
1

Faraz Shaikh, Chaiyong Ragkhitwetsagul, Abdur Rehman Pathan
Carnegie Mellon University

{fshaikh, cragkhit, apathan}@andrew.cmu.edu
Webpage: http://www.andrew.cmu.edu/user/cragkhit/hercules/

Mentor: Shobhit Dayal (sdayal@andrew.cmu.edu)

Abstract

Current Distributed File Systems separate their servers into clusters of Metadata Servers
(MDS) and Data Servers (DS). This separation of I/O access path into data and control
paths allows parallel access to data from multiple clients to multiple data storage servers.
Although metadata might constitute relatively small portion of the file system as
compared to its overall size, metadata accesses might constitute significant percentage of
overall I/O accesses thus making the scalability and performance of the MDS cluster of
significant importance. Additionally, though the overall capacity of the DFS can be easily
scaled by addition of additional data servers to the DS cluster, metadata exhibits a higher
degree of interdependence, making the design of a scalable MDS cluster significantly
challenging. We introduce the design of the Hercules File System (HFS), a distributed
file system with scalable MDS cluster and scalable and fault-tolerant DS cluster. The
Hercules File System allows Metadata and Data Servers to be dynamically added to the
MDS cluster even after the initial setup time while the system is up and running without
disrupting the normal operations carried out by the file system. The file system is also
fault-tolerant and can serve clients in the events of failures of the DS and MDS. A Health
Monitor is also designed which is a GUI tool that monitors the state of the servers of the
File System and also gives the run-time visualization of operations requested by the
clients.

Hercules File System

A Scalable Fault Tolerant Distributed
File System

2

Contents:

1. Introduction ... 4

2. Project Requirements .. 6

3. System Design... 8

3.1 File System Client ... 8

3.2 File System Servers ... 9

3.3 Protocol RPC and Buffer Management ... 10

3.4 Health Monitor .. 11

4. Application Programming Interface(s).. 13

4.1 FUSE (POSIX Calls support):... 13

4.2 Client Library: ... 13

4.3 Mount a Client (Client Options).. 14

4.4 Unmount a Client .. 15

4.5 Server Options... 15

4.6 Formatting the Hercules File System Servers ... 15

4.7 Configuration File ... 16

4.8 Update Notification to Client .. 16

4.9 Health Monitor Options... 17

5. Implementation.. 18

6. Evaluation.. 21

7. Demo/Use Sequence(s) ... 23

7.1 Basic File System Operations.. 23

7.2 Adding a New Node .. 23

7.3 Failure Resilience .. 23

3

7.4 Intermittent Failures .. 24

7.5 Health Monitor Functionality .. 24

8. Quantitative Performance Results ... 29

9. Project Status... 31

10. Future Work .. 32

11. Conclusion... 34

12. References ... 35

4

1. Introduction

A parallel file system is simply a component of a parallel I/O system that presents a

hierarchical (file- and directory-based) view of data stored in the system. It includes a metadata

server (MDS), which contains information about the data on the I/O nodes and a Data Server

(DS) which contains the actual file data. Metadata is the information about a file—for example,

its name, location, and owner. Some parallel file systems use a dedicated server for the MDS,

while other parallel file systems distribute the functionality of the MDS across the I/O nodes.

The main advantages a parallel file system can provide include a global name space,

scalability, and the capability to distribute large files across multiple nodes.

Current examples of Parallel File Systems include PVFS, PVFS2, PanFS, Lustre and

OGFS.

PVFS (Parallel Virtual File System): PVFS is jointly developed by the Parallel Architecture

Research Laboratory at Clemson University and the Mathematics and Computer Science

Division at Argonne National Laboratory. The metadata server in PVFS can be a dedicated

node or one of the I/O nodes or clients. The node serving as the MDS runs a daemon called

mgr, which manages the metadata for the files in the file system. In PVFS, data is distributed

across multiple I/O nodes. The MDS provides information about how this data is distributed

and maintains the locks on the distributed files for shared access. I/O nodes run a daemon

called iod, which stores and retrieves files on local disks of the I/O nodes.

