
J. Gutierrez, F. Mogavero, A. Murano, and M. Wooldridge (Eds.):
3rd International Workshop on Strategic Reasoning 2015 (SR15)

Substructural modal logic for
optimal resource allocation

Gabrielle Anderson
University College London, UK

gabrielle.anderson@ucl.ac.uk

David Pym
University College London, UK

d.pym@ucl.ac.uk

We introduce a substructural modal logic for reasoning about (optimal) resource allocation
in models of distributed systems. The underlying logic is a variant of the modal logic of
bunched implications, and based on the same resource semantics, which is itself closely
related to concurrent separation logic. By considering notions of cost, strategy, and utility,
we are able to formulate characterizations of Pareto optimality, best responses, and Nash
equilibrium within resource semantics.

1 Introduction

Mathematical modelling and simulation modelling are fundamental tools of engineering, sci-
ence, and social sciences such as economics, and provide decision-support tools in management.
The components of distributed systems (as described, e.g., in [9]) are typically modelled using
various algebraic structures for the structural components — location, resource, and process —
and probability distributions to represent stochastic interactions with the environment. A key as-
pect of modelling distributed systems is resource allocation. For example, when many processes
execute concurrently, they compete for resources.

A common desire of system designers, managers, and users is to determine, if possible, the
optimal allocation of resources required in order to solve a specific problem or deliver a specific
service. The notion of optimality of resource allocation is a central topic in economics, where
game theory plays a significant role. For all elementary notions from economics required for
this short paper, including ideas from utility theory and game theory, a suitable source is [20].

Building on a mathematical systems and security modelling framework — described in,
for example, [8, 6, 7], which builds on ideas in [2] and which has been widely deployed (e.g.,
[15, 1, 5, 3, 4]) — we sketch the development of a systems modelling framework that provides
a theory of (optimal) resource allocation.

The key systems components of our resource semantics-based framework (which in turn
builds on BI and its resource semantics [17, 18, 10, 8, 6]) are the following: environment (within
which the system resides), locations (the architecture of the system), resources (that are ma-
nipulated — e.g., consumed, created, moved — by the system), and processes (that operate
the system and deliver services). We integrate these components into an algebra of locations,
resources, and processes that is defined by an operational semantics [8, 7] with a judgement
of the form L,R,E a→ L′,R′,E ′ in which the process E evolves by action a, using resources R
at locations L, to become the process E ′, able to evolve further using the resources R′ at lo-
cations L′. A key component of this operational semantics is a (partial) modification function,

2 Substructural modal logic for optimal resource allocation

µ : Actions×Resources×Locations ⇀ Resources×Locations, that specifies the effects of ac-
tions on resources and locations.

Properties of systems, including optimality properties, can be expressed logically. Specif-
ically, we make use of a substructural modal logic [8, 7] that is naturally associated with the
process algebra above in the Hennessy–Milner sense [12, 16, 8] — that is, it is defined by a
(truth-functional) satisfaction relation of the form L,R,E |= φ , for logical formulae φ — with
transitions between worlds defined by the operational semantics.

For the purposes of this paper, however, we make two simplifications. First, we elide loca-
tions, which can be coded in terms of resources if necessary. Second, we neglect the structure
of processes, using modification functions to describe the effects of actions on processes. Thus
we are able to define a logic with a satisfaction relation between resource states R and formulae
φ (i.e., R |= φ) in which the meaning of formulae involving action modalities, such as 〈a〉φ , is
given by transitions as specified by µ(a,R).

To this logic we add, in Section 4, a simple account of utility, building on simple notions
of strategy and cost that we introduce in Section 3. Then, in Section 4, we consider a range of
examples about resource allocation and optimality, including Pareto optimality, best responses,
and Nash equilibrium. We begin by introducing, in Section 2, resource semantics.

2 Resource semantics and modal logic for systems modelling

We present our resource model and semantics, along with its key technical properties. We define
resources, actions, and an operational semantics for resources. We define our notion of bisimu-
lation, and note that resource composition forms a congruence with respect to the bisimulation
relation. We sketch a modal logic, and describe how it can be used for systems modelling.

First, we introduce our notion of resource, following [8, 7].

Definition 1 (Resource monoid). A resource monoid is a structure R = (R,◦,e) with carrier set
R, commutative partial binary operation ◦ : R×R ⇀ R, and unit e ∈ R.

We assume a commutative monoid, Act, of actions, freely generated from a set of atomic
actions. The actions correspond to the events of the system.

