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Abstract. Measuring information flow in software has recently become
an active research topic in the security community. Information about
confidential inputs may flow to public outputs in batch programs. It
would be useful to quantify such flows in the computational world. In
this paper, We present an automatic analyser for measuring information
flow within software systems. We quantify leakage in terms of informa-
tion theory and incorporate this computation into probabilistic seman-
tics. Our semantic functions provide information flow measurement for
programs given secure inputs under any probability distribution. The
major contribution is a automatically quantitative analyser based on the
leakage definition for such a language. While-loops are handled by apply-
ing entropy of generalized distributions and relative properties in order
to provide a more precise analysis with observing time.
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1 Introduction

Quantifying and measuring information flow in software has recently become
an active research topic. Access control systems are designed to restrict access
to information, but cannot control information propagation once accessed. The
goal of information flow security is to ensure that the information propagates
throughout the execution environment without security violations such that no
secure information is leaked to public outputs. The traditional theory based
reasoning and analysis of software systems has largely relied on logics, but they
are not concerned with bit leakage, nor with the program execution observers. It
would be good to have a quantitative study geared towards the tasks relevant for
the computational environment in which we live. The quantitative information
flow analysis tool can also be used as part of the testing and auditing process,
and such research would be beneficent to the analysis of software applications
in security related domains such as the military, banks etc.

Traditionally, the approach of information flow security is based on inter-
ference [12]. Consider interference between program variables: informally, the
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capacity of variables to affect the values of other variables. Non-interference, i.e.
absence of interference, is often used in proving that a system is well behaved,
whereas interference can lead to mis-behaviors. However, mis-behaviors in the
presence of interference will generally happen only when there is enough inter-
ference. A concrete example is a software system with access control. To enter
such a system the user has to pass an identification stage; whether subsequently
authorized or failed, some information has been leaked so these systems present
interference. Otherwise, if the interference in such systems is small enough we
can be confident in the security of the system. The security community hence
requires determining how much information flows from high level to low level,
which is known as quantitative information flow. Consider the following exam-
ples, which show secure information flow is violated during the execution of the
programs:

1. l:=h;

2. if (h==0) then l:=0 else l:=1;

3. l:=h; while (l<>0) l:=l*2;

where l is a low security variable, and h is a high security variable. It is obvious
that, the assignment command causes the entire information in h to flow to l,
the if statement allows one bit of information in h to flow to l in the case that
h and l are Boolean, and l learns some information (whether h equals to zero or
not) about h via the termination behaviors of while loop command. Note that
executing the program reduces the uncertainty about secure information and
causes the information leakage. Quantifying and measuring information flow
aims to compute how much information is leaked, and to suggest how secure the
program is from a quantitative point of view.

Clark et al.’s system for a simple programming language[4] was the most
complete static quantitative information flow analysis to our knowledge. The
main weakness of this work is that the bounds for loops are over pessimistic.
Malacaria [16] gave a more precise quantitative analysis of loop construct using
partition property of entropy but its application is hard to automate and there
is no formal treatment. All the work to date suffers one of two problems: either
it is verified but does not give tight bounds or all the examples are given tight
bounds but there is no general verified analysis. The quality of the analysis for
the measurement of information flow needs to be improved. A system with both
automatic and precise analysis is required.

In this paper, we consider the mutual information between a high security
variable at the beginning of a batch program and a low one at the end of the
program, conditioned on the mutual information between the initial values of
high and low, as the measure of how much of the initial secret information is
leaked by executing the program. Malacaria’s [16] leakage calculation method
for loops provides a way of calculating the exact leakage, given knowledge of
whether the loop terminates and the maximum possible number of iterations
when it does terminate. This calculation method has not been formalized with
respect to semantics to date. Nor does it seem likely that an analysis based on
abstraction could calculate exact leakage. We show that Kozen’s Scott-domain
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version of probabilistic state transformer semantics can be used to overcome
some of the drawbacks in Malacaria’s method. We devise an algorithm that im-
plements Kozen’s semantics. It takes as input a probability distribution on the
initial store and calculates a probability distribution on the final store when the
program sometimes terminates. In fact it calculates a probability distribution at
each program point. These can then be used to calculate leakage. Specifically,
while-loops are handled by applying the definition of entropy of generalized dis-
tributions and relative properties in order to provide a more precise analysis
with observing time. We show that this algorithm calculates the same quantity
as Malacaria’s method, thereby providing correctness for his method relative to
Kozen’s semantics. Unlike Malacaria’s method, there is no need for any initial
(human) analysis of loop behavior and it is completely automatic while apply-
ing to general while language programs. The drawbacks of our approach are
that it is not, in general, lacking abstraction, time complexity can become large
in certain circumstances. The critical component in the time complexity is the
conditional mutual information calculation. This is confirmed by tests of the im-
plementation. Using the algorithm to generate plots of loop iterations vs. leakage
for example can take hours. We are currently doing an abstract analysis for our
approach.

The rest of the paper is organized as follows. In Section 2, we briefly review
the relevant mathematical background. Section 3 introduces the syntax and the
probabilistic semantics, presents a leakage analyser due to such semantics. An
implementation is given in Section 4. Finally, we present related work and draw
conclusions in Section 5,6.

2 Mathematical Background

In this section we review some definitions in the relevant mathematical back-
ground including information theory, measures, random variables and programs.

