We write ∆ v Γ to denote that the set of elements in ∆ is a subset of the
set of elements of Γ)

In this context, a tactic is valid iff it corresponds to an admissible rule for IPL.
For example, in NJ the ∧I-rule determines the tactic τ∧I

which has the following
components:

Γ . φ Γ . ψ

Γ . φ ∧ ψ ⇑︸ ︷︷ ︸
reduction operator

∆1 ` φ ∆2 ` ψ
∆1,∆2 ` φ ∧ ψ

⇓︸ ︷︷ ︸
procedure

This concludes the overview of the theory of tactical proof as used in this paper.
What has not been given here is an account of exactly what argument is constructed
by a tactic, which we defer to Section 6.
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4.2. Tactical Proof and Intuitionistic Propositional Logic. Having presented
the theory of tactics as a metatheoretical framework in which one studies reason-
ing — the construction of arguments — in its full generality, it is informative to
consider how it applies in the concrete setting of natural deduction for IPL.

In Section 4.1, we witnessed the following tactic corresponding to the ∧I rule:

τ∧ : (Γ . φ ∧ ψ) 7→ 〈[(Γ . φ), (Γ . ψ)],∧R〉

The analogous treatment of →I yields the following:

τ→ : (Γ . φ→ ψ) 7→ 〈[(φ,Γ . ψ)],→R〉

These individual reasoning steps are combined with a tactical # that corresponds
to the sequential application of rules in natural deduction:

τ∧ # τ→ :
(
Γ . χ ∧ (φ→ ψ)

)
7→ 〈[(Γ . χ), (φ,Γ . ψ)],∧R ⊗→R〉

The procedure ∧R ⊗→R is the product of the procedures for ∧R and →R.
We have thus related natural deduction and consequence using tactics. And

yet, something is missing in this setup. What argument does τ∧ # τ→ witness? This
question demands an interpretation of tactics as arguments, understood as abstract
entities such as natural deduction arguments.

Moreover, the justification for proof-theoretic validity came from the idea that
the introduction rules are definitional. That is all very well, but it isn’t the only
choice. Depending on various desiderata, we are left with various answers to the
question, what is a valid argument? By framing the relationship between arguments
and consequence in the theory of tactical proof, we can define various notions of
validity on arguments according to the priority, by fiat, of some sequent calculus
characterizing consequence and some transformations of arguments. Furthermore,
there is nothing about tactics that pertains, in particular, to natural deduction, so
the notion of argument herein can be generalized to other paradigms too. These
generalizations deliver the semantic framework for logic as a reasoning technology
that this paper is about.

4.3. Tactical Proof and Logic. The theory of tactical proof is an engine relating
the search for arguments. It is, essentially, a system of reduction operators that are
step-wise justified by rules in a sequent calculus. That is how we regard them in
this paper. The application of tactics drives the computation of arguments, which
is to say the search for arguments, and a sequent calculus (in the sense of Section 2)
provides procedures. As such, supplying a sequent calculus amounts to supplying
a notion of inference against which the computation of an argument is justified.
This is captured in the semantic framework of this paper in Section 6

The dichotomy between proof and search actually predates the tactical proof.
The components were historically called analysis and synthesis, respectively — see
Pólya [31] for a general discussion of this study for mathematical practice. In
analysis, one repeatedly asks from what conditions could the desired result, which
is to say goal, be obtained; during synthesis, one derives from the analysis a solution
to the problem.

In this paper, the shift from analysis to synthesis (i.e., the shift from comput-
ing subgoals to using procedures, from reduction to deduction) is captured by a
synthesizer.
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Definition 26 (Synthesizer). Let L be a sequent calculus and T be tactical system
with achievement ∝ whose events are L-sequents. The achievement ∝ is an L-
synthesizer for T iff the procedures of T are the rules of L.

An example of a synthesizer is offered at the end of Section 4.1. Here the
reduction operators correspond to NJ rules, and the procedures correspond to LJ
rules.