Definition 2 (Actions). Let Act be the free commutative monoid formed by combinations of
atomic actions, with operation · and unit 1. Let ab denote a ·b.

We set up a function that describes how actions transform resources.

Definition 3 (Modification function). A modification function is a partial function µ : Act×R⇀
R such that, for all resources R,S ∈ R and actions a,b,c ∈ Act:
• If µ(a,R), µ(b,S), and R ◦ S are all defined, then µ(a,R) ◦ µ(b,S) and µ(ab,R ◦ S) are

both defined, and µ(ab,R◦S) = µ(a,R)◦µ(b,S) holds;
• If R◦S and µ(c,R◦S) are defined, then there exist a,b∈Act such that c = ab, and µ(a,R)

and µ(b,S) are both defined;
• µ(1,R) = R.
If µ(a,R) is defined, then we say that action a is defined on resource R. We can use the par-

tiality of the resource monoid, along with the modification function, to model straightforwardly
key examples in systems modelling [8, 7], such as the following:

G. Anderson, D. Pym 3

Example 4 (Semaphores). Suppose a resource monoid ({s,e},◦,e), where s ◦ s is undefined.
Let a be an action. We define a modification function µ such that µ(a,s) = s. Note that µ

is undefined for any values that are neither specified explicitly nor required by properties of
Definition 3. We then have that, for all resources R ∈ R, µ(aa,R) is not defined. The resource s
acts like a semaphore, in that only one access action a can be performed at any given time.

From a resource monoid, action monoid, and modification function, we derive a transition
relation. If the modification function is defined for an action a on a resource R, and µ(a,R) = S,
then we say that there exists a transition R a−→ S, and that S is a successor of R. A notion of
bisimulation between resources is defined in the standard way.

Definition 5 (Bisimulation). A bisimulation is a relation R such that, for all RR S, then, for all
actions a ∈ Act,

• if R a−→ R′, then there exists S′ such that S a−→ S′ and R′R S′, and

• if S a−→ S′, then there exists R′ such that R a−→ R′ and R′R S′.

Let ∼⊆ R×R be the union of all bisimulations. The union of any two bisimulations is also
a bisimulation. Hence ∼ is well defined, and a bisimulation. In this simple setting, bisimulation
equivalence is the same as trace equivalence, but that is not generally true in the more general
location-resource-process framework, of which this is an example.

We can now obtain a key property: that bisimulation is a congruence; that is, an equivalence
relation that is respected by the composition operator.

Lemma 6 (Bisimulation congruence). The relation ∼ on resources is a congruence for the
operation ◦: if R1 ∼ S1, R2 ∼ S2, and R1 ◦R2 and S1 ◦S2 are defined, then R1 ◦R2 ∼ S1 ◦S2.

Proof. A straightforward argument, similar to many others.

We can use a substructural modal logic of resources to reason about our models (of dis-
tributed systems). The logic freely combines classical propositional logic with action modalities,
in the style of Hennessy–Milner logic [12, 8] or dynamic logic [11], and with BI’s multiplica-
tives [17]. Worlds are given by the resources R of a resource monoid. The classical connectives
are defined with respect to a fixed world in the usual way: R |=⊥ never, R |= φ1∨φ2 iff R |= φ1 or
R |= φ2, and R |= ¬φ iff R 6|= φ , with satisfying truth >= ¬⊥ and conjunction satisfying φ1∧φ2
= ¬(¬φ1∨¬φ2), so that, in its resulting semantics, a resource R is shared by the conjuncts.

Transitions between worlds, used to define the action modalities, are given by modifications:

R |= 〈a〉φ iff there exists R a→ R′ such that R′ |= φ

giving the possible truth of φ after the action a (with necessity satisfying [a]φ = ¬〈a〉¬φ).
The substructural connectives — key to the analysis of resource usage in BI [17, 18, 10]

and Separation Logic [13, 19], including the Frame Rule, where the specific resource semantics
of a program’s stack/heap is analysed — use the monoidal structure of resources to separate
properties of different parts of a given model:

R |= φ1 ∗φ2 iff there exist R1 and R2, where R∼ R1 ◦R2, such that R1 |= φ1 and R2 |= φ2