2.1 Measures, Random Variables and Programs

There is a clear connection between the notion of probability distribution, infor-
mation theory, and information leakage in a program. Measures assign weight on
the domain, and probabilities are a particular case of measures. Hence we could
apply it to the semantics to drive the distributions’ transform. A measure on a
space Ω assigns a “weight” to subsets of the set Ω. A set of useful definitions are
reviewed as follows referenced in [26]. A measure space is a triple (Ω,B, µ), where
Ω is a set, B is a σ-algebra of subsets of Ω, µ is a nonnegative, countable additive
set function on B. A σ-algebra is a set of subsets of a set M that contains ∅, and
is stable by countable union and complementation. A set M with a σ-algebra
σM defined on it is called a measurable space and the elements of the σ-algebra
are the measurable subsets. If M and N are measurable spaces, f : M → N is a
measurable function if for all W measurable in N , f−1(W ) is measurable in M .
A positive measure is a function µ defined on a σ-algebra σM , which is countable
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additive, and has a range in [0,∞]. µ is countably additive, if taking (En)n∈N a
disjoint collection of elements of σM , then µ(

⋃∞
n=0 En) =

∑∞
n=0 µ(En). A proba-

bility measure is a positive measure of total weight 1. A sub-probability measure
has total weight less than or equal to 1. Note that P≤1(M) is the sub-probability
measures on M .

We consider denotational semantics for programs. Assume that the vector of
all program variables V range over the same state space Ω. The denotational
semantics of a command is a mapping from the set M of possible environments
before a command into the set N of possible environments after the command.
These spaces updated by semantic transformation functions can be used to cal-
culate leakage at each program point.

2.2 Shannon’s Measure of Entropy

In order to measure the information flow, we treat the program as a commu-
nication channel. Information theory introduced the definition of entropy, H,
to measure the average uncertainty in random variables. Shannon’s measures
were based on a logarithmic measure of the unexpectedness of a probabilistic
event (random variable). The unexpectedness of an event which occurred with
some non-zero probability p was log2

1
p
. Hence the total information carried by

a set of events was computed as the weighted sum of their unexpectedness:
H =

∑n

i=1 pi log2
1
pi

.
Considering a program as a state transformer, random variable X is a map-

ping between two states which are equipped with distributions, let p(x) de-
note the probability that X takes the value x, the entropy H(X) of discrete
random variable X was defined as: H(X) =

∑
x p(x) log2

1
p(x) . Intuitively, en-

tropy is a measure of the uncertainty of a random variable, which can never
be negative. Furthermore, given two random variables X and Y , the notion
of conditional entropy H(X |Y ) =

∑
y p(y)H(X |Y = y) suggests possible de-

pendencies between random variables, i.e. knowledge of one may change the
information associated with another. Let p(x, y) denote the joint distribution
of x ∈ X and y ∈ Y , the notion of mutual information between X and Y ,

I(X ; Y ), is given by: I(X ; Y ) =
∑

x

∑
y p(x, y) log2

p(x,y)
p(x)p(y) . Conditional ver-

sions of mutual information I(X ; Y |Z) denotes the mutual information between
X and Y given the knowledge of Z, and is defined as follows: I(X ; Y |Z) =
H(X |Z) + H(Y |Z) −H(X, Y |Z).

2.3 Entropy of Generalized Probability Distributions

From a measure space transformer point of view, the loop command is going
to create a set of sub-probability measures(see Section 3). In order to give a
more precise leakage analysis, we need an observation of state at any semantic
computation point in an abstract way, e.g, we may consider the attacker can
observe the iteration of loops. Loop semantics uses sub-measures for loop ap-
proximations, and we need to calculate the entropy of sub-measures. However,
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Shannon’s entropy definition does not work for the sub-probability measures,
therefore we need the more general entropy definition. We now consider some
properties and definitions of measures of entropy on the set of generalized prob-
ability distributions by Renyi referenced in [23]. Let (Ω,B, µ) be a probability
space, consider a function X defined for ω ∈ Ω and is measurable with respect to
B, where X is called a generalized random variable. Furthermore, if µ(Ω) = 1, X
is called a complete random variable; if 0 < µ(Ω) < 1, X is called a incomplete
random variable.

The distribution of a generalized random variable is called a generalized prob-
ability distribution. Specifically, consider a generalized random variable X =
{x1, x2, . . . , xn}, with probability pk = µ{X = xk} for k = 1, 2, . . . , n, such that
the generalized probability distribution is written as P = (p1, p2, . . . , pn), the
weight of the distribution P is defined by: W (P) =

∑n

k=1 pk, and 0 < W (P) ≤ 1.
It is easy to see that the weight of a complete distribution is equal to 1, and the
weight of an incomplete distribution is less than 1.

Let ∆ denote the set of all finite discrete generalized probability distributions,
i.e. the set of all sequences P = (p1, p2, . . . , pn), where 0 <

∑n

k=1 pk ≤ 1.