In the same way that tactics are implicit in much of the literature on logic,
synthesizers also appear implicitly anywhere one considers the inferential content
within arguments in a certain space. The running case of natural deduction for IPL
discussed above is a key example; we give some others in Section 6.3.

5. The Semantics of Proofs

On the one hand, we have structures called arguments that represent evidence for
a consequence of a logic — for example, natural deduction proofs à la Gentzen [40],
à la Fitch [14], à la Lemmon [25], and so on. On the other hand, we have a formal
account of inference supplied by fixing a sequent calculus for a logic. We use the
theory of tactical proof introduced by Milner [28] to relate the two. We desire
a framework able to explain these connections because reductive logic is central
within the practice of logic as a mathematics of reasoning, especially within system-
oriented science (e.g., in the use of logic for program and systems verification,
natural language processing, and proof assistants). Hence, we require a semantics
of proofs to determine valid arguments and to consider their construction.

Of course, semantics of proofs for particular logics have been very substantially
developed for particular logics. Intuitionism, as defined by Brouwer [5], is the view
that an argument is valid when it provides sufficient evidence for its conclusion.
This defines intuitionistic logic (IL). A consequence is that IL differs from classical
logic by rejecting tertium non datur — that is, the ability to assert a proposition
for the rejection of its negation — as such an inference does not constitute suf-
ficient evidence for its conclusion. Heyting [18] and Kolmogorov [22] provided a
semantics for intuitionistic proof, which captures the evidential character of intu-
itionism, called the Brouwer-Heyting-Kolmogorov (BHK) interpretation of IL. It
is now the standard explanation of the logic — see, for example, van Atten [43].
Proof-theoretic validity (P-tV) for IPL (see Section 3) is, of course, strongly related
to BHK — see Schroeder-Heister [36].

The propositions-as-types correspondence — see Howard [20] — gives an stan-
dard way of instantiating the denotation of proofs in the BHK interpretation of
intuitionistic propositional logic (IPL) as terms in the simply-typed λ-calculus.
Technically, the setup can be sketched as follows: a judgement that Φ is an NJ-
proof of the sequent φ1, . . . , φk . φ corresponds to a typing judgement

x1 : A1, . . . , xk : Ak `M(x1, . . . , xk) : A

where the Ais are types corresponding to the φis, the xis correspond to placeholders
for proofs of the φis, the λ-term M(x1, . . . , xk) corresponds to Φ, and the type A
corresponds to φ.

Lambek [24] gave a more abstract account by showing that simply-typed λ-
calculus is the internal language of cartesian closed categories (CCCs), thereby
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giving a categorical semantics of proofs for IPL. In this setup, a morphism

Jφ1K× . . .× JφkK
JΦK−→ JφK

in a CCC (where × denotes cartesian product) that interprets the NJ-proof Φ of
φ1, . . . , φk . φ also interprets the term M , where the JφiKs interpret also the Ais
and JφK also interprets A.

To generalize to full IL (and beyond), Seely [38] modified this categorical setup
and introduced hyperdoctrines — indexed categories of CCCs with coproducts over
a base with finite products. Martin-Löf [26] gave a formulae-as-types correspon-
dence for predicate logic using dependent type theory. Barendregt [3] gave a sys-
tematic treatment of type systems and the propositions-as-types correspondence.
A categorical treatment of dependent types came with Cartmell [7] — see also, for
examples among many, work by Streicher [39], Pavlović [30], Jacobs [21], and Hof-
mann [19]. In total, this gives a semantic account of proof for first- and higher-order
predicate intuitionistic logic based on the BHK interpretation.

That is all very well as explaining what a proof is for IL, but the space of objects
considered when finding an argument also contains things that are not proofs and
cannot be continued to form proofs. Constructed by backward inference, we call
these objects reductions. In IPL, an example of a reduction that fails to be a proof
is an NJ-derivation whose open assumptions are not theorems of IPL. While such an
argument is well-constructed according to intuitionism, it is not valid since it is not
closed and cannot be closed (i.e., the open assumptions cannot be substituted for
proofs). We desire a semantics of proofs able to treat the entire space of reductions
as the latter are central to the use of logic within practical reasoning. In Section 3,
we saw that proof-theoretic semantics could account for such arguments, which are
beyond the scope of BHK. Pym and Ritter [33] have provided a general semantics of
reductive logic in the context of classical and intuitionistic logic through polynomial
categories; that is, by extending the categories in which arrows denote proofs for
a logic by additional arrows that supply ‘proofs’ for propositions that do not have
proofs but appear during reduction.

