Hercules File System

A Scalable Fault Tolerant Distributed
File System

Faraz Shaikh, Chaiyong Ragkhitwetsagul, Abdur Rehman Pathan
Carnegie Mellon University
{fshaikh, cragkhit, apathan}@andrew.cmu.edu
Webpage: http://www.andrew.cmu.edu/user/cragkhit/hercules/
Mentor: Shobhit Dayal (sdayal@andrew.cmu.edu)

Abstract

Current Distributed File Systems separate their servers into clusters of Metadata Servers
(MDS) and Data Servers (DS). This separation of I/O access path into data and control
paths allows parallel access to data from multiple clients to multiple data storage servers.
Although metadata might constitute relatively small portion of the file system as
compared to its overall size, metadata accesses might constitute significant percentage of
overall I/O accesses thus making the scalability and performance of the MDS cluster of
significant importance. Additionally, though the overall capacity of the DFS can be easily
scaled by addition of additional data servers to the DS cluster, metadata exhibits a higher
degree of interdependence, making the design of a scalable MDS cluster significantly
challenging. We introduce the design of the Hercules File System (HFS), a distributed
file system with scalable MDS cluster and scalable and fault-tolerant DS cluster. The
Hercules File System allows Metadata and Data Servers to be dynamically added to the
MDS cluster even after the initial setup time while the system is up and running without
disrupting the normal operations carried out by the file system. The file system is also
fault-tolerant and can serve clients in the events of failures of the DS and MDS. A Health
Monitor is also designed which is a GUI tool that monitors the state of the servers of the
File System and also gives the run-time visualization of operations requested by the
clients.

Contents:

Lo INETOAUCTION ..ottt s st st e e e s r e r e sr e e re e enes 4
2. Project REQUITEIMENLScciuiiitiiriiiiiiiie ettt ettt ettt ettt et e s bt e satesat e st e satesate st e et e et e e sbeebeenbeenaeas 6
TN 51 1300 W B L T] o 4 DO OO SO RO PPV 8
3.1 File SYSEM CHENLc.eeeiiieiieitieiie ettt sttt ettt e b e b e b esaeesaee e 8
3.2 File SYSEIM SEIVEIS ..uuiiitiiiitiiiiiiiieie ettt ettt ettt e e b ee bt e sbeesbeesaeesatesabesabesabeebeebeenbeenbeenbeenbeas 9
33 Protocol RPC and Buffer Management............ccocceieiiiiiiiiiieieeieeieeiee et 10
3.4 Health MOMILOT ..couiiiiiieiiiieeeene ettt sttt st e e r e 11
4. Application Programming INterface(S).......ccuerueriueriiiriiiiieieeiteree ettt 13
4.1 FUSE (POSIX Calls SUPPOTL):...cerviiririeriiriiiieresieetentesie sttt st nesre s nesresre e sne e 13
4.2 CHENE LIDTATY: .ttt sttt ettt ettt st b e e b et e e beesbeesbeeesbeesmeesaeesatesanenas 13
4.3 Mount a Client (CLIent OPLIONS)......cc.eereereereerierierieeieerteestee st eesieesreesreeseesaresresbesseesseesseesseens 14
4.4 UNMOUNE @ CHENE .e.veeiieiiiiieiisie ettt st s et ne et e e r e sr e e 15
4.5 SEIVET OPTIOMS ..eeutiiuieeteeteeiteeite et te bt e st e st e e sttesastesatesatesatesateeabe s bt e bt e beeabeesbeesbeesheeesseesneesaeesatesanenas 15
4.6 Formatting the Hercules File SyStem Serversccocceeviriiriiriiniieieeseeseesee ettt 15
4.7 Configuration FIleoceoiiiiieiieieeee ettt st st st s st e eee e 16
4.8 Update Notification t0 CHENEc..ccirieiiriirieiiiecece et 16
4.9 Health MONItOT OPtiONS.ceeueeruieriiieiiitiete ettt et et ettt esteesteesbeesueesaeesseesmeesmeesaeesasesasesbeseteenseens 17
T 1010) (101311 721 10 FO OO OO YO RUPU RPN 18
0. EVAIUALION. .. eeeeiiieceei et e 21
7. DEMO/USE SEQUETICE(S) -veuverurerurerrerteeiteerteesteesteesueesueessetesutesutesasesaseeseeseeseenseesseesseesseesseeesusesnsenans 23
7.1 Basic File SyStem OPerations........ccceereerieriiiieiieeieeteesieesieeesteesteesteesieesseesmeesaeeseeesesssessseesseann 23
7.2 Adding @ NEW NOGEcoouiiiiiiiiiie ettt ettt ettt sb e beesbe e sbeesaeesaee s emeeenteeneeens 23
7.3 Failure RESIIEIICEccvirvireiiiiiiieieie sttt st s e 23

