

Evaluating Genetic Algorithms for
selection of similarity functions for

record linkage

Faraz Shaikh and Chaiyong Ragkhitwetsagul

Carnegie Mellon University
School of Computer Science

ISRI - Institute for Software Research International
 {fshaikh,cragkhit}@andrew.cmu.edu

Abstract

Machine learning algorithms have been successfully employed in
solving the record linkage problem. Machine learning casts the
record linkage problem as a classification problem by training a
classifier that classifies 2 records as duplicates or unique.
Irrespective of the machine learning algorithm used, the initial step
in training a classifier involves selecting a set of similarity
functions to be applied to each attribute to get a similarity measure.
Usually this is done manually with input from a domain expert. We
evaluate an approach in which the optimal combination of
similarity function for a given type of input data records is
searched using Genetic Algorithms.

1 Introduction

Record Linkage is an important pre-processing step on raw data integrated from
multiple sources. The problem is aggravated when records from the two sources do
not share a unique key based. Absence of a shared unique key mandates use of
complex methods for purging duplicate records from the final integrated data set
[3].

A trivial method for doing record linkage is to form a set of rules for detecting
duplicates. Such rules are then tuned over time to accommodate exceptions. The
solution may or not be accurate but is definitely not elegant. Firstly this method
needs creating the initial rule set by a domain expert; second this method requires
constant monitoring and human intervention of some type for detecting and
accommodating exceptions [8, 9].

Machine learning algorithms alleviate the two problems of creation of the initial
rule set and constant monitoring and adapting the rule set to exceptions. A machine
learning approach to create the initial rule set is described in [14]. This method is

based on computing similarity scores between records and then learning the
mapping rule. The method requires sufficiently large amount of labeled data. This
labeled data is created manually and sometimes is infeasible to generate because the
labeling has to perform and exhaustive search over the dot product of the input
records. As the number of records N increase the search space for labeling
increasing as a quadratic equation [N*N]. In [16] the author tries to employ active
learning for selecting the most uncertain record pair for a teacher to label. This
significantly reduces the number of labeled record pairs required for the learner to
converge to optimal mapping rules. The authors in [16] also suggest methods like
grouping, indexing and sampling for managing the quadratic size [N*N] of the
search space generated in the labeling stage.

One important class of machine learning algorithms employed in record linking is
Probabilistic Record Linkage. PRL uses a large labeled datasets to generate a weight
vector for similarity each attribute. The weights are generated according to
statistical measures over the training data. Each weight can be seen as a measure of
how strongly/weakly a match for a particular attribute affects the probability of the
record pair being a duplicate. To classify new records each agreement /disagreement
on individual attributes of a records are considered in proportion to the weight
vector and sum is generated. This sum is then used in determining the class of the
record pair and duplicate or unique. Usually 2 thresholds values are chosen for the
sum called the ‘positive and negative threshold’. All records pairs having a sum of
weighted agreement greater than the positive threshold are considered to be sure
duplicates. Similarly all pairs below having the weighted agreement less than the
negative threshold are considered to be surely unique. Record pairs whose weighted
agreement values fall between the positive and the negative threshold fall in the
confusion area of the classifier and the classifier may decide to ask a teacher for
help in classifying such records. In summary PRL can be viewed as the Naïve Bayes
algorithm for record classification.

In the above discussion we have assumed that we have a set of similarity functions
to be applied for matching individual attributes of the record. Usually this is true if
the attributes are small in number and the attribute domain is well understood. For
example one can fairly conclude that soundex() is a better similarity match function
for a field like names of a person. But, the soundex() may or may not perform better
on an attribute where similar sounding attributes are actually unique. Similarly a
numeric attribute cannot be subjected similarity functions that are designed to work
on strings. Also depending upon the quality of data soundex() and stringcmp() may
perform differently as similarity functions. Soundex and stringcmp() are just 2
representative similarity functions discussed here for the sake of an example. A
complete list of similarity matching functions is discussed by W. Cohen in [2, 4, 5,
6, 7].

We wish to evaluate the effectiveness of Genetic Algorithms to search the optimal
set of similarity functions to be used for training a classifier given a type of input
records [1, 11, 12, 16].