4 Substructural modal logic for optimal resource allocation

with the corresponding implication, −−∗, given as the right adjoint to ∗.
Recall Example 4 (semaphores). We can now formally state the property that the action

aa cannot be performed on each of the resources in the monoid. The formula φ = ¬(〈aa〉>)
denotes that there is no transition for the action aa. As µ(aa,e) and µ(aa,s) are not defined,
we have that e 6� 〈aa〉> and s 6� 〈aa〉>. We then straightforwardly have that e � φ and s � φ .
Note that, as e 6∼ s, the equivalence classes generated by ∼ are singleton sets, consisting of
each of the two resources. We can also state that, on each resource of the monoid, there is no
binary decomposition such that each of the two parts can perform an a action. This property
is represented by the formula ψ = ¬(〈a〉>∗ 〈a〉>). The only S and T such that e = S ◦T are
S = T = e. The only S and T such that s = S ◦T are S = s and T = e, or S = e and T = s. For
each of these possible binary decompositions, at least one of the two parts cannot perform an a
action, and hence at least one of the two parts does not satisfy 〈a〉>. Hence, e � ψ and s � ψ .

3 Strategies and cost

We address non-determinism in the transition systems generated by our resource semantics, as
introduced in the previous section. We introduce a notion of cost, that represents the prefer-
ences of an entity (or agent) in a system. We describe how to systematically determine the cost
associated with a resource. We conclude with a brief example.

The transition systems generated by our resource semantics can be non-deterministic, in the
sense that multiple actions can be defined on a given resource.

Example 7. Take a resource monoid ({0, . . . ,10} × {0, . . . ,10},◦,(0,0)), where (m1,m2) ◦
(n1,n2)=(m1+n1,m2+n2) only if m1 or m2 is 0 and n1 or n2 is 0 (and is undefined otherwise).
Suppose actions p and c. Let µ(p,(m,n))= (m,n+ 1), if n≤9, and µ(c,(m+ 1,n))= (m,n).
Then, for the resource (2,0), the actions p and c are both defined and, in the generated transition
system, there is non-determinism between the distinct, non-unit, actions, p and c.

When evolving such non-deterministic transition systems, it is necessary to have a method
to decide between possible options. A strategy can be used to determine, for a given resource,
which possible action is preferred.

Definition 8 (Strategies). A strategy is a total function σ : R→ Act such that, for all resources
R,S ∈ R, if R∼ S, then σ(R) = σ(S) and µ(σ(R),R) and µ(σ(R),S) are defined.

Example 9. We can define a strategy to resolve the non-determinism we saw in Example 7. Let
σ be a function such that, if 1 ≤ m, then σ((m,n)) = c, and σ((m,n)) = p, otherwise. This
strategy chooses the c action, whenever possible, and chooses the p action otherwise.

The resource semantics approach to distributed systems modelling abstracts away from the
entities that make decisions, and their mechanisms for doing so. A mechanism for resolving
choices can be re-introduced into the models through strategies: it does not, however, represent
the goals and interests of the entities making the choices. We can model the decision-making-
entities’ preferences through the use of a map from actions to the rationals. These numbers are
interpreted as measures of an agent’s level of happiness in the given states [20].

G. Anderson, D. Pym 5

Definition 10 (Action payoff function). An action payoff function is a partial function v : Act ⇀
Q s.t. v(1)=0 and, for all a,b∈Act, if v(a) and v(b) are defined, then v(ab)=v(a)+v(b).

Note that it is possible to have that v(ab) is defined, but that v(a) and v(b) are not defined
(c.f., Example 18). We use different action payoff functions to represent the preferences of
different decision-making entities. Fix an action payoff function v, a strategy σ , and let δ be
some rational number in the open interval (0,1). We can then straightforwardly extended the
notion of preference over actions to preferences over resources.

Definition 11 (Resource payoff function). A resource payoff function is a partial function
uv,σ ,δ : R ⇀Q such that

uv,σ ,δ (R) =
{

v(a)+δ ×uv,σ ,δ (µ(a,R)) if σ(R) = a, and v(a) and uv,σ ,δ (µ(a,R)) are defined
undefined otherwise.

The value that can be accumulated from actions performed at resources reachable in the
future are worth less than value that can be accumulated immediately. The discount factor δ is
used to discount future accumulated values. In the case that the set R is finite, we generate a
finite set of simultaneous equations which can be solved using the methods described in [14].
Henceforth, we assume that all resource monoids have finite carrier sets.

Lemma 12. For all action payoff functions v, strategies σ , and discount factors δ , if σ(R) = 1,
then uv,σ ,δ (R) = 0.

Proof. By Definitions 3 and 10, we have that µ(1,R) = R and v(1) = 0. By Definition 11, we
have that uv,σ ,δ (R) = 0+δ ×uv,σ ,δ (R). As (1−δ) 6= 0, we have that uv,σ ,δ (R) = 0.