7.4 Intermittent FallUrescoooviiiiiiiiiiiiiii e 24

7.5 Health Monitor FUNCHONALIEYecvveiieiieiiiiiniieniie ettt ettt e ste e sbe e saaessbeeesaeeesaneas 24
8. Quantitative Performance RESUILScccuiiiiiiiiiiiiiiic ettt sree e e s tree e e baee e 29
0. PTOJECE STALUS ...eiitiieiiieiiie ettt ettt st ettt e e rie e e rtee e sbe e sbeeesbaeesaeeesabeesbeeesabeessabaeenbteenateesnbaesseeensns 31
1O, FUTUIE WOTK ..ttt st sttt ettt st e b e nbe e sbeesanesane e 32
L1, CONCIUSION. ...ttt ettt ettt ettt e s bt e s bt e sae e saeesat e sat e emt e e bt e bt e be e beenbeesbeesanesanenas 34
12, REIETEICES ...ttt st ettt sttt ettt et et e s b e sheeshe e saeesat e s me e emt e e bt e bt e bt e b e enbeesbeesanesnnenas 35

1. Introduction

A parallel file system is simply a component of a parallel I/O system that presents a
hierarchical (file- and directory-based) view of data stored in the system. It includes a metadata
server (MDS), which contains information about the data on the I/O nodes and a Data Server
(DS) which contains the actual file data. Metadata is the information about a file—for example,
its name, location, and owner. Some parallel file systems use a dedicated server for the MDS,
while other parallel file systems distribute the functionality of the MDS across the 1/O nodes.
The main advantages a parallel file system can provide include a global name space,
scalability, and the capability to distribute large files across multiple nodes.

Current examples of Parallel File Systems include PVFS, PVFS2, PanFS, Lustre and
OGFS.

PVES (Parallel Virtual File System): PVFES is jointly developed by the Parallel Architecture
Research Laboratory at Clemson University and the Mathematics and Computer Science
Division at Argonne National Laboratory. The metadata server in PVFS can be a dedicated
node or one of the I/O nodes or clients. The node serving as the MDS runs a daemon called
mgr, which manages the metadata for the files in the file system. In PVFS, data is distributed
across multiple I/0O nodes. The MDS provides information about how this data is distributed
and maintains the locks on the distributed files for shared access. /O nodes run a daemon
called 10d, which stores and retrieves files on local disks of the I/O nodes.

Lustre: Lustre is designed, developed and maintained by Cluster File Systems, Inc. It stores
file system metadata on a cluster of MDSs and stores file data as objects on object storage
targets (OSTs), which directly interface with object-based disks (OBDs). The MDSs maintain a
transactional record of high-level file and file system changes. They support all file system
namespace operations such as file lookups, file creation, and file and directory attribute
manipulation—directing the actual I/O requests to OSTs, which manage storage that is
physically located on underlying OBDs.

PanFS: The Panasas ActiveScale File System (PanFS) integrates an object-based clustered
architecture to orchestrate file activity across the Storage Cluster and manage system
performance. The file system virtualizes data across all StorageBlades, and presents a single,
cache coherent unified namespace. PanFS simultaneously supports two high-performance data
access modes: the DirectFlow data path and the NFS/CIFS data path.

OGFS: The OpenGFS uses a "Pool" driver to organize storage devices into a logical space. It
stores data as blocks on this virtual block device. A locking subsystem, OmniLock, provides

4

the locking infrastructure necessary to ensure consistency. It also uses a virtual block device
architecture, using LVM (Logical Volume Manager) underneath the GFS file system layer.

There are quite a few limitations to the above mentioned parallel file systems. To outline a few
with reference to PVFES, the features missing currently are:-

* No caching of either data or metadata on the client side
* No scalability solution

o Since its handle space is partitioned at format time, new servers cannot be added
at run-time

* No scope for fault tolerance
* No write-sharing through mmap
* No support for Symbolic Links

To overcome some of these limitations, with the Hercules File System, we have attempted to
achieve both scalability and fault-tolerance of meta-data servers and data servers. We also
implement attribute caching on the client side.

2. Project Requirements

The Hercules File System was designed and implemented with the following requirements:-

Support for POSIX Calls

The Hercules File System uses the File System in Userspace (FUSE) module to
service requests from the clients. Thus, as FUSE provides POSIX compatibility,
our file system would also support all POSIX calls providing the clients
flexibility to run any POSIX compatible application in Linux.

Data Server Fault Tolerance

High Availability is an important aspect of a Distributed System. File data is
stored on the Data Servers in the Hercules File System. If any of the data
servers fail, the file data would be lost. Hence, with active replication of the file
data on a different data server, we would provide fault tolerant data servers.
Only one failure of a data server can be tolerated by the Hercules File System.
The clients would be unaware of such failures in the system.

Meta-Data Server Fault Tolerance

The Meta-Data Servers in the Hercules File System store the attributes (meta-
data) of a file. Hence, these servers must be highly available to serve clients.
With MySQL Master-Slave replication, each MDS would have a backup MDS
which would operate in case of a failure of the master MDS. The clients would
be unaware of such failures in the system.

Data Server Scalability

File data is striped across data servers. This provides higher read bandwidth.
When the load on the data servers increases, addition of data servers must be
supported to help reduce the workload and improve performance of the data
servers. The Hercules File System would support such upward scalability of the
Data Servers. This operation would be completely transparent to the clients
using the file system, and would not require unmounting and remounting.

Meta-Data Server Scalability

There would generally exist only one meta-data server (and its backup) in the
initial configuration of the Hercules File System. But, as the number of clients
would increase, as well as the namespace would increase, there is a need to add
additional meta-data servers. The Hercules File System would support such
upward scalability of the Meta-Data Servers. This operation would be
completely transparent to the clients using the file system, and would not
require unmounting and remounting.