This paper aims to provide a uniform framework for describing the relationship
between argument, reduction, and inference. Taking the view that what makes an
argument valid for a logic is that it respects a notion of inference for that logic,
we subscribe to inferentialism (see Brandom [4]). We generalize proof-theoretic
validity such that we can handle an arbitrary notion of argument (i.e., not just
natural deduction à la Gentzen [40]) for an arbitrary logic (i.e., not just IPL). This
is the subject of Section 6.

6. Proof-theoretic Semantics and Tactical Proof

In this section, we address the problems raised in Section 5 and present a uniform
framework relating arguments, tactical proof (reductive reasoning), and sequent
calculi (inference) based on inferentialism. We do this through a generalized view
of proof-theoretic validity (see Section 3), using the theory of tactical proof as the
engine of computation through which inference and argument are related. This
work is intended to be descriptive in that it is a uniform metatheoretical platform
witnessing how these things are typically related in the literature.

6.1. Proof-theoretic Validity, generalized. We begin with a space of arguments
A. Within this space, there is a subset P ⊆ A arguments that are a priori valid;
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these are called canonical proofs. These canonical proofs for the basis on which the
validity of all the other arguments is derived.

A given argument A ∈ A may represent another argument A′ ∈ A in some
way. For example, in the setting of natural deduction (Section 3), an argument
containing a detour can be thought of as representing a natural deduction argument
arising reduction à la Prawtiz [32]. Thus, we take the space of arguments to be
equipped with some justification operators of the form j : A ⇀ A that transform
one argument to another.

It may be that arguments are left open in some sense. The idea is that the
argument contains all the suasive content they require but have left something
unsaid, which can be arbitrarily filled in. Returning to the case of natural deduction
(Section 3), this was the state of open derivations, which have left the justification of
their open assumptions unstated (by the very fact of them being open). Therefore,
we further equip the space of arguments with closure operators of the form c : A⇀
A, mapping arguments to arguments.

To summarize:

Definition 27 (Argument Space). An argument space is a tuple A := 〈A,P,J , C〉
in which A is the set of arguments, P is the set of proofs, J is the set of justification
operators j : A⇀ A, and C is the set of closure operators c : A⇀ A.

A notion of proof-theoretic validity precisely analogous to the treatment of IPL
in Section 3 follows immediately:

Definition 28 (Proof-theoretic Validity). Let A := 〈A,P,J , C〉 be an argument
space. An argument A is A-valid iff one of the following holds:

- it is a canonical proof — A ∈ P;
- there is j ∈ J such that j(A) is A-valid;
- for any c ∈ C, the closure c(A) is A-valid.

Example 29 (Proof-theoretic Validity for IPL). Consider the arguments space
N := 〈A,D,P,J , C〉 in which the components are as follows:

A - Comprises natural deduction arguments
P - Comprises canonical NJ-proofs
J - Comprises the reduction transformations by Prawitz [32]
C - Comprises maps that substitute open assumptions for derivation in a base.

The validity condition from Definition 28 instantiated to N is precisely Defini-
tion 22.

Of course, the point of the generalization of proof-theoretic validity in this section
is that other examples may be captured too.

Example 30 (Proof-search Games). Consider the game-semantics of proof-search
for IPL by Pym and Ritter [34]; see also work by Miller and Saurin [27]. Succinctly,
a (partial) strategy is a (partial) function that extends plays — sequences of moves
— that end on an opponent move, which satisfy certain conditions. Each strategy
represents an attempt at proof-search in LJ. A winning strategy (i.e., a strategy
satisfying certain conditions) represent a successful proof-search — that is, proof-
search that actually finds an LJ-proof — but it may include backtracking. We have
the argument space S = 〈A,D,P,J , C〉 in which the components are as follows:

A - Arguments are partial strategies
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P - Canonical proofs are winning strategies without backtracking
J - The justification operators collapse backtracking sections of strategies
C - The closure operators extends partial strategies to total strategies.