∀P ∈ ∆, the entropy of a generalized probability distribution H̃(P) is defined
as:

H̃(P) =

∑n
k=1 pk log2

1
pk∑n

k=1 pk

Entropy on Partitions The definition of entropy of partitions presented by
Rokhlin [25] and the partition property of entropy given by Renyi [24] suggests
that the entropy of a space with a partition can be computed by summing the
entropy of each weighted partition. Formally, given a generalized distribution
µ over a set of events E = {e1,1, . . . , en,m}: µ(Ei) =

∑
1≤j≤m µ(ei,j), and a

partition of E in sets (Ei)1≤i≥n: Ei = {ei,1, . . . , ei,m}, the entropy of E can be
computed by:

H̃(µ(e1,1), . . . , µ(en,m)) = H̃(µ(E1), . . . , µ(En))+

n∑

i=1

µ(Ei)H̃(
µ(ei,1)

µ(Ei)
, . . . ,

µ(ei,m)

µ(Ei)
)

where, µ(Ei) =
∑m

j=1 µ(eij) (i = 1, 2, . . . , n), and by assumption,
∑n

i=1 Ei =∑n

i=1

∑m

j=1 eij ≤ 1.
This formula can be considered as a theorem about the information associated

with a mixture of distributions, see Renyi [24]. Indeed, the entropy of set E is
the information associated with the mixture of the subset (a partition of E)

distributions
µ(ei,1)
µ(Ei)

, . . . ,
µ(ei,m)
µ(Ei)

with weights µ(Ei). The above formula suggests

that this information is equal to the sum of the average of the information
µ(ei,1)
µ(Ei)

, . . . ,
µ(ei,m)
µ(Ei)

with weights µ(Ei) and the information associated with the

mixing distribution (µ(E1), . . . , µ(En)). Furthermore, if we denote the set of
events in E by ξ, denote a partition of E in sets Ei by η, and denote the
elements ei,j of the partition Ei as ζ, then we have: H̃(ξ) = H̃(η) + H̃(ζ|η).
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3 The Leakage Analyzer

The semantics concerned with probability distribution behavior in program anal-
ysis and leakage computation will be presented in this section. Measures express
the intuitive idea of a “repartition of weight” on the domain, probabilities are
a particular case of measures. Hence we would expect this to apply to the se-
mantics. We apply Kozen’s [14] probabilistic semantics as the framework to build
the relationship between the probability distribution functions and the variables,
expressions, and the commands in a program language to present the probabil-
ity distribution transformations during the program executions. This provides
a basis to develop an automatic analysis of leakage measurement since there
is an intimate connection between probability distribution and measurement of
information flow.

The property of program executions considered here is the notion of probabil-
ity distribution on the set of states which induces the computation transforma-
tions of probability distributions. The intuition behind a probabilistic transition
is that it maps an input distribution to an output distribution so that we can
get a series of computation traces of probability distributions. Next we present
a set of measurable functions on the set of traces of execution. The transition
probability functions map each state of the first state space to a probability
distribution on the second state space. This will help us to explore the property
of quantitative information flow on the transformations, in which the sequence
reaches in a certain state.

3.1 The Language and its Semantics

The language we considered is standard, presented in Table 1.

c ∈ Cmd x ∈ Var e ∈ Exp b ∈ BExp n ∈ Num

c ::= skip|x := e|c1; c2|if b then c1 else c2|while b do c

e ::= x|n|e1 + e2|e1 − e2|e1 ∗ e2|e1/e2

b ::= ¬b|e1 < e2|e1 ≤ e2|e1 = e2

Table 1. The language

The denotational semantics for measure space transformations are in the
following forms:

V al , 〈Ω,B, µ〉 Σ , X → V al
C[[·]] : Cmd → (Σ → Σ) E[[·]] : Exp → (Σ → Val)
B[[·]] : BExp → (Σ → Σ)

Kozen [14] presents two equivalent semantics for probabilistic programs. One
interprets programs as partial measurable functions on a measurable space, the
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other interprets programs as continuous linear operators on a Banach space of
measures. We are more interested in the first one which expresses properties of
probabilistic behavior of programs at a more appropriate level of abstraction.

The denotational semantics for measure space transformations are in the
following forms:

V al , 〈Ω,B, µ〉 Σ , X → V al
C[[·]] : Cmd → (Σ → Σ) E[[·]] : Exp → (Σ → Val)
B[[·]] : BExp → (Σ → Σ)

We concentrate on the distributions and present the semantic functions by
using Lambda Calculus and the notation of inverse function following [21], see
Table 2.

f[[x:=e]](µ) , λW.µ(f−1
[[x:=e]](W ))

f[[c1;c2]](µ) , f[[c2]] ◦ f[[c1]](µ)

f[[if b then c1 else c2]](µ) , f[[c1]] ◦ f[[b]](µ) + f[[c2]] ◦ f[[¬b]](µ)

f[[while b do c]](µ) , f[[¬b]](limn→∞(λµ′.µ + f[[c]] ◦ f[[b]](µ
′))n)(λX.⊥))

where, f[[B]](µ) = λX.µ(X ∩ B)

Table 2. Probabilistic Denotational Semantics of Programs

This semantics can be considered as a distribution transformer. The vec-
tor of the program variables V = {x|x ∈ V } satisfy some joint distribution µ
on program input, a program [[C]] maps distribution µ over a V to distributions
f[[C]](µ) over V : f[[C]] : µ → µ, and X : {µ : σ 7→ [0, 1]}, where σ denotes the store.
Due to the measurability of the semantic functions, for all measurable W ∈ X ′,
f[[x:=e]](W ) is measurable in X . The function f[[B]] for boolean test B defines the
set of environments matched by the condition B, which causes the space to split
apart. Conditional statement is executed on the conditional probability distribu-
tions for either the true branch or false branch: f[[c1]]◦f[[b]](µ) + f[[c2]]◦f[[¬b]](µ). In
the while loop, the measure space with distribution µ goes around the loop, and at
each iteration, the part that makes test b false breaks off and exits the loop, while
the rest of the space goes around again. The output distribution f[[while b do c]](µ)
is thus the sum of all the partitions that finally find their way out. Note that
these partitions are part of the space when the loop paritally terminated, which
implies the outputs are partially observable and hence produce an incomplete
distributions. For the case that the loop is completely non-terminated, ⊥ is re-
turned and leakage is 0 when no new paritition is produced but the test is still
satisfied. Further details can be found in the following section.