* Run-Time Monitoring GUI Tool

Status of every machine in the system can be monitored in real time using the
Health Monitor. It can facilitate a system administrator in system monitoring. It
also benefits the system developer because it can show the activities happening
on the servers at real-time. The application includes other interesting features,
such as email notification, and SSH terminal. The application was written in
Java, so it is platform-independent. This means that it can be run anywhere on
any platform.

3. System Design

The system design consists of four main components as follows:-

3.1 File System Client

This component has the implementation of the file-systems callbacks issued by fuse. We
keep our implementation as agnostic to fuse as possible, by building a library that captures the
eccentrics of our file systems. This would allow the file system to be ported to different client
operating systems later.

As shown in fig. 3.1.1, the FUSE kernel module and the FUSE library communicate via a
special file descriptor which is obtained by opening /dev/fuse. This file can be opened multiple
times, and the obtained file descriptor is passed to the mount syscall, to match up the descriptor
with the mounted file system, the Hercules File System.

| hfs client ‘tmphfsmnt ‘

...... ! | :
1= -1 /tmp'hifsmnt : (libfuse J :

: - N DL - i
(glibe : glibe J :
LN

userspace

kernel

FLUSE

VFS
NFS

Ex13

Figure 3.1.1

The Hercules File System Client would receive calls reflected by the FUSE module and then
pass it on to the client library which communicates the file system servers using the protocol

8

RPC. The client additionally would be designed to cache the file attributes after an open()
system call.

An abstract view of the Client architecture is shown in fig. 3.1.2

Hercules File System Client

Remote Procedure Calls

File System Library

Attrihnte Cachino

FUSE Glue

FUSE

Linux OS

Fig. 3.1.2

3.2 File System Servers

There are two types of servers in the Hercules File System — the meta-data server and the
data server.

Both the servers would be built on the same design and would share the same code binary.
A state machine is designed on the server to accept incoming requests. On the server, there
is a thread pool per component. The activities to be performed by these components would
be servicing the clients, polling, accessing the disk etc. An inbound thread polls
continuously for client requests and on receiving a request, puts it on the appropriate queue
1.e. As requests come in to the metadata server they will be queued in the server queue and
then will be later dispatched to threads for execution. After the request is serviced by
another thread, it puts it on the outbound queue. The outbound queue gets the request
which was serviced and sends it back to the respective client.

An abstract view of the Hercules File System servers is as shown in fig. 3.2.1.

Hercules File System Server Architecture

Servers (MD/DS)
Job Storage
Monitor, Handle M

andle Manager
Threading &
and Global State Manager
Queuing

Remote Procedure Call

Fig 3.2.1

3.3 Protocol RPC and Buffer Management

The File System Client-Server Protocol consists mainly of a Header, Command Parameters
and Data as shown in Fig. 3.3.1

Hercules File System Protocol Packet Structure

HFS Header

Command Parameters

Data

Fig. 3.3.1

A library would be written to encode and decode these RPC packets, given the
respective command. This component takes care of structure packing/unpacking and handling
the byte-ordering issues. The library would also contain functions, which would retrieve the
command size, allocate data buffer depending on the type of the command. Thus, once this
protocol buffer library is developed, it would be extremely easy to add a new command into
the system.

10

Thus, adding a new command into the system would just mean adding it to the list of existing
commands, adding its structure and listing it in the size retrieval function.

3.4 Health Monitor

The Health Monitor composes of many packages as shown in Fig 3.4.1.

Ul
—1
Swing
Domain
| | | | |
logger monitor email ssh xml
—1 |
protocol beans
Technical Services
mail activation ganymedssh2

Figure 3.4.1 package diagram

The user interface was written in Swing. The domain package includes all the classes
for creating log files, creating monitoring threads, sending email notification, create SSH
terminal, reading XML setting file, converting from Java class to C struct, and data class
(beans). The Health Monitor starts by connect to the root MDS to get all the configurations of

all servers in the system. When it starts monitoring, it keeps sending ping packets to all the
11

machines to check alive. The ping replied packet contains the information of the latest
activities happening on the servers. Then it converts all the data back in Java class format, and
display on the screen.

12

4. Application Programming Interface(s)

The various application programming interfaces used in the Hercules File System are as
follows:-

4.1 FUSE (POSIX Calls support):

static int cInt_fuse getattr(const char *path, struct stat *stbuf)
static int cInt_fuse open(const char *path, struct fuse file info *fi)

static int cInt_fuse readdir(const char *path, void *buf, fuse fill dir t filler, off t offset, struct
fuse file info *f1)

static int cInt_fuse mknod(const char *path, mode t mode, dev_t rdev)
static int cInt_fuse mkdir(const char *path, mode t mode)

static int cInt_fuse read(const char *path, char *buf, size t size, off t offset, struct
fuse file info *fi)

static int cInt_fuse write(const char *path, const char *buf, size t size, off t offset, struct
fuse file info *fi)

void * cInt_fuse init (struct fuse conn_info *conn)

4.2 Client Library:

//- data -path ops -//
HFS STATUS hfs_getattr(const char *ppath, struct stat *stat_buff);