The validity condition from Definition 28 instantiated to L renders a strategy valid
when it represents an LJ-proof.

Suppose one has a logic and a notion of argument for that logic; for example,
IPL and natural deduction. The setup of argument spaces does not yet allow us
to relate the two. As in the case-study of Section 3, we require a function that
determines what sequents are witness by a certain argument in the space.

Definition 31 (Ergo). Let A be an argument space with arguments A. An ergo is
a map from arguments to sequents, e : A→ S.

Definition 32 (Logical Argument Space). A logical argument space (LAS) is a
pair L := 〈A, e〉 in which A is an argument space and e is an ergo.

Observe that it is the use of an ergo that turns proof-theoretic validity from
a semantics of proofs into a semantics in terms of proofs. In Section 3, we saw
that a natural deduction argument with open assumptions Γ and conclusion φ has
the consequence Γ . φ; this describes an ergo. The notion of validity of arguments
renders a LAS a characterize of some logic; namely, the logic whose consequence
relation consists of all those sequents admitting valid arguments. Given a LAS
L = 〈A, e〉, we write `L to denote the consequence relation of the logic it induces
— that is,

`L s iff there is an A-valid argument A such that e(A) = s

Recall that we take logics to be characterized by sequent calculi, generally con-
ceived (see Section 2). The relationship between the proof-theoretic semantics and
the logic is then captured by standard soundness and completeness conditions:

Definition 33 (Soundness and Completeness of Sequent Calculi). Let L be a LAS
and let L be a sequent calculus over sequents S.

- The calculus L is sound for L iff, for any sequent s ∈ S, if `L s, then `L s.
- The calculus L is complete for L iff for any sequent s ∈ S, if `L s, then
`L s.

Indeed, Definition 33 is just an instance of Definition 7 by taking the logic in the
latter as the one defined by the LAS.

This relates logics to argument spaces in general. It remains to relate tactics
to argument spaces. This addresses the question at the end of Section 4.2, what
argument does a tactic represent? We have an interpretation from a system of
tactics to a space of arguments.

Definition 34 (Interpretation). Call a functions from A to LIST(A) an abstract
reduction operator (ARO).

An interpretation of is a function J−K that maps goals to arguments, tactics
to AROs, and tacticals to functions from AROs to AROs, such that τ : G 7→
〈[G1, ..., Gn], π〉, then JτK(JGK) 7→ [JG1K, ..., JGnK].

Example 35. Let τ∧ and τ→ and # be as in Section 4.2. To this setup we add the
interpretation J−K which answers the questions of what arguments are represented
by what tactics.
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The interpretation J−K acts on goals (i.e., IPL sequents) Γ.φ by mapping them to
the natural deduction argument consisting of nodes of formulas from Γ going directly
to a node for φ. It maps tactics to their actions on arguments: For example,

Jτ→K(φ→ ψ) 7→ φ
ψ

The tactical # interprets composition of rules, respecting also discharge. Thus, we
have the overall composite action:

Jτ∧ # τ→K(χ ∧ (φ→ ψ)) = χ

[φ]
ψ

φ→ ψ

χ ∧ (φ→ ψ)

This completes the framework of this paper. We have arguments and logics and
tactics, which are pairwise connected in simple, intuitive ways, faithful to mathe-
matical practices, but presented generally. In the next section, we demonstrate that
validity, tactical proof, and consequence are coherent throughout the framework.