3.2 Automatic Leakage Analysis for Programs

Assume we have two types of input variables: H(confidential) and L(public),
and the inputs are equipped with probability distributions, so the inputs can be
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viewed as a joint random variable (H , L). From a state transformation point of
view, the semantic function of programs maps the state of inputs to the state
of outputs. We present the basic leakage definition due to [4] for programs as
follows.

Definition 1 (Leakage). Let H be a random variable in high security inputs, L
be one in low security inputs, and let L′ be a random variable in the output obser-
vation, the secure information flow (or interference) is defined by I(L′; H |L),
i.e. the conditional mutual information between the output and the high input
given knowledge of the low output. Note that for deterministic programs, we
have I(L′; H |L) = H(L′|L), i.e. interference between the uncertainty in the out-
put given knowledge of the low input.

Arithmetic Expressions We denote the probability function of x as µx. Let
µx(v) be the probability that the value of x is v, the domain of µx will be
the set of all possible values that x could be. The computation function fe(µ)
of an arithmetic expression e defines the measure space that the arithmetic
expression can evaluate to in a given set of environments. Specifically, consider
the joint probability distribution over the discrete random variable X , Y , by
the definition of conditional probability, the distribution function for arithmetic
expression e(x, y) is given by:

µe(x,y)(z) =
∑

domainy

µx(e
−1(z, y))µy(y) =

∑

domainx

µy(e
−1(z, x))µx(x)

where z stands for a possible value of e(x, y) in the current environment. For in-
stance, the probability density function for addition is: µx+y(z) =

∑
domainy

µx(z−

y)µy(y).
The entropy of expressions is considered as the entropy of its distribution

H(µe), which also can be calculated by using the functional relationship between
inputs and outputs [4]: Let Z = e(X, Y ), then H(Z) = H(X, Y ) − H(X, Y |Z),
i.e. the entropy of the output space is the entropy of the input space minus the
entropy of the input space given knowledge of the output space. Note that, for
any constant value c : µc(c) = 1, Hc = 0.

Assignment and random input Suppose [[c]] : X → Y , X and Y being
metric spaces, W denotes all measurable space in Y is measurable, consider the
following linear operator f[[c]] in general, which is presented by inverse image:

f[[c]] :

∣∣∣∣
M≤1(X) → M≤1(Y )
µ 7→ λW.µ(f−1

[[c]] (W ))

Specifically, for the command of assignment, the transformation function for
assignment updates the state such that the measure space of assigned variable
x is mapped to the domain of expression e:

fx:=e(µ) = λX.µ(f−1
[[x:=e]](X))
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For example, if there is no low input, variable x is a low security variable with
public output, the information leaked to x after command [[x := e]] is given by
L[[x:=e]] = H(µe).

The probabilistic semantics also gave an interesting input semantics to assign-
ment command such as x := input(). Function input() returns a probability
distribution. The probabilistic choices behind the random input we consider is
internal, i.e. made neither by the environment nor by the process but accord-
ing to a given probability distribution. The random input function is therefore
transformed to a simple assignment operator: the assigned variable is assigned
a given probability distribution.

Sequential composition operator The distribution transformation function
for sequential is obtained by composition:

f[[c1;c2]](µ) = f[[c2]] ◦ f[[c1]](µ)

Let µ′ = f[[c1;c2]](µ), the low security variable v is public observable, according
to the leakage definition, the leakage due to sequential command [[c1; c2]] is the
entropy H(µ′

v|µv), where µ′
v and µv are the distribution of variable v after and

before the sequential command.
Consider a piece of program l:=2; l:=h+3; print(l);, assume h is high

security variable, l is low security variable, and initially the variables satisfy with

the joint distribution µ〈h,l〉 =



〈0, 0〉 w.p. 0.3
〈1, 0〉 w.p. 0.5
〈2, 0〉 w.p. 0.2


, then f[[l:=2;l:=h+3;]](µ〈h,l〉) =



〈0, 3〉 w.p. 0.3
〈1, 4〉 w.p. 0.5
〈2, 5〉 w.p. 0.2


. The distribution of l is µl =




3 w.p. 0.3
4 w.p. 0.5
5 w.p. 0.2


. The leakage due

to this piece of program is the conditional entropy H(µ′
l|µl) = 1.485, which means

the information contained in h (uncertainty due to the initial distribution of h)
totally flows to output.

Conditional A conditional creates multiple paths conditionalized on some
tests, which constructs two branches based on the boolean test, and also makes
the partitions a complete distribution. We define that µb(tt) is the probabil-
ity of b to be true, and µb(ff) is the probability of b to be false. Let P0 =
{p0 = µb(tt)}, P1 = {p1 = µb(ff)} denote the partition due to the test b,
Ql

0 = {q00, . . . , q0m}, Ql
1 = {q10, . . . , q1m} denote the probability distribution of

low security variable l in the two branches under the condition that event b is
true/false,

f[[if b then c1 else c2]](µ) = f[[c1]] ◦ f[[b]](µ) + f[[c2]] ◦ f[[¬b]](µ)

Assume l is low security variable and output to public, the leakage due to if

statement is defined as: L[[if]] = H̃(P0 ∪ P1) + H̃(Ql
0 ∪ Ql

1|P0 ∪ P1).
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Example 1. Consider the following program. We only consider a k-bit variable
with possible values 0, . . . , sk − 1, i.e. non-negative numbers for simplification.