HFS STATUS hfs read(PHFS CLIENT FILE HDL pClientFileHdl, char *buffer,
off t offset, IN OUT size t *size);

HFS STATUS hfs write(PHFS_CLIENT FILE HDL pClientFileHdl, const char *buffer,
off t offset, INOUT size t *size);

13

// Name space ops //
HFS STATUS hfs namei(char *name, PHFS CLIENT FILE HDL pHfsClienthdl);

HFS STATUS hfs getlAttr(PHFS CLIENT FILE HDL pHfsClientHdl, PHFS TIATTR
pHfsIAttr);

HFS_STATUS hfs_getISize(PHFS_IATTR pHfsIAttr);

HFS STATUS hfs_setlAttr(PHFS CLIENT FILE HDL pHfsClientHdl, PHFS TATTR
pHfsAttr, u32 attrMask);

HFS STATUS hfs_readdir(PHFS CLIENT FILE HDL pClientFileHdl, off t offset,
PHFS QUEUE ITEM *ppRetQueueltem);

/I - Creation ops -//

HFS STATUS hfs_create (char *ppath, mode t mode, u32 fs dev t,
PHFS_CLIENT FILE HDL pClientFileHdl);

HFS STATUS hfs create alloc data _handle(PHFS IATTR piAttr);

HFS STATUS hfs create alloc meta data _handles(PHFS IATTR piAttr,
PHFS CLIENT FILE HDL pClientFileHdl);

//- Creation of a new directory entry. The namespace is distributed here -//

HFS STATUS hfs_add dirent(PHFS_CLIENT FILE HDL parentFileHdl,
PHFS CLIENT FILE HDL childFileHdl, PHFS DIRENT pDirent);

4.3 Mount a Client (Client Options)

The client executable is executed in the following manner:-
$HFS/bin/hfs_client <mount point> ROOT MDS IP_ ADDR ROOT MDS PORT <logfile>

The mount_point is a directory on the local file system.

14

The ROOT _MDS IP_ADDR and ROOT MDS PORT specify the IP address and Port of the
root MDS from where the mapping of the servers is retrieved for the client to connect to.

The logfile would log all operations of the client.

4.4 Unmount a Client

Unmounting a client is as simple as unmounting any other file system in Linux

umount <mount_point>

4.5 Server Options

The Hercules File System Server executable begins with the following options:-
$HFS/bin/hfs_server <config file> <server id> <mds|ds> <max no of clients supported>

The config file specifies the number of Meta-Data Servers and Data Servers with their
respective information such as IP Address, Port, Data Store Path, Log File etc.

4.6 Formatting the Hercules File System Servers

The Hercules File System servers can be formatted using the following command:-
$HFS/bin/mkfs.hfs <config_file> <server id> <mds|ds>

For the Meta-Data Servers, this creates a new database with a directory entry for root and
namespace information for . and ..’

For the Data Servers, the base file is created in the data store path specified in t he
configuration file which is used for data handle management.

15

4.7 Configuration File

Each server begins taking a configuration file as an input parameter. A sample configuration

file is shown below:-

<MDS>

mdscount=1
localhost.localdomain 127.0.0.1
<DS>

dscount=4
localhost.localdomain 127.0.0.1
localhost.localdomain 127.0.0.1
localhost.localdomain 127.0.0.1

localhost.localdomain 127.0.0.1

4.8 Update Notification to Client

10000 TCP
8090 TCP
8091 TCP
8092 TCP
8093 TCP

/hercules/ds0

/hercules/ds0O
/hercules/ds1
/hercules/ds2

/hercules/ds3

/hercules/log0.log

/hercules/log0.log4
/hercules/logl.log
/hercules/log2.log

/hercules/log3.log

On addition of either a Meta-Data Server or a Data- Server, an executable is executed which
sends a signal to a running server on that machine to notify the clients to update its file system

configuration.

$HFS/bin/updatehfsconfig

This must be executed on an existing server containing the list of all the connected clients.

16

4.9 Health Monitor Options

800
Email Alert Notification
Status List of Recipients
e cragkhit; cragkhit@gmail. cam | Add |
= Abdur: abdurp@gmail.com rEhE|
Off T
| Delete |
e i I
Ping Time Interval
Time Interval : !l | seconds
S5H Setting
Username: | fchaikh |
Passward: : (Al 1 XX |
Servar D '0 [
Server Executable: |.,fsvnherc;herc;bln;hfs_ser\rer
Config File Location: |jroot;hercules;sample.conf
#Client; 1024 |
F.oor MDS
IP: |155.98.37.104
port: [soso |
| sae || Ciose |

The setting panel of the Health Monitor lets a user to do the followings:

1. Turn on/off the email notification

2. Add/remove/update receivers of the email

3. Ping time interval

4. SSH setting (username, password, server ID, etc.)

5. Root MDS IP

6. Root MDS port

17

5. Implementation

Queuing and Threading Model:

Both the servers and clients are multithreaded processes. As requests come in to the metadata
server they are queued in the server queue and then will be later dispatched to threads for
execution. This was implemented as a basic thread pool manager with service queues.