Example 13. We can now determine payoffs for various resources in Example 9 (which relies
on Example 7). This is a simplification of a distributed systems example, presented fully in
Example 16. Let v be an action payoff function such that v(p) =−1 and v(c) = 3, and δ = 0.8.
We then have that

uv,σ ,δ ((0,0)) = 0 uv,σ ,δ ((2,0)) = 3+0.8×uv,σ ,δ ((1,0))
uv,σ ,δ ((1,0)) = 3+0.8×uv,σ ,δ ((0,0)) = 5.4

= 3.

With a different strategy, and the same action payoff, discount factor, and underlying systems
model, different payoffs can be achieved.

4 A modal logic of resources and utilities

We define a modal predicate logic, MBIU, for expressing properties of resources and their utility.
Building directly on [8, 6], we define, in Figure 1, a semantics for MBIU in terms of the transition
relation of a resource monoid, action monoid, and modification function, and its corresponding
bisimulation relation.

Let term variables be denoted x, y, etc., and action variables be denoted α , β , etc.. The
action terms of MBIU, building on actions a, b, c, etc., are formed according to the grammar

6 Substructural modal logic for optimal resource allocation

R � p(t1, . . . , tn) iff tU (R)
1 , . . . , tU (R)

n are defined and (tU (R)
1 , . . . , tU (R)

n ,R) ∈ V (p)
R � t1 = t2 iff tU (R)

1 and tU (R)
2 are defined and tU (R)

1 = tU (R)
2

R � s1 = s2 iff sU (R)
1 = sU (R)

2
R � ⊥ never
R � > always
R � φ1∨φ2 iff R � φ1 or R � φ2
R � φ1∧φ2 iff R � φ1 and R � φ2
R � ¬φ iff R 6� φ

R � φ1→ φ2 iff R � φ1 implies R � φ2
R � I iff R∼ e
R � φ1 ∗φ2 iff there exist R1, R2, with R∼ R1 ◦R2, such that R1 � φ1 and R2 � φ2
R � φ1−−∗φ2 iff for all S, S � φ1 implies R◦S � φ2

R � 〈s〉φ iff there exist a, R′ such that sU (R) = a, R a−→ R′, and R′ � φ

R � [s]φ iff for all a, R′, sU (R) = a and R a−→ R′ implies R′ � φ

R � ∃α.φ iff there exists a ∈ Act such that R � φ [a/α]
R � ∀α.φ iff for all a ∈ Act, R � φ [a/α]
R � ∃x.φ iff there exists q ∈Q such that R � φ [q/x]
R � ∀x.φ iff for all q ∈Q, R � φ [q/x]

Figure 1: Satisfaction Relation for MBIU

s ::= a | α | s � s, where a ranges over Act and α ranges over action variables. Closed action
terms are those that contain no variables. Fix a set of action payoff functions V.

Let q be rational, uv be a non-logical symbol denoting the resource payoff function uv,σ ,δ

corresponding to an action payoff function v∈V (for a strategy and discount factor that are fixed
in the interpretation of the logic). Let v(s) be the valuation of some action term, for some action
payoff function v ∈ V. Let the numerical terms, denoted t, t ′, etc., be formed according to the
grammar t ::= x | q | uv | v(s) | t + t | t× t. Let closed terms be those that contain no variables.

We assume a set Pred of predicate symbols, each with a given arity n, with elements denoted
p, q, etc.. Then, the formulae of MBIU are given by the following grammar:

φ ::= p(t, . . . , t) | t = t | s = s | ⊥ | > | φ ∨φ | φ ∧φ | ¬φ | φ → φ

| I | φ ∗φ | φ −−∗φ

| 〈s〉φ | [s]φ
| ∃α.φ | ∀α.φ | ∃x.φ | ∀x.φ ,

where |p|= n, (t, . . . , t) is an n-tuple of terms, = is syntactic equality of the rationals, and t, s, x,
and α range over terms, action terms, term variables, and action variables, respectively.

The (additive) modalities are the standard necessarily and possibly connectives familiar from
modal logics, in particular Hennessy–Milner-style logics for process algebras [12, 16]. As such,
they implicitly use meta-theoretic quantification to make statements about reachable resources.
Multiplicative modalities can also be defined [8, 7]. The connectives ∗ and −−∗ are the multi-
plicative conjunction (with unit I) and implication (right-adjoint to ∗), respectively.