Lustre: Lustre is designed, developed and maintained by Cluster File Systems, Inc. It stores

file system metadata on a cluster of MDSs and stores file data as objects on object storage

targets (OSTs), which directly interface with object-based disks (OBDs). The MDSs maintain a

transactional record of high-level file and file system changes. They support all file system

namespace operations such as file lookups, file creation, and file and directory attribute

manipulation—directing the actual I/O requests to OSTs, which manage storage that is

physically located on underlying OBDs.

PanFS: The Panasas ActiveScale File System (PanFS) integrates an object-based clustered

architecture to orchestrate file activity across the Storage Cluster and manage system

performance. The file system virtualizes data across all StorageBlades, and presents a single,

cache coherent unified namespace. PanFS simultaneously supports two high-performance data

access modes: the DirectFlow data path and the NFS/CIFS data path.

OGFS: The OpenGFS uses a "Pool" driver to organize storage devices into a logical space. It

stores data as blocks on this virtual block device. A locking subsystem, OmniLock, provides

5

the locking infrastructure necessary to ensure consistency. It also uses a virtual block device

architecture, using LVM (Logical Volume Manager) underneath the GFS file system layer.

There are quite a few limitations to the above mentioned parallel file systems. To outline a few

with reference to PVFS, the features missing currently are:-

• No caching of either data or metadata on the client side

• No scalability solution

o Since its handle space is partitioned at format time, new servers cannot be added

at run-time

• No scope for fault tolerance

• No write-sharing through mmap

• No support for Symbolic Links

To overcome some of these limitations, with the Hercules File System, we have attempted to

achieve both scalability and fault-tolerance of meta-data servers and data servers. We also

implement attribute caching on the client side.

6

2. Project Requirements

The Hercules File System was designed and implemented with the following requirements:-

• Support for POSIX Calls

The Hercules File System uses the File System in Userspace (FUSE) module to

service requests from the clients. Thus, as FUSE provides POSIX compatibility,

our file system would also support all POSIX calls providing the clients

flexibility to run any POSIX compatible application in Linux.

• Data Server Fault Tolerance

High Availability is an important aspect of a Distributed System. File data is

stored on the Data Servers in the Hercules File System. If any of the data

servers fail, the file data would be lost. Hence, with active replication of the file

data on a different data server, we would provide fault tolerant data servers.

Only one failure of a data server can be tolerated by the Hercules File System.

The clients would be unaware of such failures in the system.

• Meta-Data Server Fault Tolerance

The Meta-Data Servers in the Hercules File System store the attributes (meta-

data) of a file. Hence, these servers must be highly available to serve clients.

With MySQL Master-Slave replication, each MDS would have a backup MDS

which would operate in case of a failure of the master MDS. The clients would

be unaware of such failures in the system.

• Data Server Scalability

File data is striped across data servers. This provides higher read bandwidth.

When the load on the data servers increases, addition of data servers must be

supported to help reduce the workload and improve performance of the data

servers. The Hercules File System would support such upward scalability of the

Data Servers. This operation would be completely transparent to the clients

using the file system, and would not require unmounting and remounting.

• Meta-Data Server Scalability

7

There would generally exist only one meta-data server (and its backup) in the

initial configuration of the Hercules File System. But, as the number of clients

would increase, as well as the namespace would increase, there is a need to add

additional meta-data servers. The Hercules File System would support such

upward scalability of the Meta-Data Servers. This operation would be

completely transparent to the clients using the file system, and would not

require unmounting and remounting.

• Run-Time Monitoring GUI Tool

Status of every machine in the system can be monitored in real time using the

Health Monitor. It can facilitate a system administrator in system monitoring. It

also benefits the system developer because it can show the activities happening

on the servers at real-time. The application includes other interesting features,

such as email notification, and SSH terminal. The application was written in

Java, so it is platform-independent. This means that it can be run anywhere on

any platform.

8

3. System Design

The system design consists of four main components as follows:-

3.1 File System Client

This component has the implementation of the file-systems callbacks issued by fuse. We

keep our implementation as agnostic to fuse as possible, by building a library that captures the

eccentrics of our file systems. This would allow the file system to be ported to different client

operating systems later.