6.2. The Correctness Theorems. We have thus presented a tripartite frame-
work for logic as a mathematics of reasoning: arguments, sequent calculi, and
tactics. Above we defined their relationships. It is summarized in the following
diagram:

L Validity

Soundness & Completeness

T
��

J−K

BB

oo
σ

// L
��

e

[[

Provability

Heuristically, tactics T represent (through an interpretation J−K) the constructions
of arguments L that assert (through an ergo e) sequents of a logic and that the
reasoning steps involved are justified (through a synthesizer σ) by the rules of a
sequent calculus L.

By fixing a sequent calculus, we declare a notion of inference for a logic. This
notion of inference justifies a system of tactics if there is a synthesizer. The following
coherence result captures this:

Theorem 36. Let L be a sequent calculus; let L = 〈A, e〉 be a LAS; and let T be a
tactical system with achievement ∝. Let J−K be an interpretation of T in A and let
∝ satisfy the following coherence condition:

eJGK ∝ G

Let be ∝ be an L-synthesizer for T, then the application of a tactic corresponds
precisely to an inference in L — that is, if JτK : JGK 7→ [JG1K, ..., JGnK], then there
is an L-rule witnessing the following:

eJG1K . . . eJGnK
eJGK

π

Proof. By Definition 34, if τ : G 7→ 〈[G1, ..., Gn], π〉, then JτK : JGK 7→ [JG1K, ..., JGnK].
By the coherence condition: π : [eJG1K, ..., eJGnK] 7→ eJGK. Since ∝ is a synthesizer,
the result follows from Definition 26. �
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Corollary 37. Calculus L is sound for L.

Proof. Theorem 36 states that every rule in L is admissible for the logic induced
by A, which is the soundness condition in Definition 33. �

In this way, a sequent calculus characterizes inference, and a tactical system
characterizes the construction of arguments. This means that the notion of inference
for a logic can be as rough or as refined as one desires. For example, one may take
the trivial sequent calculus for a consequence relation, which has the consequence
of the logic as axioms, but then one admits no tactics. Importantly, one has no way
of constructing arguments. Though permissible, this situation is quite degenerate.
Instead, one may use some notion of argument to inform what inferences are to be
permitted.

We have thus shown that the tripartite framework captured by tactical proof and
proof-theoretic semantics is coherent in the sense that arguments, sequent calculi,
and tactics have the expected relationship. As stated in Section 1, this framework
does not arise from doxastic considerations of what these things should be but
rather from how they are used in practice. We have so far been led by a heuristic
account and now justify it by a series of examples drawn from the literature on
logic.

6.3. Examples of the Framework. We provide a brief survey of how various
proof-search activities in the literature are instances of the framework in this paper.
This survey is far from complete and left at a quite high level as it only illustrates the
descriptive power of the framework we have presented — namely, the relationship
between proof-theoretic validity of arguments and inference as witnessed through
the reductive logic carried by tactical proof. Of course, in addition, there are also
the examples of natural deduction (Example 29) dialogue games (Example 30) in
Section 6.1.

Example 38 (Focused Systems). The problem of proof-search is handling the var-
ious choices involved, such as, inter alia, the choice of a rule to use and the choice
of an instance of that rule. This problem motivates the concept of focused proof-
search, introduced by Andreoli [1], where these things are largely determined. We
review a typical approach (see, for example, Chaudhuri [9, 8] and Gheorghiu and
Marin [16]) for studying focusing.

One begins a sequent calculus L for which one wishes to establish the focusing
property (i.e., that the class of focused proofs is complete for the logic). One in-
troduces an augmented version FL, called the focused system, which arises from
enriching the original calculus with control structures and introducing cut. In the
framework of this paper, we can describe the situation as follows: one has a system
of tactics T that is validated by L (i.e., one has a synthesizer from T to L) such
that a tactic is interpreted as an FL-proof. The space of arguments contains all
FL-proofs, and the justification operators are given by cut-reduction. This is set up
such that the canonical proofs then represent focused L-proofs.

Example 39 (Hyper-sequent Calculi). Reasoning in substructural and modal logics
is often difficult because they seemingly do not admit analytic sequent calculi that
do not have extra-logical structures (e.g., labels). Many such logics do admit hyper-
sequent calculi; that is, calculi over finite multisets of sequents — see, for example,
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Baaz et al. [2] and Ciabattoni et al. [10]. We can use the framework of this paper
to describe the relationship of hyper-sequent calculi to the logic.