if (h==0) then l=0 else l=1; print(l);

Assume h is a 32-bit high security variable with uniform distribution, l is a low
security variable. It is easy to get, P0 = { 1

232 }, P1 = {1 − 1
232 }, and Ql

0 =
{µl(0)} = { 1

232 }, Ql
1 = {µl(1)} = {1 − 1

232 }. The resulting set of probability
distribution transformation is obtained as:

f[[if]]



〈h, l〉 7→




〈0,⊥〉 w.p. 1/232

. . . . . .
〈232 − 1,⊥〉 w.p.1/232







 =

(
l 7→

[
0 w.p. 1/232

1 w.p. 1 − 1/232

])

The distribution of low security variable l after the if statement can be described

as l 7→

[
0 w.p. 1/232

1 w.p. 1 − 1/232

]
, and the information flowed to low component under

this example can be computed by:

H[[if]] = H̃(P0 ∪ P1) + H̃(Ql
0 ∪ Ql

1|P0 ∪ P1)

= H̃({
1

232
} ∪ {1 −

1

232
}) + 0 = 7.8 × 10−9

The result implies that this example just releases few information to the
public, which agrees with our intuition: the possibility of h = 0 is quite low and
the uncertainty of h under condition h 6= 0 is still big, i.e. just few information
released.

While Loop The semantic function for loop is given by:

f[[while b do c]](µ) = f[[¬b]]( lim
n→∞

(λµ′.µ + f[[c]] ◦ f[[b]](µ
′))n(λX.⊥))

Such function produces the union of all the sub-measures that have already quit
the loop so far. Intuitively, the initial measure space goes around the loop. At
each iteration, the part of the space which leads the boolean test to be false
exits the loop, while the rest of the space goes around again. This accumulates
a set of partitions that have come to occupy the same parts of the program
through different paths. At some certain points, e.g. the kth iteration, the output
distribution Pk is the sum of all the pieces that eventually find their way out, i.e.
the union of sub-measures which have left the loop finally at that point. Consider
a terminating loop while b C as a sub-measure transformer which builds a set
of accumulated incomplete probability distributions, i.e. due to the kth iteration,

P([[while b C]]) =
⋃

0≤i≤k

Pi([[while b C]])

where k ≤ n, and n is the maximum number of iteration of the loop. Let,

Pi = {pi} = {µ(ei)}, where ei =





b0 = ff, i = 0
b0 = tt ∧ b1 = ff, i = 1
b0 = tt, . . . , bi−1 = tt ∧ bi = ff, i > 1
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where ei is the event that the loop test b is true until the ith iteration, bi denotes
the value of the boolean test b at the ith iteration. Consider the union of the
decompositions

P = (P0 ∪ P1 ∪ . . . ∪ Pk)0≤k≤n = ({p0} ∪ {p1} ∪ . . . ∪ {pk})0≤k≤n

the events P0, . . .Pk build the partition of the states for a while loop. The sum
of the probability of Pi is less than or equal to 1, and equal to 1 only if k = n,
i.e. the loop terminates at the nth iteration, every part of the space has found
its way out or we get the fixed point (no new partition finds way out of the loops
but the boolean test is still satisfied) which means the loop is non-terminate
with regard to this part of the space.

Next we propose to produce the leakage definition for loop command due
to the semantic function. First consider the entropy of the union of the decom-
positions

⋃
0≤i≤k Pi. According to the mean-value property of entropy [23], let

∆ denote the set of all finite discrete generalized probability distributions, if
P1 ∈ ∆,P2 ∈ ∆, . . . ,Pn ∈ ∆, such that

∑n

k=1 W (Pk) ≤ 1, we have:

H̃(P1 ∪ P2 ∪ . . . ∪ Pn) =
W (P1)H̃(P1) + . . . + W (Pn)H̃(Pn)

W (P1) + . . . + W (Pn)

The entropy of the union of set of incomplete distributions is the weighted mean
value of the entropies of the set of distributions, where the entropy of each
component is weighted with its own weight (W (Pi)0≤i≤n).

We next consider the amount of information contained in the loop body under
the observation of the set of events E = {ei}0≤i≤n. We denote the set of events
in E by ξ, let P denote the original distribution of the random variable ξ and Q
denote the conditional distribution of random variable ξ under the condition that
event E has taken place. We shall denote a measure of the amount of information
concerning the random variable ξ contained in the observation of the event E
by H̃(Q|P). Let QL

i denote the distribution of the low component at the end of
the execution of the loop body due to the ith iteration under the condition that
event ei

0≤i≤k has taken place, we have:

QL =
(
QL

0 ∪ QL
1 ∪ . . . ∪ QL

k

)
0≤k≤n

= ({q00, . . . , q0j} ∪ . . .∪ {qk0, . . . , qkj})0≤k≤n

where k implies up to the kth iteration. By applying the formula of conditional
entropy for generalized probability distributions [23], and let W denotes weight,
we have:

H̃(QL|P) =
W (QL

0 )H̃(QL
0 |P0) + . . . + W (QL

k )H̃(QL
k |Pk)

W (QL
0 ) + . . . + W (QL

k )

As we discussed above, the loop command creates a set of sub-measures
(incomplete distribution). To give a more precise leakage analysis, we need an
observation of state at any semantic computation point in an abstract way, e.g,
we may consider the attacker can observe the iteration of loops. Loop semantics
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uses sub-measures for loop approximations, and we need to calculate the entropy
of sub-measures by applying the more general Renyi’s entropy of generalised dis-
tributions. Definition 2 is therefore defined for computing leakage with observing
time (iteration) for loops incorporated with our semantic function.