As shown in fig. 3.1.1, the FUSE kernel module and the FUSE library communicate via a

special file descriptor which is obtained by opening /dev/fuse. This file can be opened multiple

times, and the obtained file descriptor is passed to the mount syscall, to match up the descriptor

with the mounted file system, the Hercules File System.

 Figure 3.1.1

The Hercules File System Client would receive calls reflected by the FUSE module and then

pass it on to the client library which communicates the file system servers using the protocol

9

RPC. The client additionally would be designed to cache the file attributes after an open()

system call.

An abstract view of the Client architecture is shown in fig. 3.1.2

3.2 File System Servers

There are two types of servers in the Hercules File System – the meta-data server and the

data server.

Both the servers would be built on the same design and would share the same code binary.

A state machine is designed on the server to accept incoming requests. On the server, there

is a thread pool per component. The activities to be performed by these components would

be servicing the clients, polling, accessing the disk etc. An inbound thread polls

continuously for client requests and on receiving a request, puts it on the appropriate queue

i.e. As requests come in to the metadata server they will be queued in the server queue and

then will be later dispatched to threads for execution. After the request is serviced by

another thread, it puts it on the outbound queue. The outbound queue gets the request

which was serviced and sends it back to the respective client.

An abstract view of the Hercules File System servers is as shown in fig. 3.2.1.

Hercules File System Client

Remote Procedure Calls

File System Library

FUSE Glue

FUSE

Linux OS

 Fig. 3.1.2

Attribute Caching

10

3.3 Protocol RPC and Buffer Management

The File System Client-Server Protocol consists mainly of a Header, Command Parameters

and Data as shown in Fig. 3.3.1

 A library would be written to encode and decode these RPC packets, given the

respective command. This component takes care of structure packing/unpacking and handling

the byte-ordering issues. The library would also contain functions, which would retrieve the

command size, allocate data buffer depending on the type of the command. Thus, once this

protocol buffer library is developed, it would be extremely easy to add a new command into

the system.

Hercules File System Server Architecture

Servers (MD/DS)

Storage

Handle Manager

Global State Manager

Remote Procedure Call

 Fig 3.2.1

Job

Monitor,

Threading

and

Queuing

Hercules File System Protocol Packet Structure

HFS Header

Command Parameters

Data

Fig. 3.3.1

11

Thus, adding a new command into the system would just mean adding it to the list of existing

commands, adding its structure and listing it in the size retrieval function.

3.4 Health Monitor

The Health Monitor composes of many packages as shown in Fig 3.4.1.

Figure 3.4.1 package diagram

 The user interface was written in Swing. The domain package includes all the classes

for creating log files, creating monitoring threads, sending email notification, create SSH

terminal, reading XML setting file, converting from Java class to C struct, and data class

(beans). The Health Monitor starts by connect to the root MDS to get all the configurations of

all servers in the system. When it starts monitoring, it keeps sending ping packets to all the

UI

Swing

Domain

protocol

logger monitor email ssh xml

beans

Technical Services

mail activation ganymedssh2

12

machines to check alive. The ping replied packet contains the information of the latest

activities happening on the servers. Then it converts all the data back in Java class format, and

display on the screen.

13

4. Application Programming Interface(s)

The various application programming interfaces used in the Hercules File System are as

follows:-

4.1 FUSE (POSIX Calls support):

static int clnt_fuse_getattr(const char *path, struct stat *stbuf)

static int clnt_fuse_open(const char *path, struct fuse_file_info *fi)

static int clnt_fuse_readdir(const char *path, void *buf, fuse_fill_dir_t filler, off_t offset, struct

fuse_file_info *fi)

static int clnt_fuse_mknod(const char *path, mode_t mode, dev_t rdev)

static int clnt_fuse_mkdir(const char *path, mode_t mode)

static int clnt_fuse_read(const char *path, char *buf, size_t size, off_t offset, struct

fuse_file_info *fi)

static int clnt_fuse_write(const char *path, const char *buf, size_t size, off_t offset, struct

fuse_file_info *fi)

void * clnt_fuse_init (struct fuse_conn_info *conn)

4.2 Client Library:

//- data -path ops -//

HFS_STATUS hfs_getattr(const char *ppath, struct stat *stat_buff);

