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Abstract 

 

Machine learning algorithms have been successfully employed in 
solving the record linkage problem. Machine learning casts the 
record linkage problem as a classification problem by training a 
classifier that classifies 2 records as duplicates or unique. 
Irrespective of the machine learning algorithm used, the initial step 
in training a classifier involves selecting a set of similarity 
functions to be applied to each attribute to get a similarity measure. 
Usually this is done manually with input from a domain expert. We 
evaluate an approach in which the optimal combination of 
similarity function for a given type of input data records is 
searched using Genetic Algorithms. 

1  Introduction 

Record Linkage is an important pre-processing step on raw data integrated from 
multiple sources. The problem is aggravated when records from the two sources do 
not share a unique key based. Absence of a shared unique key mandates use of 
complex methods for purging duplicate records from the final integrated data set 
[3].  

A trivial method for doing record linkage is to form a set of rules for detecting 
duplicates. Such rules are then tuned over time to accommodate exceptions. The 
solution may or not be accurate but is definitely not elegant. Firstly this method 
needs creating the initial rule set by a domain expert; second this method requires 
constant monitoring and human intervention of some type for detecting and 
accommodating exceptions [8, 9]. 

Machine learning algorithms alleviate the two problems of creation of the initial 
rule set and constant monitoring and adapting the rule set to exceptions.  A machine 
learning approach to create the initial rule set is described in [14]. This method is 



 

based on computing similarity scores between records and then learning the 
mapping rule.  The method requires sufficiently large amount of labeled data. This 
labeled data is created manually and sometimes is infeasible to generate because the 
labeling has to perform and exhaustive search over the dot product of the input 
records. As the number of records N increase the search space for labeling 
increasing as a quadratic equation [N*N]. In [16] the author tries to employ active 
learning for selecting the most uncertain record pair for a teacher to label. This 
significantly reduces the number of labeled record pairs required for the learner to 
converge to optimal mapping rules. The authors in [16] also suggest methods like 
grouping, indexing and sampling for managing the quadratic size [N*N] of the 
search space generated in the labeling stage. 

 

One important class of machine learning algorithms employed in record linking is 
Probabilistic Record Linkage. PRL uses a large labeled datasets to generate a weight 
vector for similarity each attribute. The weights are generated according to 
statistical measures over the training data. Each weight can be seen as a measure of 
how strongly/weakly a match for a particular attribute affects the probability of the 
record pair being a duplicate. To classify new records each agreement /disagreement 
on individual attributes of a records are considered in proportion to the weight 
vector and sum is generated. This sum is then used in determining the class of the 
record pair and duplicate or unique. Usually 2 thresholds values are chosen for the 
sum called the ‘positive and negative threshold’. All records pairs having a sum of 
weighted agreement greater than the positive threshold are considered to be sure 
duplicates. Similarly all pairs below having the weighted agreement less than the 
negative threshold are considered to be surely unique. Record pairs whose weighted 
agreement values fall between the positive and the negative threshold fall in the 
confusion area of the classifier and the classifier may decide to ask a teacher for 
help in classifying such records. In summary PRL can be viewed as the Naïve Bayes 
algorithm for record classification. 

 

In the above discussion we have assumed that we have a set of similarity functions 
to be applied for matching individual attributes of the record. Usually this is true if 
the attributes are small in number and the attribute domain is well understood. For 
example one can fairly conclude that soundex() is a better similarity match function 
for a field like names of a person. But, the soundex() may or may not perform better 
on an attribute where similar sounding attributes are actually unique. Similarly a 
numeric attribute cannot be subjected similarity functions that are designed to work 
on strings. Also depending upon the quality of data soundex() and stringcmp() may 
perform differently as similarity functions. Soundex and stringcmp() are just 2 
representative similarity functions discussed here for the sake of an example. A 
complete list of similarity matching functions is discussed by W. Cohen in [2, 4, 5, 
6, 7]. 

 

We wish to evaluate the effectiveness of Genetic Algorithms to search the optimal 
set of similarity functions to be used for training a classifier given a type of input 
records [1, 11, 12, 16]. 



 

2  Related Work 

The task of finding the optimum set of similarity functions is in our view considered 
to be a trivial task. Not much has been done in automatically tuning the selections 
functions. This to our understanding is because the record linking problem domain 
already has way too many problems to solve. Finding the optimum set of similarity 
functions is can also be treated a pre-processing step before performing the actual 
record linking. We feel this is because the record linking hasn’t been tried out on 
records with large number of fields. Also since most of the input records on which 
the linking is to be performed have a well-understood attribute domain, no one 
really looks into the performance of similarity functions. In a way there is an 
implicit hidden assumption based on empirical evidence that certain similarity 
functions are the best functions for a given attribute domain. Nevertheless, we feel 
that using GA to find the optimum set of similarity functions can give output 
similarity function sets that are not quite obvious just by looking at the domain of 
the attribute [10, 15]. 