Definition 2. We define the leakage into low component with regard to the while
loop up to the kth iteration by addition of the entropy of the union of the boolean
test for each iteration and the sum of the entropy of the loop body for each
weighted sub-probability measures:

Lwhile(k) = H̃(P) + H̃(QL|P)

= H̃(P0 ∪ . . . ∪ Pk) + H̃(QL
0 ∪ . . . ∪ QL

k |P0 ∪ . . . ∪ Pk)

=

∑n

i=0(pi log2
1
pi

)
∑n

i=0 pi

+

∑n

i=0

∑m

j=0 qij log2
qij

pi∑n

i=0

∑m

j=0 qij

= H̃(p0, . . . , pn) +

n∑

i=0

piH̃

(
qi0

pi

,
qi1

pi
, . . . ,

qim

pi

)

where Pi = {pi}, thus H̃(Pi) = log2
1
pi

.

– case 0 ≤ k < n: P = P0 ∪ . . . ∪ Pk and QL = QL
0 ∪ . . . ∪ QL

k are two incom-
plete distributions, such that, W (P0)+ . . .+W (Pk) < 1, and W (QL

0 )+ . . .+
W (QL

k ) < 1. With regard to this case, part of the space has exit the loop
but not all, we therefore can compute the leakage by observing each iteration
before the loop terminates. An intuition behind of the introduction of the no-
tion of entropy of incompleted loops is that the term log2(1/pk) in Shannon’s
formular is interpreted as the entropy of the generalized distribution consist-
ing of the single probability pk and thus it implies that Shannon’s entropy
definition H(p1, . . . , pn) =

∑n
k=1 pk log2(

1
pk

) is actually a mean value.

– case k = n: P = P0 ∪ . . . ∪ Pn and QL = QL
0 ∪ . . . ∪ QL

n are two complete
distributions, such that, W (P0) + . . . + W (Pk) = 1, and W (QL

0 ) + . . . +
W (QL

k ) = 1, i.e.
∑n

i=0 pi =
∑n

i=0

∑m

j=0 qij = 1, all part of the space exit the
loop.

– case k = ∞: this is the case of nonterminating (partitially or totally) loops,
our tool returns the partitions makes the loop terminated (case of partially
termination) and also the left partition which cannot produce new partitions
but still satisfy test b.

Proposition 1 presents a relationship between our leakage definition for loops
with Malacaria’s [16] definition. We show that our algorithm calculates the same
final quantity (when the loop terminates) as Malacaria’s method, hence pro-
viding correctness for his method relative to our semantics. Unlike Malacaria’s
method there is no need for any initial human analysis of loop behavior and
it is completely automatic while applying to general while language programs.
Furthermore, our leakage rate is variant with observing time which is more
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precise than Malacaria’s average rate. Such analysis can provide a leakage pro-
file of programs to show the behavior of information flow with observing time,
i.e. how much information is leaked till any iteration of interest (depends on
the observers). Importantly, our analysis can provide an automatic analysis for
quantitative information flow and make the leakage computation due to each
iteration.

Proposition 1. Assume the loop is going to terminate at the nth iteration,
at the point of termination, the leakage computation for while loop due to our
definition is equivalent to Malacaria’s definition of leakage for loops [16].

Proof. Lwhile(n) is the leakage into the low component with regard to the while
loop. The pieces of the space partitioned by the semantic function of while loop
are disjoint, hence there is no collisions which happened in Malacaria’s definition.
According to Definition 2, we have:

Lwhile(n) = H̃(P0 ∪ . . . ∪ Pn) + H̃(QL
0 ∪ . . . ∪ QL

n |P0 ∪ . . . ∪ Pn)

=
W (P0)H̃(P0) + . . . + W (Pn)H̃(Pn)

W (P0) + . . . + W (Pn)
+

W (QL
0 )H̃(QL

0 |P0) + . . . + W (QL
k )H̃(QL

k |Pk)

W (QL
0 ) + . . . + W (QL

k )

=
p0

p0 log
2

1

p0

p0

+ . . . + pn
pn log

2

1

pn

pn

p0 + p1 + . . . + pn

+

∑n

i=0

∑m

j=0 qij log2
qij

pi∑n
i=0

∑m
j=0 qij

=

n∑

i=0

(pi log2

1

pi

) +

n∑

i=0

pi

m∑

j=0

qij

pi

log2

qij

pi

= H(p0, . . . , pn) +

n∑

i=0

piH(
qi0

pi

,
qi1

pi

, . . . ,
qim

pi

)

We have proved that, when k = n, our leakage definition is equivalent to
Malacaria’s leakage definition of collision free loops [16]. For the case of semantic
function f : X → Y with collisions in Malacaria’s definition, we consider to
make an adjusting to Y to eliminate the collisions, drive the new partitions Ei

of disjoint measurable subsets of X , and let Pi = µ(Ei), where 0 ≤ i ≤ n. The
rest of the proof is then similar to previous arguments.