HFS_STATUS hfs_read(PHFS_CLIENT_FILE_HDL pClientFileHdl, char *buffer,

off_t offset, IN OUT size_t *size);

HFS_STATUS hfs_write(PHFS_CLIENT_FILE_HDL pClientFileHdl, const char *buffer,

off_t offset, IN OUT size_t *size);

14

// Name space ops //

HFS_STATUS hfs_namei(char *name, PHFS_CLIENT_FILE_HDL pHfsClienthdl);

HFS_STATUS hfs_getIAttr(PHFS_CLIENT_FILE_HDL pHfsClientHdl, PHFS_IATTR

pHfsIAttr);

HFS_STATUS hfs_getISize(PHFS_IATTR pHfsIAttr);

HFS_STATUS hfs_setIAttr(PHFS_CLIENT_FILE_HDL pHfsClientHdl, PHFS_IATTR

pHfsAttr, __u32 attrMask);

HFS_STATUS hfs_readdir(PHFS_CLIENT_FILE_HDL pClientFileHdl, off_t offset,

PHFS_QUEUE_ITEM *ppRetQueueItem);

// - Creation ops -//

HFS_STATUS hfs_create (char *ppath, mode_t mode, __u32 fs_dev_t,

PHFS_CLIENT_FILE_HDL pClientFileHdl);

HFS_STATUS hfs_create_alloc_data_handle(PHFS_IATTR piAttr);

HFS_STATUS hfs_create_alloc_meta_data_handles(PHFS_IATTR piAttr,

PHFS_CLIENT_FILE_HDL pClientFileHdl);

//- Creation of a new directory entry. The namespace is distributed here -//

HFS_STATUS hfs_add_dirent(PHFS_CLIENT_FILE_HDL parentFileHdl,

PHFS_CLIENT_FILE_HDL childFileHdl, PHFS_DIRENT pDirent);

4.3 Mount a Client (Client Options)

The client executable is executed in the following manner:-

$HFS/bin/hfs_client <mount_point> ROOT_MDS_IP_ADDR ROOT_MDS_PORT <logfile>

The mount_point is a directory on the local file system.

15

The ROOT_MDS_IP_ADDR and ROOT_MDS_PORT specify the IP address and Port of the

root MDS from where the mapping of the servers is retrieved for the client to connect to.

The logfile would log all operations of the client.

4.4 Unmount a Client

Unmounting a client is as simple as unmounting any other file system in Linux

umount <mount_point>

4.5 Server Options

The Hercules File System Server executable begins with the following options:-

$HFS/bin/hfs_server <config_file> <server_id> <mds|ds> <max_no_of_clients_supported>

The config file specifies the number of Meta-Data Servers and Data Servers with their

respective information such as IP Address, Port, Data Store Path, Log File etc.

4.6 Formatting the Hercules File System Servers

The Hercules File System servers can be formatted using the following command:-

$HFS/bin/mkfs.hfs <config_file> <server_id> <mds|ds>

For the Meta-Data Servers, this creates a new database with a directory entry for root and

namespace information for ‘.’ and ‘..’

For the Data Servers, the base file is created in the data store path specified in t he

configuration file which is used for data handle management.

16

4.7 Configuration File

Each server begins taking a configuration file as an input parameter. A sample configuration

file is shown below:-

<MDS>

mdscount=1

localhost.localdomain 127.0.0.1 10000 TCP /hercules/ds0 /hercules/log0.log

<DS>

dscount=4

localhost.localdomain 127.0.0.1 8090 TCP /hercules/ds0 /hercules/log0.log4

localhost.localdomain 127.0.0.1 8091 TCP /hercules/ds1 /hercules/log1.log

localhost.localdomain 127.0.0.1 8092 TCP /hercules/ds2 /hercules/log2.log

localhost.localdomain 127.0.0.1 8093 TCP /hercules/ds3 /hercules/log3.log

4.8 Update Notification to Client

On addition of either a Meta-Data Server or a Data- Server, an executable is executed which

sends a signal to a running server on that machine to notify the clients to update its file system

configuration.

$HFS/bin/updatehfsconfig

This must be executed on an existing server containing the list of all the connected clients.