We define how atomic predicates are interpreted with respect to resources in Figure 1. Let

G. Anderson, D. Pym 7

φ , ψ , etc. denote predicate formulae. The quantifiers ∃α and ∀α bind occurrences of ac-
tion variables within predicate formulae and the modalities, and ∃x and ∀y bind occurrences of
term variables within predicate formulae. Closed formulae contain no free term variables. The
formula φ [q/x] is the formula formed by the (capture-avoiding) substitution of q for the term
variable x that is free in φ . The formula φ [a/α] is defined similarly.

The mathematical structure in which we interpret MBIU is the cartesian product of the set⋃
n∈NQn of finite tuples of elements of the rationals and the set R of resources. In an interpreta-

tion, we fix a strategy σ and a discount factor δ . Recall that each resource generates a transition
structure, via the modification function. An interpretation is given with respect to a particular
resource R, and is written as U (R). The denotations of rationals and their addition and mul-
tiplication are the obvious ones in Q. The denotation of the symbol uv is given by uv,σ ,δ (R),
as specified in Definition 11. Note that the corresponding interpretation of uv is a constant,
at a given resource R, and is given with respect to the fixed strategy and discount factor. The
denotation of actions are themselves. The denotation of � is action composition ·.

Recall the bisimulation relation ∼. A set Σ of finite tuples of elements of the rational num-
bers and resources is said to be∼-closed if it satisfies the property that, for all resources R and S,
and for all rational numbers q1, . . . , qn, (q1, . . . ,qn,R) ∈ Σ and R∼ S implies (q1, . . . ,qn,S) ∈ Σ.
Let P∼(

⋃
n∈NQn×R) be the set of all ∼-closed sets of the cartesian product of the set of fi-

nite tuples of rational numbers and the set of resources. A valuation is a function V : Pred→
P∼(

⋃
n∈NQn×R), together with a fixed strategy and dicount factor. Every valuation extends

in a canonical way to an interpretation for closed MBIU-formulae, the satisfaction relation for
which is indicated in Figure 1. A model for MBIU consists of the resource monoid, action
monoid, and modification function, together with such an interpretation. Satisfaction in a given
model is then denoted R � φ , read as ‘for the given model, the resource R has property φ ’, and
is defined as in Figure 1.

An alternative formulation of MBIU with intuitionistic additives (cf. [17, 8]) can be taken if
desired. Its used in modelling applications remains to be explored in future work.

We can now formally describe payoff properties of resources, in the following sense:

Example 14. Recall Examples 7, 9, and 13. The formula

φ = ∃x,y.(〈p〉uv = x)∧ (〈c〉uv = y)∧ (v(p)+(δ × x)< v(c)+δ × y)

denotes that it is possible to perform actions p and c, and that the payoff obtained by performing
p is less than that obtained by performing c. Note that uv,σ ,δ ((2,1)) = 5.4 and uv,σ ,δ ((1,0)) = 3. As
a result, we have that (2,0) � φ .

To obtain some key theoretical properties of our resource modelling framework, we require
some additional properties. When we perform a composition of resources, it is necessary to
take account of the partiality of the composition operator. As a result, we shall also require the
following ◦-∼-closed property of resource monoids. A resource monoid is ◦-∼-closed if, for
all resources R1, S1, R2, S2 ∈ R, if R1 ∼ S1, R2 ∼ S2, and R1 ◦R1 are defined, then S1 ◦ S2 is
defined. Henceforth, all resource monoids are assumed to be ◦-∼-closed. When we interpret the
payoff of resources, it is necessary to take account of bisimilarity. A model is payoff-∼-closed
if, for all v ∈ V, R,S ∈ R, R ∼ S and uv,σ ,δ (R) is defined implies that uv,σ ,δ (S) is defined and
uv,σ ,δ (R) = uv,σ ,δ (S). From this point onwards, all models are assumed to be payoff-∼-closed.

8 Substructural modal logic for optimal resource allocation

With this set-up, we can prove the Hennessy–Milner soundness and completeness theorem.
The soundness direction of the Hennessy–Milner completeness theorem — operational equiva-
lence implies logical equivalence — requires the congruence property.

Theorem 15. R∼ S iff, for any model of MBIU and all φ , R � φ iff S � φ .

Proof. For soundness — operational equivalence implies logical equivalence — by induction
over the structure of the formulae, using Theorem 6 and the satisfaction relation. Completeness
— logical equivalence implies operational equivalence — follows [8, 7].