Update Notification to the Client:

On change in the file system configuration, an executable is executed which signals the server
process. The server process then sends an unsolicited command back to the client, notifying it
to update its configuration. The client then starts a transaction to update as follows:-

TRANSACTION BEGIN

— FREEZE CLIENT

— WAIT FOR IN-FLIGHT COMMANDS
— UPDATE MAPPING

— CLOSE OLD CONNECTION

— TRANSACTION END

Thus, the client can adapt to the new file system configuration thereby supporting scalability.

File System Operations:

Create

The create file/directory performs several operations in the file system as follows:-
- Get Attr
- Namel

- Lookup
18

Read

MkNod
Get Free Meta data Handles

Get Free Data Handles

The Read operation gets data from both the data and meta-data servers. The data needs to be
read off all stripes of the data servers.

The packets involved in a Read Operation are as follows:-

Get Attr
Namei
Lookup

Read

In case of failure of a data server, the client reads the data from its adjacent data server thereby
providing fault-tolerant reads.

Write

The Write operation writes data in stripes on the data servers. The data needs to be written on
all stripes of the data servers.

The packets involved in a Read Operation are as follows:-

Get_attr
Namei
Lookup

Read

19

The write operation performs active replication on the data servers. Each stripe is replicated on
its adjacent data server. Thus, a client actively writes to both data servers.

Health Monitor:
Retrieve Machine Configurations

When the user press ‘Get Machine Configuration from Server’, the Health Monitor call
getExtentSize() from the root MDS server. The returned value is the size of data being sent
(not include the header part). After that, it send another command getConfig(), which returns
the configurations of all the machines. The Health Monitor converts all the byte data into a
Java instance, parse it, and display on the screen.

Start monitor

The Health Monitor starts monitoring the system, it starts sending ping packets to all the
machines. The returned data are interpret (includes the activity light coding), and update the
display panel of the MDS and the DS machines. The default ping time interval is 1 second.

Sending email notification

When the Health Monitor detects that a machine dies, it send an email to all the emails in the
setting panel. This also includes the event when the machine becomes alive again.

Starting SSH terminal

A user can start a new SSH terminal from inside the Health Monitor. Select a machine from the
display panel by clicking it, and click ‘SSH’ button. The SSH terminal will show up.

20

6. Evaluation

To evaluate the performance of our file system, we use machines from the EMU Lab test bed.
The Hercules File System Team would like to thank Emu Lab for its support.

About EMU Lab: Emulab is a network testbed, giving researchers a wide range of
environments in which to develop, debug, and evaluate their systems. The name Emulab refers
both to a facility and to a software system. The primary Emulab installation is run by the Flux
Group, part of the School of Computing at the University of Utah. There are also installations
of the Emulab software at more than two dozen sites around the world, ranging from testbeds
with a handful of nodes up to testbeds with hundreds of nodes. Emulab is widely used by
computer science researchers in the fields of networking and distributed systems.

Our setup at EMU Lab consisted of the following components:-
* 3 Primary Meta-Data Servers
* 3 Backup Meta-Data Servers

e 5 Data Servers

3 Clients

LAN Connection among all nodes

To perform the experiments, we initially began with a configuration of only one meta-data
server and 3 data-servers. Also, one client was used initially. We then added data servers and
meta-data servers (along with their backups) into the system. The number of clients was also
increased till three.

The total setup at EMU Lab is shown in fig. 6.1

21

My Emulab | Logout | News #=#1 | Contact Us [Seaich Documentaion

emUle) ': ll.n:u

%e total network testbeq Information Experimentation Collaboration 43 active expts. |,

NetBuild

‘fshaikh’ Logged in.
Wed Apr 16 3:51pm MDT

Mew Mode

MHew LAMN

trash

ds0

ds3

LAN created.

arirment

22

7. Demo/Use Sequence(s)

7.1 Basic File System Operations

The demo included the working of the basic distributed file system client that supports basic
file system operations such as Create (File), Open, Read, Write, Mount, Unmount, Create
Directory. The file system supports applications compatibility as it provides support for POSIX
calls. Audio and Video Files can be played by the traditional Linux players (e.g. mplayer, vic
etc.)

The operations performed during the demo were cp, cat, Is, Is -1, Is —IR etc.

7.2 Adding a New Node

A new node would be introduced in the system while the system is up and running. This would
prove the concept of scalability. Our benchmark application was to demonstrate a multimedia
application. The new node added could be either of the servers.

* Meta-Data Server

A new meta-data server was introduced into the system at run time. Its backup meta-data
server (with the MySQL server replicated) was also be added. An update was sent to the
client.

There was no downtime for the system. Continuous file system availability persisted.

The client was not mounted while this operation took place.

* Data Server

Data Servers were dynamically added to the system thereby increasing the handle space.
There was no downtime for the system. Continuous file system availability persisted.

The client was not mounted while this operation took place.

7.3 Failure Resilience

The system also supported fail-stop failures. We do not handle network partitioning.
Operations such as killing a meta-data server, killing data-servers were performed.

The multimedia application playing on the client side continued to play even in case of a
failure of a data-server. In case of a failure of the meta-data server, the backup meta-data server
was used by the client to service its requests. This was demonstrated successfully without
affecting the client.

23

7.4 Intermittent Failures

To demonstrate an intermittent failure, a node (data-server) was removed from the whole
system for a small amount of time after which it came back into the system. This was
demonstrated while a multimedia application was playing at the client. The client was
completely unaware of the intermittent failure.