17

4.9 Health Monitor Options

The setting panel of the Health Monitor lets a user to do the followings:

1. Turn on/off the email notification

2. Add/remove/update receivers of the email

3. Ping time interval

4. SSH setting (username, password, server ID, etc.)

5. Root MDS IP

6. Root MDS port

18

5. Implementation

Queuing and Threading Model:

Both the servers and clients are multithreaded processes. As requests come in to the metadata

server they are queued in the server queue and then will be later dispatched to threads for

execution. This was implemented as a basic thread pool manager with service queues.

Update Notification to the Client:

On change in the file system configuration, an executable is executed which signals the server

process. The server process then sends an unsolicited command back to the client, notifying it

to update its configuration. The client then starts a transaction to update as follows:-

− TRANSACTION BEGIN

− FREEZE CLIENT

− WAIT FOR IN-FLIGHT COMMANDS

− UPDATE MAPPING

− CLOSE OLD CONNECTION

− TRANSACTION END

Thus, the client can adapt to the new file system configuration thereby supporting scalability.

File System Operations:

Create

The create file/directory performs several operations in the file system as follows:-

- Get_Attr

- Namei

- Lookup

19

- MkNod

- Get Free Meta data Handles

- Get Free Data Handles

Read

The Read operation gets data from both the data and meta-data servers. The data needs to be

read off all stripes of the data servers.

The packets involved in a Read Operation are as follows:-

- Get_Attr

- Namei

- Lookup

- Read

In case of failure of a data server, the client reads the data from its adjacent data server thereby

providing fault-tolerant reads.

Write

The Write operation writes data in stripes on the data servers. The data needs to be written on

all stripes of the data servers.

The packets involved in a Read Operation are as follows:-

- Get_attr

- Namei

- Lookup

- Read

20

The write operation performs active replication on the data servers. Each stripe is replicated on

its adjacent data server. Thus, a client actively writes to both data servers.

Health Monitor:

Retrieve Machine Configurations

When the user press ‘Get Machine Configuration from Server’, the Health Monitor call

getExtentSize() from the root MDS server. The returned value is the size of data being sent

(not include the header part). After that, it send another command getConfig(), which returns

the configurations of all the machines. The Health Monitor converts all the byte data into a

Java instance, parse it, and display on the screen.

Start monitor

The Health Monitor starts monitoring the system, it starts sending ping packets to all the

machines. The returned data are interpret (includes the activity light coding), and update the

display panel of the MDS and the DS machines. The default ping time interval is 1 second.

Sending email notification

When the Health Monitor detects that a machine dies, it send an email to all the emails in the

setting panel. This also includes the event when the machine becomes alive again.

Starting SSH terminal

A user can start a new SSH terminal from inside the Health Monitor. Select a machine from the

display panel by clicking it, and click ‘SSH’ button. The SSH terminal will show up.

21

6. Evaluation

To evaluate the performance of our file system, we use machines from the EMU Lab test bed.

The Hercules File System Team would like to thank Emu Lab for its support.

About EMU Lab: Emulab is a network testbed, giving researchers a wide range of

environments in which to develop, debug, and evaluate their systems. The name Emulab refers

both to a facility and to a software system. The primary Emulab installation is run by the Flux

Group, part of the School of Computing at the University of Utah. There are also installations

of the Emulab software at more than two dozen sites around the world, ranging from testbeds

with a handful of nodes up to testbeds with hundreds of nodes. Emulab is widely used by

computer science researchers in the fields of networking and distributed systems.

Our setup at EMU Lab consisted of the following components:-

• 3 Primary Meta-Data Servers

• 3 Backup Meta-Data Servers

• 5 Data Servers

• 3 Clients

• LAN Connection among all nodes

To perform the experiments, we initially began with a configuration of only one meta-data

server and 3 data-servers. Also, one client was used initially. We then added data servers and

meta-data servers (along with their backups) into the system. The number of clients was also

increased till three.