One has a system of tactics T of goals that are hyper-sequents such that the
tactics are interpreted as reductions in the hyper-sequent calculus. These tactics
are valid relative to a notion of achievement defined as follows: a consequence of
the logic achieves a hyper-seqeunt iff it is among the sequents in the multiset.

Example 40 (Analytic Tableaux). Analytic tableaux give a computationally useful
paradigm of proof in logic. It has been extensively treated for modal logic (see, for
example, Fitting and Mendelsohn [15]) and has been used to provide a uniform and
modular proof theory for the family of bunched logics (see Docherty and Pym [12,
11]). Typically, these systems make use of prefixed signed formulas. The framework
of this paper can be used to describe the relationship between a tableaux system and
a logic.

One has a system of tactics T whose goals are prefix signed formulas and whose
tactics represent expansion rules for the system, and tacticals are sequential com-
position. These tactics are interpreted in the space of arguments containing the
tableaux, in which the canonical proofs are closed tableaux, possibly satisfying a
particular expansion scheme. The tactical system is valid relative to a notion of
inference supplied by a relational sequent calculus in the form of Negri [29] and
Gheorghiu and Pym [17].

7. Conclusion

Typically, when logics are used as a reasoning technology in informatics and
other systems-oriented sciences — for example, the use of logic in program and
system verification, natural language processing, knowledge representation, and
proof assistants — it is through the paradigm of reductive logic. That is, when
logic is employed in these fields, it is by reducing a putative conclusion to some
sufficient premisses (as opposed to the deductive view in which a logic is understood
as stating that a conclusion may be inferred from some established premisses).

We declare a notion of inference by fixing a sequent calculus characterizing that
logic. What one constructs during backward reasoning is a certificate which we
call an argument. In general, these arguments are abstract mathematical entities
with dynamic and static properties that can be studied in their own right. How is
backward reasoning and inference in the logic related? This question is, of course,
answered in each use-case; for example, in Section 3, we saw how (the construction
of) a natural deduction argument can be understood in terms of a sequent calculus.
In this paper, we provide a meta-theoretic framework that uniformly describes
these answers, thereby showing how different deployments of logic as a reasoning
tool exercise the same underlying principles.

The essential criterion for whatever notion of validity one has for a space of argu-
ments is that the valid arguments are precisely those that certify the consequences
of the logic. However, we are concerned about constructing arguments according
to backward inference. From this perspective, an argument is valid because it re-
spects a notion of inference for the logic. We use proof-theoretic semantics in the
Dummett-Prawitz tradition, grounded in inferentialism, to give a formal definition
of soundness and completeness that captures these ideas.

The theory of tactical proof introduced by Milner [28] is a widely deployed met-
alogical framework supporting reductive logic. We use tactics to represent the
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construction of arguments. Specifically, each tactics represents a backward infer-
ence step and is interpreted as an argument. A tactic is valid (in a sense given by
Milner) precisely when they respect the sequent calculus characterizing the logic
in question. This way, tactical proof formally and generally relates arguments and
inferences within reductive logic.

In summary, we have a tripartite framework for describing the use of logic as
a reasoning tool: there are arguments, sequent calculi, and tactics, and they are
related through various validity conditions. This descriptive framework is correct
in the sense that these validity conditions, which arise independently according to
how the aspects typically relate to one another, cohere. Its descriptive power is
illustrated by a series of seemingly disparate examples that are represented uni-
formly.

Within the framework, we can express other semantics of reductive logic it (e.g.,
the game semantics for proof-search in IPL — see Example 30), but it remains
to conduct such a study in general. Moreover, proof-search arises from reductive
logic by introducing control structures that determine what reduction is made at
what time. While the framework can witness specific control structures in specific
systems (see, for example, the treatment of focused systems in Example 38), can it
give an abstract account of what control is? These questions remain to be studied.
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