Example 2 (A terminating example).

l:=0; while(l<h) l:=l+1; print(l);

Assume h is a 3-bit high security variable with distribution:

[
0 w.p. 7

8 1 w.p. 1
56 . . . 7 w.p. 1

56

]

l is a low security variable. The semantic function of while-loop presents the
decompositions Pi with regard to the partitions due to the boolean test, and
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the resulting set of probability distribution QL
i of low level variable l due to the

loop body under the condition that event ei has taken place are:

P0 = {µ(e0)} = { 7
8} QL

0 = {µl(0)} = { 7
8}

P1 = {µ(e1)} = { 1
56} QL

1 = {µl(1)} = { 1
56}

. . . . . .
P7 = {µ(e7)} = { 1

56} QL
7 = {µl(7)} = { 1

56}

i.e.

f[[while]]


〈h, l〉 7→




〈0, 0〉 w.p. 7/8
〈1, 0〉 w.p. 1/56
. . . . . .
〈7, 0〉 w.p. 1/56





 = 〈h, l〉 7→




〈0, 0〉 w.p. 7/8
〈1, 1〉 w.p. 1/56
. . . . . .
〈7, 7〉 w.p. 1/56




Note that qi = pi, hence H̃(QL|P) = 0, i.e. the leakage of the body is 0, we
calculate the leakage due to each iteration i0≤i≤7 by:

Lwhile−0 = H̃(P0) = 0.19 Lwhile−1 = H̃(P0 ∪ P1) = 0.30

Lwhile−2 = H̃(P0 ∪ P1 ∪ P2) = 0.41 Lwhile−3 = H̃(P0 ∪ . . . ∪ P3) = 0.52

Lwhile−4 = H̃(P0 ∪ . . . ∪ P4) = 0.62 Lwhile−5 = H̃(P0 ∪ . . . ∪ P5) = 0.71

Lwhile−6 = H̃(P0 ∪ . . . ∪ P6) = 0.81 Lwhile−7 = H̃(P0 ∪ . . . ∪ P7) = 0.89

The result of this example also matches our expectation: the initial information
contained in h is totally revealed to the low security output by the end of the
program. Our analysis therefore provides the leakage profile of the loop showing
the behavior of information flow by observing the output at each observable time
point (in this case at the terminating point of the program).

Example 3 (A partially terminating example).

while(l>h) l:=l+1; print(l);

Assume h is a high security variable and l is a low security variable with joint

distribution: µ〈h,l〉 7→




〈0, 2〉 w.p. 7
8

〈1, 2〉 w.p. 1
56 A

−−−−−−−−−−
〈2, 2〉 w.p. 1

56
. . . . . .
〈7, 2〉 w.p. 1

56 B




Note that this example is partially terminating: non-terminating on the top part
(A) of the space while terminating on the bottom part (B) of the space. If the

observation point is after iteration-1 the leakage is computed by: L = H̃(6/56) =

3.22 otherwise the leakage is computed by: L = H̃(6/56, 50/56) = 0.491. The
first partition is part B of the space, which quits the loop immediately without
entering the loop, and the second partition is part A which never finds its way
out.
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Example 4 (A non-terminating example).

while(l>h) {l:=l+1;} print(l);

Assume h is high security variable and l is low security variable with joint dis-
tribution:

µ〈h,l〉 7→
[
〈0, 2〉 w.p. 1

3 〈1, 2〉 w.p. 2
3

]

The whole space will never quit the loop in this example, our tool outputs
the result since no going out partition is produced but the boolean test is still
satisfied. The leakage computation is given by: L = H̃(⊥) = 0, this also meets
our intuition: no information is leaked by a non-terminated loop (assuming non-
termination is not observable).

4 An Implementation

For a feasibility study, we have implemented this method which can be used to
calculate mutual information between (sets of) variables at any program point
automatically. Fig. 1 describes the basic structure of the system. The initial
configuration (joint distribution for variables V ) and the example program are
fed into the analyser. The analyser will present the distribution transformation
and the measurement of the secret information leaked to low component at each
program point by executing the program.

Leakage Analyzer

Output

Leakage to public

Measure spaces,
Leakage computer

Parser,
interpreter

Scanner,
semantics classes:

read input files,
recognize tokens
which have to be
passed to parser

QIF_Main

Input

Config File
(initial distributon)

example
program

specify syntax
and interpretation:

distr. transformation
& leakage computation

Fig. 1. Implementation: structure

Example 5. The following program computes the following sequence: if h is even
then halve it else multiply by 3 and add 1, repeat this process until h is 1, then
output l, i.e. output how many of this operations performed. Intuitively, this
program just publishes some information of h to l, but not too much.
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int l := 0;

while (h>1) {

if (h%2 == 0) h := h/2

else h := h*3+1;

l++;

print(l);

}

print(l);

Leakage with time (h: 4-bit high level variable)
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Leakage with time (h: 8-bit high level variable)
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Leakage with time (h: 10-bit high level variable)
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Leakage with time (h: 16-bit high level variable)
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Fig. 2. Results of the experiment