The total setup at EMU Lab is shown in fig. 6.1

22

23

7. Demo/Use Sequence(s)

7.1 Basic File System Operations

The demo included the working of the basic distributed file system client that supports basic
file system operations such as Create (File), Open, Read, Write, Mount, Unmount, Create
Directory. The file system supports applications compatibility as it provides support for POSIX
calls. Audio and Video Files can be played by the traditional Linux players (e.g. mplayer, vlc
etc.)
The operations performed during the demo were cp, cat, ls, ls –l, ls –lR etc.

7.2 Adding a New Node

A new node would be introduced in the system while the system is up and running. This would
prove the concept of scalability. Our benchmark application was to demonstrate a multimedia
application. The new node added could be either of the servers.

• Meta-Data Server
A new meta-data server was introduced into the system at run time. Its backup meta-data
server (with the MySQL server replicated) was also be added. An update was sent to the
client.
There was no downtime for the system. Continuous file system availability persisted.
The client was not mounted while this operation took place.

• Data Server
Data Servers were dynamically added to the system thereby increasing the handle space.
There was no downtime for the system. Continuous file system availability persisted.
The client was not mounted while this operation took place.

7.3 Failure Resilience

The system also supported fail-stop failures. We do not handle network partitioning.
Operations such as killing a meta-data server, killing data-servers were performed.

The multimedia application playing on the client side continued to play even in case of a
failure of a data-server. In case of a failure of the meta-data server, the backup meta-data server
was used by the client to service its requests. This was demonstrated successfully without
affecting the client.

24

7.4 Intermittent Failures

To demonstrate an intermittent failure, a node (data-server) was removed from the whole
system for a small amount of time after which it came back into the system. This was
demonstrated while a multimedia application was playing at the client. The client was
completely unaware of the intermittent failure.

7.5 Health Monitor Functionality

These are the screenshots of the working Health Monitor.

Figure 7.5.1 the system is in normal state. All machines are working.

25

Figure 7.5.2 parallel striped read across all the data servers

Figure 7.5.3 parallel write striped across all the data servers

Figure 7.5.4 parallel reads & writes from clients

26

Figure 7.5.5 RAID 0+1 in action. Degraded read after one DS is down.

Email notification:

The Health Monitor notifies the users by sending an email when a machine is dead, or becomes

alive.

Figure 7.5.6 the user receives email notification

27

Figure 7.5.7 the email’s content

28

SSH Terminal:

Figure 7.5.8 SSH terminal

29

8. Quantitative Performance Results

To evaluate the performance of our file system, we used the standard file system benchmarking

tools like Postmark and IOZone. These tools are described in detail below:-

• PostMark

PostMark was designed to create a large pool of continually changing files and to

measure the transaction rates for a workload approximating a large Internet electronic

mail server. It generates an initial pool of random text files ranging in size from a

configurable low bound to a configurable high bound. This file pool is of configurable

size and can be located on any accessible file system. Once the pool has been created

(also producing statistics on continuous small file creation performance), a specified

number of transactions occur. Each transaction consists of a pair of smaller

transactions:

− Create file or Delete file

− Read file or Append file

• IOZone

IOZone is a filesystem benchmark tool. The benchmark generates and measures a
variety of file operations. Iozone has been ported to many machines and runs under
many operating systems. Iozone is useful for performing a broad filesystem analysis of
a vendor’s computer platform. The benchmark tests file I/O performance for the
following operations:

Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random

read, pread, mmap, aio_read, aio_write

It is POSIX and 64 bits compliant. It is also used for Distributed file server

measurements (Cluster)

30

The Postmark benchmark is used to determine the number of meta-data operations, and from

the graph it is evident, that we can create around 15 files per second.

The IOZone benchmark records the number of I/O Operations per second. Our file system with

4 data servers and 1 meta-data servers, and a stripe-size of 4kB gave around 460 reads per

second and around 225 writes per second.

31

9. Project Status

The Hercules File System has been implemented as per the proposed design. It is currently

operational in all of its claims. The Hercules File System final project demo was successful

with all of its features.