2 Related Work

The task of finding the optimum set of similarity functions is in our view considered
to be a trivial task. Not much has been done in automatically tuning the selections
functions. This to our understanding is because the record linking problem domain
already has way too many problems to solve. Finding the optimum set of similarity
functions is can also be treated a pre-processing step before performing the actual
record linking. We feel this is because the record linking hasn’t been tried out on
records with large number of fields. Also since most of the input records on which
the linking is to be performed have a well-understood attribute domain, no one
really looks into the performance of similarity functions. In a way there is an
implicit hidden assumption based on empirical evidence that certain similarity
functions are the best functions for a given attribute domain. Nevertheless, we feel
that using GA to find the optimum set of similarity functions can give output
similarity function sets that are not quite obvious just by looking at the domain of
the attribute [10, 15].

The closest research work done on similar line is done by Marco Modesto et.al in
[14]. Our work is based on evaluating the effectiveness of Marco’s methods on real
world data. The original idea is completely attributed to Marco Modesto.
Nevertheless Marco’s presentation of the idea in [17] is just an introduction to the
idea. We apply the author’s idea on records collected from 2 real world data
sources. The data source is made available to us from [17]. In the original
experiment the author used some of this own personal data as input and used the
Febryl framework to learn the optimal similarity function set. The similarity
functions that took part in each generation of the GA iteration were standard inbuilt
functions provided by Febryl in [5].

A comprehensive listing of similarity functions available for names and records is
presented by W.Cohen in [4]. Finally, we have chosen the Weka library to provide
us with standard similarity function like Jaccard, Jaro, Jaro-Winkler, Levenstein,
Monge-Elkan and Smith-Waterman. The selection of these similarity functions is
based on the criterion of best capturing the notion of similarity of attributes in the
restaurant test data set. We believe the above selected similarity functions in the
entirety are enough to capture the notion of similarity in the given attribute set of
{Name, Street address, City, Type of food}.

Also some of work in coming up with an optimum set similarity functions as well as
learning the parameters (viz. predicate threshold) associated with these similarity
functions comes under the banner of “learnable similarity functions”. Learnable
similarity functions are researched extensively by Bilenko in [12, 13]. Bilenko
concludes that similarity functions are learnable and provide performance
improvement is applications requiring them like record linkage, semi-supervised
clustering and blocking. Bilenko’s doctoral thesis [13] is a very comprehensive
study of use different learning approaches to learn similarity functions. The paper
also suggests that similarity functions can be learnt at both the field level and the
record level. A mix and match of similarity functions at both record and attribute
levels along with theirs parameters defines the search space of our learning problem.
Belenko’s research experimented with most of the prominent learning algorithms
(viz SVM, HMM) for learning similarity functions. Albeit, genetic algorithms are
not covered in Belenko’s extensive work, we feel that Genetic algorithms in essence
are covered by others algorithms researched by Belenko.

3 GA for select ing optimal s imilarity function set

In this section we describe the approach to find the set of optimal similarity
functions to be used to a given set of input attributes.

Inputs:

a) A set of labeled records pairs of the form

Dtrain = {R1, R2-> Distinct}

Where are R1 belongs to data-set 1 and R2 belongs to data-set.

b) A set of available candidate similarity functions of the form.

SimFunccandidate = {Sim (R1, R2) -> (0 to 1)}

Where each similarity outputs the real similarity value of two text inputs
R1, R2 on a scale of 0 to 1. 1 Signifying a perfect match

Output:

a) A set of candidate similarity functions to be applied to the attributes of the
records to be linked.

b) A decision tree (or other classifiers) based that matched the based on the
selected candidate similarity functions. This tree (classifier) is the best tree
that survives after the selected number of generations.

Method:

1. Partition the available labeled data into 2 set Dtrain and Dtest

Figure 1 Using Dtrain to create decision trees according to the sets of similarity

2. Create and initial population composed of a set of randomly selected similarity
function from SimFunccandidate (see Figure 1).

3. Using the training data Dtrain generate a decision tree for each element in the
population created in step 2. The nodes of the tree are attributes and each node we
selected use the similarity function assigned to the particular attribute

Figure 2 Represent decision trees formed by sets of similarity functions

The above figure depicts 3 such trees that are created as part of step3. Each tree is
generated using a set of similarity functions. Tree (b) for example was generated
using the similarity function set {Sf1, Sf1, Sf4, Sf2}. In this example we have 4
attributes {A1, A2, A3, A4}. Tree (b) thus uses Sf2 similarity function at the root
node with attribute A4.