By applying the analysis rules given in Clark et alia [4], the upper bound on
leakage will be analyzed as the all the information in h. Malacaria’s method
can give a precise result but it cannot do it automatically, and the number
of iterations is required in advance. Our approach however presents an analysis
which is both precise and automatic, also shows the information flow behavior for
the observed time (in iterations) elapsed. In order to check the time complexity
and feasibility of the analysis, we performed experiments using different sizes of
variables. Figure 5 shows the leakage analysis results in the cases of high input h
being 4-bit, 8-bit, 10-bit, 16-bit variables under uniform distribution, as well as
the time consumed for the final leakage computation (omitting the computations
on each iteration) as 30, 82, 103, and 187 seconds respectively. The results for
this example show how much secure information flowed from h to l as observed
time (each iteration) elapsed.
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Let us take h as a 16-bit variable as an example, the initial joint distribution

for 〈h, l〉 is




〈0, 0〉 w.p. 1
216

〈1, 0〉 w.p. 1
216

. . . . . .
〈216 − 1, 0〉 w.p. 1

216


. Input such initial configuration and the ex-

ample program into our analyser. The analyser transforms the joint distribution
by analyzing the program. Note that at the end of each iteration, l is output to
public. The analyser thus computes the leakage at each time(iteration) point(t)
Lt by applying the definition of leakage presented in Section 3, and there are 339
iterations in total. Furthermore, as a test of tractability, using our leakage anal-
ysis system to compute the final result (without internal leakage computation)
is a matter of minutes, and to generate plots of loop iterations and information
flow with observing time takes hours. The critical component in time complexity
lies in the conditional mutual information calculation according to the result of
the experiments.

5 Related Work

There has been significant activities around the question of how to measure the
amount of secure information flow caused by interference between variables by
using information theoretic quantities. The precursor for this work was that of
Denning in the early 1980’s. Denning [8] presented that the data manipulated by
a program can be typed with security levels, which naturally assume the struc-
ture of a partially ordered set. Moreover, this partially ordered set is a lattice
under certain conditions [7]. Denning first explored the use of information theory
as the basis for a quantitative analysis of information flow in programs. How-
ever, he did not suggest how to automate the analysis. In 1987, Millen [20] first
built a formal correspondence between non-interference and mutual information,
and established a connection between Shannon’s information theory and state-
machine models of information flow in computer systems. Later related work is
that of McLean and Gray and McIver and Morgan in 1990’s. McLean presented
a very general Flow Model in [19], and also gave a probabilistic definition of
security with respect to flows of a system based on this flow model. The main
weakness of this model is that it is too strong to distinguish between statistical
correlation of values and casual relationships between high and low object. It is
also difficult to be applied to real systems. Gray presented a less general and
more detailed elaboration of McLean’s flow model in [13], making an explicit
connection with information theory through his definition of the channel ca-
pacity of flows between confidential and non-confidential variables. Webber [27]
defined a property of n-limited security, which took flow-security and specifically
prevented downgrading unauthorized information flows. Wittbold and Johnson
[28] gave an analysis of certain combinatorial theories of computer security from
information-theoretic perspective and introduced non-deducibility on strategies
due to feedback. Gavin Lowe [15] measured information flow in CSP by count-
ing refusals. McIver and Morgan [17, 18] devised a new information theoretic
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definition of information flow and channel capacity. They added demonic non-
determinism as well as probabilistic choice to while program thus deriving a
non-probabilistic characterization of the security property for a simple impera-
tive language. There are some other attempts in the 2000s: Di Pierro, Hankin
and Wiklicky gave a definition of probabilistic measures on flows in a probabilis-
tic concurrent constraint system where the interference came via probabilistic
operators [9–11]. Clarkson etc. suggested a probabilistic beliefs-based approach
to non-interference [5, 6]. This work might not works for most of situations, dif-
ferent attackers have different beliefs, the worst case leakage bound is required.
Boreale [1] studied the quantitative models of information leakage in the process
calculi. Clark, Hunt, and Malacaria [2–4] presented a more complete quanti-
tative analysis but the bounds for loops are imprecise. Malacaria [16] gave a
more precise quantitative analysis of loop construct but this analysis is hard to
automate.

6 Conclusion and Future Work

Quantitative information flow for security analysis provides a potential way to
examine the security properties in computer software. However, much work on
quantitative information flow mechanisms lacks a satisfactory account of precise
measurement of information released. This problem has not yet been successfully
solved. This paper develops an automatic system for quantitative analysis of in-
formation flow in a probability distribution sensitive language. In order to give a
more precise analysis for loops, we have given the leakage definition with observ-
ing time by using the measure of entropy of generalized probability distributions.
We also have introduced probabilistic semantics to automate such analysis for
leakage. The family of techniques for information flow measurement presented
in this papaer can be applied to check whether a program meets an information
flow security policy by measuring the amount of information revealed by the
program. If the information revealed is small enough we can be confident in the
security of the program, otherwise the analyser’s result indicates the program
points where the excessive flow occurs.

We are currently developing an approximation on our method. We propose
to develop an algorithm to provide an abstract analysis of leakage and also to
integrate with bounds on the number of small steps in the operational semantics.
Such abstract analysis will enable us to produce more feasible and precise graphs
of leakage behavior of a program over time. We also expect to improve our
analysis based on the experimental results of the influence of certain parameters
over the quality of approximation.

Secondly, we propose to develop a chopped information flow graph for repre-
senting information flow of program by capturing and modeling the information
flow of data tokens on data slice. Since such graph can show the information flow
on data slice explicitly, it can represent well the interesting elementary changes
of the information flow of a program and can enhance efficience of the leakage
analysis of programs.
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Further possible plan is inspired by [21, 22], which suggested a scheme for the
backwards abstract interpretation of nondeterministic, probabilistic programs.
The idea is that we start from a description of an output event, compute back
to the description of the input domains describing their probability distribution
of making the behavior happen. This allows the effective computation of upper
bounds on the probability of outcomes of the program.

The leakage analysis techniques we considered here concentrates on simple
programming languages over semantics. There is still a long way to go before it
can be actually used due to the need for formal semantics for full-blown languages
and poor runtime performance of the leakage analyser implementation. It is also
required to apply the measurement techniques to real programming languages
and to operate on large programs without using too much time and computing
resources.
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