7.5 Health Monitor Functionality

These are the screenshots of the working Health Monitor.

Hercules Machine Controller

All Meta Data Servers

Senvers' Menu
MDS Machines:

mds0.hercules. cmuB4 8. emulab.net
Uptime: 0 mds0.hercules.cru849.emulah. net Alive
1 min load: 0
5 min load: 0
15 min load: 0

DS Machines: ,|:‘

e S R Ty | Load Config
Uptirne: 0 Al Data Servers e
1 min load: O

5 min load: 0

15 min loadk. 0

ds1 hercules.cmug49 emulab.net
Uptime: 0 ds0 hercules.cmyB49.emulan netAlive dls L. hercules.cmug49.emulan. net Alive
1 min load: 0

5 min load: O

15 min load: 0

ds2 hercules.cmuB4. emula. net
Uptime: 0

1 min load: 0

5 min load: 0

15 rmin load: 0

dls3 hercules. tmus49. emula. net
Uptirne: 0 =
1 min foad: © i

ds2 hercules. cmug 49 emulah.net:Alive ds3. hercules.cmug49 emulab.net: Alive

5 min loadt: 0 P
15 min load: 0 Cansole

Get Config File
Wk STARTED @12 [3 [2008 2 1 35 1 24 From Server

Idle file system with 1 meta data server and 4 data servers [Gear |

File System Name = Defaull ~ Stripe size = 65536 Bytes

Figure 7.5.1 the system is in normal state. All machines are working.

B00

Hercules Machine Controller

All Meta Data Senvers

Servers' infarmation;

MDS Machires

mels0.hercules.cmuB4s.emulab.net
Uptime: & mels0_hercules.cmuB48.emulab. net: Alive
1 min load: 0
5 min load: 0
15 min load: 0

DS Machines: I:‘
dso.hercules. cmus4 9. emulab.net 4 [B B B B B B B 7 7 7 7 7 7 T T# Load Corfig |

Uptime: g All Data servers
1 min load: 0 oyl s Config |

5 min load: 0
15 min load: 0

dsLhercules. cmug49, emulan.net
Uptirme: 0 dst.hercules. cmuB4 9. emulab. net: Alive ds . hercules. cruB49.emulat.net: Alive
1 min load: 0

5 rmin load: 0

15 min load: 0

052.hercules. crmug49. emulab.net
Uptime: 0

1min loadt: 0

5 min load: 0

15 min load: 0

053, hertules. cmUE49, emulab.net
Uptime: 0

1 min loadt 0 7 ol |
5 min load: 0

15 min Ioack 0 HEAE

|| Global Config |

ds2.hercules.cmuB49. emulab. net Alive ds3.hercules,. cmu84 9. emulab.net.Alive

Get Canrig File
whsek STARTED at 2 / 2 [2008 2 : 35 24 +eor From Server

Clear

Parallel Striped Read across data servers

File System Name = Defaull Stripe size = 65536 Bytes

24

Figure 7.5.2 parallel striped read across all the data servers

800

Hercules Machine Controller

; Al Meta Data Senvers
Servers’ infarmatian

Meny
MDS Machines
mds0. hercules.cmuB43. emulab. net

Uptime: 0 mMds0. hercules cmug49 emulab net:Alive Add MDS
1 rnin load: 0
Add 05

5 min load: 0
15 min lnad: 0

D3 Machines
ds0.hercules. cmu49. emulab.net

2 2 = Load Config_|
Abtirresio All Data Servers
1'min load: 0 Save Config_|

5 min load: 0
15 min lnad: 0 e e
dsLhercules. cmug49. emulab.net M ‘ Global Canfig

Uptime: 0 dI50.hercules. criug4 9. emulat. net: Alive s hercules cmuS49 emulab. net: Alive
1 min load: 0

5 min loa: 0

15 min load: 0

ois2.hercules. cmug<49. emula.net
Uptime: 0

1 min load: 0

M

ds2.hercules. crug49.emulab. net: Alive

ds3.hercules. cmus49. emulab.net:Alive

dis3.hercules. cmug49. emulan.net
Uptime: 0

Lmin load: 0

5 min load: 0 B
15 min load: 0 Console

Get Config File

e STARTED @t 2 / 2 / 2008 2 : 35 : 24 " Frorm Server

Clear

Parallel Write Striped across data servers

File System Name = Default Stripe size = 65536 Bytes

Figure 7.5.3 parallel write striped across all the data servers

806

Hercules Machine Controller

I - All Meta Data Servers
Servers' information

Menu
MDS Machines
maso.hercules.cmuB49. emulah. net

uUntime: 0 rneis0. hercules. crauB48. emulah. net: Alive Add MDS
1 min load: 0

S min Ioad: & [_agaos
15 min load: &
DS Machines:

ds0.hercules.cmu849. emulab.net

= T e T e i S Load Config
tpliie 10 All Data Servers -
1 min loag: 0 Save Config

5 rmin loac: 0

15 min load: 0 -
ds1hercules crug4 . emulab het N | Global conng |
uptime: 0 50 hercules, cmuB49. emulab net:Alive | ds 1 hercules. cmuB«9. emulab. net. Allve i ——