Theorem 15 provides basic assurance that the logic is well formulated, and supports the
formulation of proof systems and reasoning tools, such as model checking.

5 Examples and optimality

To illustrate the logical set-up we have introduced, we begin with a classic example from dis-
tributed systems modelling: mutual producer–consumer. We then explain, using a generic exam-
ple, how our set-up can be used to express Pareto optimality. This example leads naturally into a
discussion of game-theoretic examples and concepts. We consider here the prisoner’s dilemma,
the best-response property, and Nash equilibrium.

Example 16 (Mutual producer–consumer). A classic example of distributed systems modelling
is distributed coordination without mutual exclusion, the most common form of which is that of
the producer–consumer system [7, Section 2.3.5]. In such a scenario, one entity generates work
that another entity can handle at a later point. We modify this slightly to the scenario with two
entities, where each entity can generate work for, and consume work from, the other.

We extend Example 7. Suppose a resource monoid ({0, . . . ,10} × {0, . . . ,10},◦,(0,0)),
where (m1,m2)◦ (n1,n2) = (m1 +n1,m2 +n2) if either m1 or m2 is 0 and either n1 or n2 is 0.

The elements of the resource monoid are pairs of natural numbers, where the first element of
the pair denotes the number of work packages that the first entity can consume, and the second
element of the pair denotes the number of work packages that the second entity can consume.

Suppose actions p1, p2, c1, and c2, where µ(p1,(m,n)) = (m,n+ 1) if n ≤ 9, µ(c1,(m+
1,n)) = (m,n), µ(p2,(m,n)) = (m+1,n) if m≤ 9, and µ(c2,(m,n+1)) = (m,n). The p1 action
denotes production of a work package by the first entity for the second entity, and the c1 action
denotes the consumption of a work package by the first entity. The p2 and c2 actions have the
obvious converse denotations.

Consider the situation where the processes ‘profit’ from the consumption of work packages,
and must ‘pay’ to create work packages. A pair of possible payoff functions v1 and v2, for the
two entities, which represents this situation is v1(p1) = −1, v1(c1) = 3, v1(p2) = 0, v1(c2) = 0
v2(p1) = 0, v2(c1) = 0, v2(p2) =−2, and v2(c2) = 4.

Let σ be a function such that, if 1 ≤ m and 1 ≤ n, then σ((m,n)) = c1c2, if 1 ≤ m, then
σ((m,0)) = c1, if 1≤ n, then σ((0,n)) = c2, and σ((0,0)) = p1 p2. Let the discount factor δ be
0.8. Consider the unit resource, (10,0). As there are only work packages available for the first
entity, the actions defined on the resource are the consume action c1, the produce action p1, and
the unit. Each entity incurs costs by performing a produce action, which only benefits the other
entity. We have v1(p1)+ δ × uv1,σ ,δ (10,1) ≈ −1+ δ ∗ 13.4 ≈ 9.7, v1(c1)+ δ × uv1,σ ,δ (9,0) ≈

G. Anderson, D. Pym 9

13.4, v2(p1) + δ × uv2,σ ,δ (10,1) = 0+ 0.8 ∗ 4 = 3.2, and v2(c1) + δ × uv2,σ ,δ (9,0) = 0. The
action c1 gains the most for the first entity and p1 gains the most for the second.

For either action, it is not possible to swap to an alternative action that makes one of the enti-
ties better off, without making the other entity worse off. This notion is called Pareto optimality.

Definition 17 (Pareto optimality). A state R is Pareto optimal if there exists an action a such
that, for all other actions b, if some entity (weakly) prefers that action b be performed, then
there is some other agent that strongly prefers that action a be performed. Formally, the state R
is Pareto optimal if, for entities with payoff functions v1, . . . , vn,

R |= ∃α .∀β .(¬(β = α))→
∀x,x′.∃y,y′.(
(〈α〉uv1 = x)∧ (〈β 〉uv1 = x′)∧ (x≤ x′)

)
→(

(〈α〉uv2 = y)∧ (〈β 〉uv2 = y′)∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn = y)∧ (〈β 〉uvn = y′)∧ (y′ < y)

)

∨ . . .∨

∀x,x′.∃y,y′.(
(〈α〉uvn = x)∧ (〈β 〉uvn = x′)∧ (x≤ x′)

)
→(

(〈α〉uv1 = y)∧ (〈β 〉uv1 = y′)∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn−1 = y)∧ (〈β 〉uvn−1 = y′)∧ (y′ < y)

)

We abbreviate the above formula as PO(v1, . . . ,vn).