4. For each tree calculate created in step 2 calculate its fitness using the fitness
function (described ahead). The fitness function is a measure of how well the tree
performs on Dtest. This is the selection step in a Genetic Algorithm (GA).

Figure 3 Using Genetic Algorithm to remove and

reproduce the sets of similarity functions

5. From the trees M available select the fittest N fit trees for reproduction and
discard the (M-N) trees.

6. Using the M most fit trees selected in step 5 create a new set of population using
function crossover, mutation.

7. Using this new population create trees for the next generation.

8. Repeat above steps for a fixed number of generations.

9. Output the selection function vector of the fit tree and the tree itself.

 As you can see, the above-mentioned algorithm tries to find the set of optimal
selection functions that maximize the fitness function. The fitness function in turn is
defined as how well a tree performs on the test data. The steps of cross over and
mutations are stands step in GA to avoid common pitfall like converging to a local
maxima for the fitness function [10, 11].

3 . 1 F i t n e s s f u n c t i o n

The fitness function to be used should be such that favors tress, which classifies
more, test examples correctly and penalizes the trees in proportions to the
miscalculations they output. We used the same fitness function as mentioned in
[17]. The formula to find fitness score for each individual (set of similarity
functions) is

Fitness()=(RI∗10)−(WI∗2)

Where RI means the number of right classification, and WI means the number of
incorrect classification.

In each evolution, there are some individuals in the population, which are not strong
enough (low fitness score). These individuals cannot survive to the next generation.
Thus, we remove them from the population.

3 . 2 R e p r o d u c t i o n

The fittest individuals have chances to reproduce new members of the population.
The reproduction process can be done by using “cross over” between two
individuals or by “mutation” of an existing individual. The number of new members
might be varying.

3 . 3 S e l e c t i o n

The selection process mainly depends on the fitness score. The most n fittest
individuals are selected to be in the next generation. On the opposite way, we can
also remove the n weakest individual out from the population.

3 . 4 C r o s s O v e r

The cross over process happens in the reproduction process. To produce a new
member to the population, the new member usually comes from selecting features
from a pair of existing members. This can happen randomly or by some selecting
criteria.

3 . 5 M u t a t i o n

Mutation causes some changes in the genetic of an individual. By the way, the
changes are very small, and don’t make big difference. It can happen by a
biologically transformation of genes. It our project, it means changing some features
in a set of similarity function.

4 Evaluation Framework

We evaluate our claim by comparing the result from Genetic Algorithm to the result
from baseline experiment. The baseline experiment composes of training a classifier
using 6 similarity functions (Levenstein, Jaccard, Jaro, Jaro-Winkler, Monge-Elkan,
and Smith-Waterman) one at a time [4, 5, 6, 7]. This classifier is used to classify the
test data. The baseline result comes from the best result of these 6 similarity
functions.

4 . 1 B a s e l i n e r e s u l t

Table 1 Baseline results

Similarity functions Number of correctly
classified records

Number of
misclassified
records

F-measure

Jaccard 241 10 0.86111111112

Jaro 250 1 0.98360655737

Jaro-Winkler 240 11 0.81967213114

Levenstein 243 8 0.88571428571

Monge-Elkan 184 67 0.42735042735

Smith-Waterman 240 11 0.81967213114

As we can see that some similarity functions perform better than the others. This is
because different similarity functions can work well with different kind of string.
Our project aims to solve this problem by determining the most suitable similarity
function for each attribute in a provided dataset.

4 . 2 E x p e r i m e n t a l r e s u l t s

Our experiment is setup using the following configurations:

1. Number of evolution: 20

2. Using 6 similarity functions (as in the baseline): Levenstein, Jaccard, Jaro,
Jaro-Winkler, Monge-Elkan, and Smith-Waterman

3. Population size: 1296

4. Number of evolutions: 20

5. Number of selection: 1276

6. Number of crossover: 20/evolution

Average f-measure score as in figure 4 measures the result for each evolution. We
can see that the average f-measure score increases every evolution.

The result from the best individual in the last evolution is as follows:

Correctly Classified Instances 250 99.6015%

Incorrectly Classified Instances 1 0.3985%

f-measure 0.9841269841269841

Table 2 Confusion Matrix

 Non-duplicate Duplicate

Non-duplicate 219 1

Duplicate 0 31

Figure 4 Average f-measure for each evolution

As a result, we obtained the six best sets of similarity functions, which can produce
the same result, and have the same fitness score.