1 min load: 0

S min Ioadt: 0

15 min load: 0
ds2.hercules.cruB49. emulan. net
Uptime: 0

1 min load: o

S min load: &

15 min load: 0
ds3.hercules.cmuB49. emulab.net
Uptime: 0

1 min load: 0

S min load: 0 i
15 min load: 0 i

&

v

cis2. hercules. cruS49. emula. net: Alive ds3. hercules. crmug 49, emulab. net: Alive

Get Config File
From Server

Parallel reads & writes from clients

™

W STARTED @t 2 [3/ 2008 2035 24w

[File System Name = Default Stripe size = 65536 Bytes

Figure 7.5.4 parallel reads & writes from clients

Servers' information:

Hercules Machine Controller

All Meta Data Servers

MDS Machines:

mas0. hercules.cmug49. emulah. net
Uptime: O

1 min load: 0

5 min load: 0

15 min load: 0

DS Machines:
ds0.hercules. cmu84%.emulab. net

E Menu

mls0.hercules.crmUS49. emulab. net Alive Add MDS

A |

....... T Ib\" Load canfig |

Uptime: 0

1w loatt: O

5 min load: 0

15 min load: 0

031 hercules. cruB49. emula net
Uptime: @

L min load: 0

5 i load: 0

15 min load: 0
ols2.hercules.cmug4%.emulak. net
Uptime: 0

1 min load: 0

5 min load: 0

15 min load: 0

0153 Nercules. crUB4S.emula net
Uptime: &

1 min load: 0

5 i load: 0

15 min Ioad: 0

50, hercules. cmuB4S.emulab. net:Allve

d52.hercules.crug49. emulab.net Allve

All Data Servers | save config

Global Config

ds1.hercules.craug49. emulab.net: Deac

53, hercules.cmuB49.emulah. net Alfve

Console

2 /320082 40 32 machine: ds1.hercules.crmu84s. emulab.net is dead

RAID 0+1 in action. Degraded read after one DS is down

Get Config File
From Server

| Gear ‘

sy

File System Narne = Default Stripe size = 65536 Bytes

Figure 7.5.5 RAID 0+1 in action. Degraded read after one DS is down.

Email notification:

The Health Monitor notifies the users by sending an email when a machine is dead, or becomes

alive.

Official Google Blog - Moving to Unicode 5.1 - hours ago

Select: All, None, Read, Unread, Starred, Unstarred

[herculesfilesystem (61
[hercules.filesystem

[hercules filesystem (25
[hercules.filesystem (61

hercules.filesystem (6)

Report Spam | (Delete | More Actions '|m

Hercules File System: Email Notification: Machine Failure
) Hercules File System: Email Notification: Machine Failure
(12) Hercules File System: Email Notification: Machine Failure
(25) Hercules File System: Email Notification: Machine Failure
) Hercules File System: Email Notification: Machine Failure

Web Clip

1- 50 of 544 Older» Oldest »

- Hey, your ds2 hfsdemo.cmuB49.emulab.net machine s down. Let check it out

- Hey, your mds0.hfsdemo.cmu849.emulab.net machine is down. Let check it out
- Hey, your mds00.hisdeme.cmuB49.emulab.net machine is down. Let check it out
- Hey, your ds2.hercules.cmuB49.emulab.net machine is down. Let check it out

- Hey, your ds0.hercules.cmuB4B.emulab.net machine |s down. Let check it out

Figure 7.5.6 the user receives email notification

May 1
May 1
Apr 30
Apr 29
Apr29

26

oM hercules. filesystem@gmail.com
10® cragkhit@gmall.com,
2 Thu, May 1, 2008 at 11:05 AM
Hercules File System: Email Netification: Machine Failure
gmail.com
! gmail.com
Hey, vour ds2.hfsdemo.cmuB49.emulab.net machine is down. Let check it out!

> Reply ~+ Forward & jnyite hercules filesystem@gmail.com to chat

Figure 7.5.7 the email’s content

- May 1 (5 days ago) | 4~ Reply | #

27

SSH Terminal:

1it@linuxl

Logout

Figure 7.5.8 SSH terminal

28

8. Quantitative Performance Results

To evaluate the performance of our file system, we used the standard file system benchmarking
tools like Postmark and IOZone. These tools are described in detail below:-

e PostMark

PostMark was designed to create a large pool of continually changing files and to
measure the transaction rates for a workload approximating a large Internet electronic
mail server. It generates an initial pool of random text files ranging in size from a
configurable low bound to a configurable high bound. This file pool is of configurable
size and can be located on any accessible file system. Once the pool has been created
(also producing statistics on continuous small file creation performance), a specified
number of transactions occur. Each transaction consists of a pair of smaller

transactions:

— Create file or Delete file
— Read file or Append file

e [0OZone

I0Zone is a filesystem benchmark tool. The benchmark generates and measures a
variety of file operations. lozone has been ported to many machines and runs under
many operating systems. lozone is useful for performing a broad filesystem analysis of
a vendor’s computer platform. The benchmark tests file /O performance for the
following operations:

Read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random
read, pread, mmap, aio_read, aio_write
It is POSIX and 64 bits compliant. It is also used for Distributed file server

measurements (Cluster)

29

PostMark:Creation of 500 Files in 10

Subdirectories
16

14

12

10

m1MDS
m 2 MDS
1 3MDs

= o o

1K 2K 4K 8K

The Postmark benchmark is used to determine the number of meta-data operations, and from
the graph it is evident, that we can create around 15 files per second.