In Example 16, the resource (10,0) is Pareto optimal, witnessed by both the actions p1 and
c1. Note that optimality is defined in terms of actions; this is as, here, we take seriously the
representation of actions that perform resource allocations. A transition is then an (actively
performed) resource allocation.

One field in which notions of optimality have been studied significantly is that of games and
decision theory. We can model games in our resource semantics. A classic decision-making
example from game theory is the prisoner’s dilemma.

Example 18 (Prisoner’s dilemma). Two individuals have been arrested, and are kept separately,
so that they cannot collude in their decision making. Each is offered the choice of attempting
to ‘defect’, and give evidence against their partner, or to ‘collaborate’, and say nothing. If one
person collaborates and the other defects, then the collaborating partner goes to jail for a long
time, and the defecting partner goes free. If both people defect, then they both go to jail for a
moderate time. If both people collaborate, then they both go to jail for a short time.

Suppose a resource monoid ({r1,r2,r1,2,e},◦,e), where r1 ◦ r2 = r1,2. The r1 resource
denotes a resource where the first person can make a choice, the r2 resource denotes a re-
source where the second person can make a choice, and the r1,2 resource denotes a resource
where both people can make a choice at the same time. Suppose actions c1, d1, c2, and d2,
where µ(c1,r1) = µ(d1,r1) = e, µ(c2,r2) = µ(d2,r2) = e, and µ(c1c2,r1,2) = µ(c1d2,r1,2) =
µ(d1c2,r1,2) = µ(d1d2,r1,2) = e. The c1 action denotes collaboration by the first person, and
the d1 action denotes defection by the person. The c2 and d2 actions have the obvious de-
notations for the second person. We make use of the trivial strategy σ(R) = 1. The action
payoff functions v1 and v2 for the two people are v1(c1c2) = −2, v1(c1d2) = −6, v1(d1c2) = 0,
v1(d1d2) =−4, v2(c1c2) =−2, v2(c1d2) = 0, v2(d1c2) =−6, and v2(d1d2) =−4. Hence, if the
first person collaborates and the second defects, then the first person receives six years in prison
(cost v1(c1d2) =−6), while the second receives no time in prison (cost v2(c1d2) = 0).

10 Substructural modal logic for optimal resource allocation

We can define notions of best response and Nash equilibrium.

Example 19 (Best response). An action a is a best response for a given entity to a particular
choice of action b by another entity, at a given resource, if the (former) entity has no other action
c available to it such that the action cb is defined on the resource and the entity (strongly) prefers
cb to ab. Formally, a is the best response to action b at resource R if

R |= ∀α.∃x,y.
((

(〈a〉>∧〈α〉>)∗ (〈b〉>)
)
∧
(
[ab](uv = x)∧ [αb](uv = y)

))
→
(
(v(αb)+δ × y)≤ (v(ab)+δ × x)

)
.

We abbreviate the above formula, denoting that a is the best response to action b for the
agent whose payoff function is v, as BR(a,b,v). In the prisoner’s dilemma example, the best
response for the first agent to the action c2 is d1, and BR(d1,c2,v1) holds.

We generalize this notation slightly, so that we write BR(a,b1, . . . ,bn,v) to denote that a1 is
the best response the the composite action b1 . . .bn, for the payoff function v. Formally,

R |= ∀α.∃x,y.
((

(〈a〉>∧〈α〉>)∗ (〈b1 . . .bn〉>)〉
)
∧
(
[ab1 . . .bn](uv = x)∧ [αb1 . . .bn](uv = y)

))
→
(
(v(αb1 . . .bn)+δ × y)≤ (v(ab1 . . .bn)+δ × x)

)
.

Here, for simplicity, we suppress all issues concerned with the structure of the composite action
b1 . . .bn: In general, a process-theoretic treatment, allowing control over the presumed nature of
the concurrent composition, can be given [8, 7]. Now we can express Nash equilibrium.

Example 20 (Nash equilibrium). A state R is a Nash equilibrium for a set of entities I =
{1, . . . ,n} if there is a collection of actions a1, . . . , an such that, for each entity i ∈ I with payoff
function vi, the action ai is the best response to the composition of actions a j, where j ∈ I \{i}.

Formally, the state R is a Nash equilibrium if

R |= ∃α1 . . .αn .BR(α1,α2, . . . ,αn,v1)∧ . . .∧BR(αn,α1, . . . ,αn−1,vn).