Table 3 Best sets of similarity functions

 Name Street Address City Kind of Food

Set 1 Levenstein Jaro Jaro Levenstein

Set 2 Levenstein Jaro Jaro Jaro

Set 3 Levenstein Jaro Jaro Monge-Elkan

Set 4 Levenstein Jaro Jaro Jaccard

Set 5 Levenstein Jaro Jaro Smith-Waterman

Set 6 Levenstein Jaro Jaro Jaro-Winkler

5 Conclusion

The results clearly show that we can learn similarity functions using genetic
algorithms. Across our experiments the F-measure across generations always shows
improvements as we training each advancing generation. We have seen that given a
small selection of similarity functions viz 2 to 3 the genetic algorithm quickly (9th
To 10th generation) converges to optimum selection of similarity functions.
Although we would like to mentions the convergence is highly sensitive to number
of choices available as similarity functions. In our final experiment we used 6
similarity functions and the algorithm converged in the late 100’Th of generation.
From our results its fair to assume that without any optimizations, finding the

optimum set of similarity function using genetic algorithm can quickly becomes and
computable intractable as the choice for similarity functions increases.

6 Acknowledgments
Thanks to kind Professors, Tom Mitchell, and William Cohen. Also thanks for Andrew
Arnold and Mary McGlohon for contributing as our TAs in this course.

R e f e r e n c e s

[1] Banzhaf, W., Nordin, P., E, R. E. K. R., and Francone, F. D. Genetic
Programming - An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann Publishers, 1998.

[2] Bilenko M., Mooney R. J., Cohen W. W. , Ravikumar P., and Fienberg S.
Adaptive name matching in information integration. In IEEE Intelligent Systems 18.
5 (September/October 2003), 16-23.

[3] Carvalho M. G., Silva A. S. Learning to Deduplicate. In JCDL'06. (2006) 41-50.

[4] Cohen, W. W. Data integration using similarity joins and a word-based
information representation language. ACM TOIS 18, 3 (2000), 288–321.

[5] Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. A comparison of string
distance metrics for name-matching tasks. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03). 2003.

[6] Cohen W.W., Ravikumar P., Fienberg S. E. A Comparison of String Metrics for
Matching Names and Records. In American Association for Artificial Intelligence.
2003.

[7] Cohen, W. W., and Ravikumar, P. 2003. Secondstring: An open-source java
toolkit of approximate string-matching techniques.

Project web page, http://secondstring.sourceforge.net.ternal Revenue Service
Publication R99/04. Available from http://www.census.gov/srd/www/byname.html;
[accessed 10 April 2008.]

[8] Fellegi I. P., Sunter A. B. A theory for record linkage. Journal of American
Statistical Association 66, 1 (1969), 1183-1210.

[9] Joachims, T. Learning to Classify Text Using Support Vector Machines. Kluwer.
2002.

[10] Jones G. Genetic and Evolutionary Algorithms. Available from
http://www.wiley.co.uk/ecc/samples/sample10.pdf; accessed 12 April 2008.

[11] Koza J. R. Genetic Programming: on the programming of computers by means
of natural selection. MIT Press, 1992.

[12] Mikhail Bilenko .Learnable Similarity Functions and Their Applications to Record
Linkage, Proceedings of the Ninth AAAI/SIGART Doctoral Consortium

[13] Mikhail Y. Bilenko Phd Thesis Learnable Similarity Functions and Their
Application to Record Linkage and Clustering. Available from:
http://www.cs.utexas.edu/~ml/papers/marlin-dissertation-06.pdf [accessed 4 April 2008]

 [14] Modesto M., Carvalho M. G. Record Deduplication By Evolutionary Means.

Available from

http://homepages.dcc.ufmg.br/~nivio/cursos/pa06/seminarios/seminario16/seminario16.p

df [accessed 4 April 2008]

[15] Sarawagi S., Bhamidipaty A. Interactive deduplication using active learning. In

Conference on Knowledge Discovery in Data (Edmonton, Alberta, Canada). ACM, New

York, 2002. pp. 269-278.

[16] Tejada S., Knoblock1 C. A., and Minton S. Learning Object Identification Rules for
Information Integration. In Information Systems Vol. 26, No. 8, pp. 607–633, 200.

[17] Whitley D. A. Genetic Algorithm Tutorial. Available from:
http://www.cs.iastate.edu/~honavar/ga_tutorial.pdf; accessed 10 April 2008.