I0Zone: Operations Per Second
500
450 -
400 -
350 -
300 -
250 -
200 - m1MDS
: E
100
50 A

0 - T
4K Read 4K Write

The 10Zone benchmark records the number of I/O Operations per second. Our file system with
4 data servers and 1 meta-data servers, and a stripe-size of 4kB gave around 460 reads per
second and around 225 writes per second.

30

9. Project Status

The Hercules File System has been implemented as per the proposed design. It is currently
operational in all of its claims. The Hercules File System final project demo was successful
with all of its features.

The Hercules File System supports the following features:-
1. Working Distributed Parallel File System
2. POSIX Compatibility
3. Fault Tolerant Data Servers
4. Fault Tolerant Meta-Data Servers
5. Scalable Meta-Data Servers
6. Scalable Data-Servers
7. Health Monitor to give current state of servers and real-time visualization of operations

8. Attribute Caching on the Client Side

31

10. Future Work

Currently, the Hercules File System does not support some of the File System operations and
coherency for data servers. The approach for solving these limitations is outlined below:-

* Rename Operation

The rename operation is a complex operation since the operation itself scans through
multiple meta-data servers simultaneously. To accomplish this operation, would require
ensuring distributed locking to maintain consistency of the namespace.

* Delete Operations (rm, rmdir)

The delete file and directory operations would require deletion of the name from the
namespace, the inode and directory entries, as well as data files from the data servers. It
would also require freeing both the meta-data handles and the data-handles.

* Coherency at Data Servers

In case of intermittent failures, the data server would need to sync up with its backup so
as to get the latest copy of the data. This would require the data server silently restoring
the missing data from its backup (while it had gone down).

* Optimizations at Data Servers
0 Asynchronous I/O

Making the data server operations asynchronous would lead to a faster
performance at the data server.

0 Efficient Handle Management

The handle space can be efficiently managed and accessed with the help of a
tree-based data structure. A simple implementation would be to implement the
handles as a B-Tree thereby reducing the search times.

* Retrieve Modification Time from Data Servers (similar to getSize implementation)

With the current implementations, the size of a file is retrieved from all the data servers
and then added to give the total size of a file. Similarly, the time can be retrieved from

32

all the data servers, and the latest of these times would be the modification time of the
file.

33

11. Conclusion

The Hercules File System aimed at reducing the drawbacks of the current implementations of
the parallel file system and was successful in doing so. Parallel file systems such as PVFS,
Lustre are well suited for HPC cluster environments and have capabilities that fulfill critical
I/O subsystem requirements. These file systems are designed to provide cluster nodes with
shared access to data in parallel. They enable high performance by allowing system architects
to use various storage technologies and high-speed interconnects. Parallel file systems also can
scale well as an organization’s storage needs grow. This can be achieved by the scalability of
the Hercules File System. And by providing multiple paths to storage, Hercules File System
can provide high availability for HPC clusters as well.

The file system state can be monitored at any time with the Health Monitor GUI Tool
developed. Since the GUI tool also monitors operations at real-time, it is very useful to
understand the working of a parallel file system.

The performance can be scaled well with the addition of data-servers and meta-data servers.
There are still some optimizations remaining which would help us to increase the performance
of the Hercules File System.

34

12. References

* “An overview of the Parallel Virtual File System” by Walter B. Ligon III, and Robert B.
Ross

* “Standardizing Storage Clusters” by Garth Goodson, Sai Susarla, and Rahul Iyer,
Network Appliance.

* “Intelligent Metadata Management for a Petabyte-scale File System” by Sage A.
Weil, Scott A. Brandt, Ethan L. Miller, and Kristal T. Pollack.

* “The Global File System: A File System for Shared Disk Storage” by Steven R.
Soltis, Grant M. Erickson, Kenneth W. Preslan, Matthew T. O’Keefe, and Thomas M.
Ruwart.

* “Beowulf Cluster Computing with Linux, 2nd Edition” by William Gropp, Ewing Lusk and
Thomas Sterling

» “Using Threads in Interactive Systems: A Case Study” by Carl Hauser, Christian Jacobi,
Marvin Theimer, Brent Welch and Mark Weiser

* PVFS2: www.pvfs.org

e PanFS: http://www.panasas.com/panfs.html

» Lustre: http://wiki.lustre.org/index.php?title=Lustre_Documentation

* OGFS: http://opengfs.sourceforge.net/

* “High-Performance, Reliable Secondary Storage” by Peter M. Chen, Edward K. Lee, Garth
A. Gibson, Randy H. Katz, and David A. Patterson, 1994

* “A Case for Redundant Arrays of Inexpensive Disks (RAID)” by David A Patterson, Garth
Gibson, and Randy H Katz

e FUSE: http://fuse.sourceforge.net/

* MySQL Server Replication: http://dev.mysqgl.com/doc/refman/5.0/en/replication-
howto.html

e 10Zone: http://www.iozone.org/

35

Postmark: http://www.freebsdsoftware.org/benchmarks/postmark.html

EMU Lab: www.emulab.net

36