We abbreviate the above formula as NE(v1, . . . ,vn). In the prisoner’s dilemma example, the
Nash equilibrium is the state r1,2, witnessed by the actions d1 and d2, for payoff functions v1 and
v2, and the property NE(v1,v2) holds.

6 Discussion

Notice, in the examples of Section 5, the key role played in the formulae BR by the multiplicative
conjunction, ∗. Used with the additives, it allows the separation of the resources allocated locally
to different actions (the as and bs) to be enforced when required whilst allowing utility properties
of the overall system to be expressed relative to the overall resources, as required.

In a richer set-up, retaining explicit process structure — recall the discussion of Section 1 —
the trace leading to the optimal and equilibrium states, together with its history of resource usage,
would be represented explicitly (though at some technical cost in the development). Presentation
of this richer view is deferred to another occasion.

By developing such a view we should be able to incorporate the analysis of utility and opti-
mality presented here into the widely deployed systems and security modelling tools established
in, for example, [8, 6, 7], with deployments described in, for example, [15, 1, 5, 3, 4].

G. Anderson, D. Pym 11

References
[1] Y. Beres, D. Pym & S. Shiu (2010): Decision Support for Systems Security Investment. In: Proc.

5th BDIM, IEEE Xplore, pp. 118–125.
[2] G. Birtwistle (1987): Discrete event modelling on Simula. Springer.
[3] T. Caulfield & D. Pym (2015): Improving Security Policy Decisions with Models. To appear, IEEE

Security and Privacy.
[4] T. Caulfield & D. Pym (2015): Modelling and Simulating Systems Security Policy. In: To appear,

Proc. 8th. SIMUTools, ACM Digital Library.
[5] T. Caulfield, D. Pym & J. Williams (2014): Compositional Security Modelling: Structure, Eco-

nomics, and Behaviour. LNCS 8533, pp. 233–245.
[6] M. Collinson, B. Monahan & D. Pym (2010): Semantics for Structured Systems Modelling and

Simulation. In: Proc. SIMUTools, ICST, Brussels, Belgium, pp. 34:1–34:10.
[7] M. Collinson, B. Monahan & D. Pym (2012): A Discipline of Mathematical Systems Modelling.

College Publications.
[8] M. Collinson & D. Pym (2009): Algebra and Logic for Resource-based Systems Modelling. Math-

ematical Structures in Computer Science 19(5), pp. 959–1027.
[9] G. Coulouris, J. Dollimore & T. Kindberg (2000): Distributed Systems: Concepts and Design, 3rd

edition. Addison Wesley.
[10] D. Galmiche, D. Méry & D. Pym (2005): The Semantics of BI and Resource Tableaux. Mathematical

Structures in Computer Science 15(6), pp. 1033–1088.
[11] D. Harel, J. Tiuryn & D. Kozen (2000): Dynamic Logic. MIT Press, Cambridge, MA, USA.
[12] M. Hennessy & G. Plotkin (1980): On Observing Nondeterminism and Concurrency. Lecture Notes

in Computer Science 85, pp. 299–308.
[13] S. Ishtiaq & P. O’Hearn (2001): BI as an Assertion Language for Mutable Data Structures. In.

Proc. 28th POPL, ACM, pp. 14–26.
[14] J.-B. Jeannin, D. Kozen & A. Silva (2013): Language Constructs for Non-well-Founded Computa-

tion. In: Proc. 22nd ESOP, Springer-Verlag Berlin, Heidelberg, pp. 61–80.
[15] Hewlett-Packard Laboratories: Towards a Science of Risk Analysis. Available at http://www.

hpl.hp.com/news/2011/oct-dec/security_analytics.html.
[16] R. Milner (1989): Communication and Concurrency. Prentice Hall, New York.
[17] P. O’Hearn & D. Pym (1999): The Logic of Bunched Implications. Bulletin of Symbolic Logic 5(2),

pp. 215–244.
[18] D. Pym, P. O’Hearn & H. Yang (2003): Possible Worlds and Resources: The Semantics of BI.

Theoretical Computer Science 315(1), pp. 257–305.
[19] J. Reynolds (2002): Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. 17th

LICS, IEEE, pp. 55–74.
[20] Y. Shoham & K. Leyton-Brown (2008): Multiagent Systems: Algorithmic, Game-Theoretic, and

Logical Foundations. Cambridge University Press, New York, NY, USA.

http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html

	Introduction
	Resource semantics and modal logic for systems modelling
	Strategies and cost
	A modal logic of resources and utilities
	Examples and optimality
	Discussion