The Hercules File System supports the following features:-

1. Working Distributed Parallel File System

2. POSIX Compatibility

3. Fault Tolerant Data Servers

4. Fault Tolerant Meta-Data Servers

5. Scalable Meta-Data Servers

6. Scalable Data-Servers

7. Health Monitor to give current state of servers and real-time visualization of operations

8. Attribute Caching on the Client Side

32

10. Future Work

Currently, the Hercules File System does not support some of the File System operations and

coherency for data servers. The approach for solving these limitations is outlined below:-

• Rename Operation

The rename operation is a complex operation since the operation itself scans through

multiple meta-data servers simultaneously. To accomplish this operation, would require

ensuring distributed locking to maintain consistency of the namespace.

• Delete Operations (rm, rmdir)

The delete file and directory operations would require deletion of the name from the

namespace, the inode and directory entries, as well as data files from the data servers. It

would also require freeing both the meta-data handles and the data-handles.

• Coherency at Data Servers

In case of intermittent failures, the data server would need to sync up with its backup so

as to get the latest copy of the data. This would require the data server silently restoring

the missing data from its backup (while it had gone down).

• Optimizations at Data Servers

o Asynchronous I/O

Making the data server operations asynchronous would lead to a faster

performance at the data server.

o Efficient Handle Management

The handle space can be efficiently managed and accessed with the help of a

tree-based data structure. A simple implementation would be to implement the

handles as a B-Tree thereby reducing the search times.

• Retrieve Modification Time from Data Servers (similar to getSize implementation)

With the current implementations, the size of a file is retrieved from all the data servers

and then added to give the total size of a file. Similarly, the time can be retrieved from

33

all the data servers, and the latest of these times would be the modification time of the

file.

34

11. Conclusion

The Hercules File System aimed at reducing the drawbacks of the current implementations of

the parallel file system and was successful in doing so. Parallel file systems such as PVFS,

Lustre are well suited for HPC cluster environments and have capabilities that fulfill critical

I/O subsystem requirements. These file systems are designed to provide cluster nodes with

shared access to data in parallel. They enable high performance by allowing system architects

to use various storage technologies and high-speed interconnects. Parallel file systems also can

scale well as an organization’s storage needs grow. This can be achieved by the scalability of

the Hercules File System. And by providing multiple paths to storage, Hercules File System

can provide high availability for HPC clusters as well.

The file system state can be monitored at any time with the Health Monitor GUI Tool

developed. Since the GUI tool also monitors operations at real-time, it is very useful to

understand the working of a parallel file system.

The performance can be scaled well with the addition of data-servers and meta-data servers.

There are still some optimizations remaining which would help us to increase the performance

of the Hercules File System.

35

12. References

• “An overview of the Parallel Virtual File System” by Walter B. Ligon III, and Robert B.
Ross

• “Standardizing Storage Clusters” by Garth Goodson, Sai Susarla, and Rahul Iyer,
Network Appliance.

• “Intelligent Metadata Management for a Petabyte-scale File System” by Sage A.
Weil, Scott A. Brandt, Ethan L. Miller, and Kristal T. Pollack.

• “The Global File System: A File System for Shared Disk Storage” by Steven R.
Soltis, Grant M. Erickson, Kenneth W. Preslan, Matthew T. O’Keefe, and Thomas M.
Ruwart.

• “Beowulf Cluster Computing with Linux, 2nd Edition” by William Gropp, Ewing Lusk and

Thomas Sterling

• “Using Threads in Interactive Systems: A Case Study” by Carl Hauser, Christian Jacobi,

Marvin Theimer, Brent Welch and Mark Weiser

• PVFS2: www.pvfs.org

• PanFS: http://www.panasas.com/panfs.html

• Lustre: http://wiki.lustre.org/index.php?title=Lustre_Documentation

• OGFS: http://opengfs.sourceforge.net/

• “High-Performance, Reliable Secondary Storage” by Peter M. Chen, Edward K. Lee, Garth

A. Gibson, Randy H. Katz, and David A. Patterson, 1994

• “A Case for Redundant Arrays of Inexpensive Disks (RAID)” by David A Patterson, Garth

Gibson, and Randy H Katz

• FUSE: http://fuse.sourceforge.net/

• MySQL Server Replication: http://dev.mysql.com/doc/refman/5.0/en/replication-

howto.html

• IOZone: http://www.iozone.org/

36

• Postmark: http://www.freebsdsoftware.org/benchmarks/postmark.html

• EMU Lab: www.emulab.net