 

The closest research work done on similar line is done by Marco Modesto et.al in 
[14]. Our work is based on evaluating the effectiveness of Marco’s methods on real 
world data. The original idea is completely attributed to Marco Modesto. 
Nevertheless Marco’s presentation of the idea in [17] is just an introduction to the 
idea. We apply the author’s idea on records collected from 2 real world data 
sources.  The data source is made available to us from [17]. In the original 
experiment the author used some of this own personal data as input and used the 
Febryl framework to learn the optimal similarity function set. The similarity 
functions that took part in each generation of the GA iteration were standard inbuilt 
functions provided by Febryl in [5].  

 

A comprehensive listing of similarity functions available for names and records is 
presented by W.Cohen in [4]. Finally, we have chosen the Weka library to provide 
us with standard similarity function like Jaccard, Jaro, Jaro-Winkler, Levenstein, 
Monge-Elkan and Smith-Waterman. The selection of these similarity functions is 
based on the criterion of best capturing the notion of similarity of attributes in the 
restaurant test data set. We believe the above selected similarity functions in the 
entirety are enough to capture the notion of similarity in the given attribute set of 
{Name, Street address, City, Type of food}. 

Also some of work in coming up with an optimum set similarity functions as well as 
learning the parameters (viz. predicate threshold) associated with these similarity 
functions comes under the banner of “learnable similarity functions”. Learnable 
similarity functions are researched extensively by Bilenko in [12, 13].  Bilenko 
concludes that similarity functions are learnable and provide performance 
improvement is applications requiring them like record linkage, semi-supervised 
clustering and blocking. Bilenko’s doctoral thesis [13] is a very comprehensive 
study of use different learning approaches to learn similarity functions. The paper 
also suggests that similarity functions can be learnt at both the field level and the 
record level. A mix and match of similarity functions at both record and attribute 
levels along with theirs parameters defines the search space of our learning problem. 
Belenko’s research experimented with most of the prominent learning algorithms 
(viz SVM, HMM) for learning similarity functions. Albeit, genetic algorithms are 
not covered in Belenko’s extensive work, we feel that Genetic algorithms in essence 
are covered by others algorithms researched by Belenko. 
 



 

3  GA for select ing optimal  s imilarity function set  

In this section we describe the approach to find the set of optimal similarity 
functions to be used to a given set of input attributes.  

Inputs: 

a) A set of labeled records pairs of the form 

Dtrain  = {R1, R2-> Distinct} 

Where are R1 belongs to data-set 1 and R2 belongs to data-set. 

b) A set of available candidate similarity functions of the form. 

SimFunccandidate = {Sim (R1, R2) -> (0 to 1)} 

Where each similarity outputs the real similarity value of two text inputs 
R1, R2 on a scale of 0 to 1. 1 Signifying a perfect match  

Output: 

a) A set of candidate similarity functions to be applied to the attributes of the 
records to be linked. 

b) A decision tree (or other classifiers) based that matched the based on the 
selected candidate similarity functions. This tree (classifier) is the best tree 
that survives after the selected number of generations.  

Method: 

1. Partition the available labeled data into 2 set Dtrain and Dtest 

 
Figure 1 Using Dtrain to create decision trees according to the sets of similarity 

 

2. Create and initial population composed of a set of randomly selected similarity 
function from SimFunccandidate (see Figure 1). 

3. Using the training data Dtrain generate a decision tree for each element in the 
population created in step 2. The nodes of the tree are attributes and each node we 
selected use the similarity function assigned to the particular attribute  



 

 
Figure 2 Represent decision trees formed by sets of similarity functions 

 

The above figure depicts 3 such trees that are created as part of step3. Each tree is 
generated using a set of similarity functions. Tree (b) for example was generated 
using the similarity function set {Sf1, Sf1, Sf4, Sf2}. In this example we have 4 
attributes {A1, A2, A3, A4}. Tree (b) thus uses Sf2 similarity function at the root 
node with attribute A4. 

4. For each tree calculate created in step 2 calculate its fitness using the fitness 
function (described ahead). The fitness function is a measure of how well the tree 
performs on Dtest. This is the selection step in a Genetic Algorithm (GA). 

 
Figure 3 Using Genetic Algorithm to remove and 

reproduce the sets of similarity functions 

 

5. From the trees M available select the fittest N fit trees for reproduction and 
discard the (M-N) trees.  

6. Using the M most fit trees selected in step 5 create a new set of population using 
function crossover, mutation.  

7. Using this new population create trees for the next generation. 

8. Repeat above steps for a fixed number of generations. 



 

9. Output the selection function vector of the fit tree and the tree itself. 

 

 As you can see, the above-mentioned algorithm tries to find the set of optimal 
selection functions that maximize the fitness function. The fitness function in turn is 
defined as how well a tree performs on the test data. The steps of cross over and 
mutations are stands step in GA to avoid common pitfall like converging to a local 
maxima for the fitness function [10, 11].  

3 . 1  F i t n e s s  f u n c t i o n  

The fitness function to be used should be such that favors tress, which classifies 
more, test examples correctly and penalizes the trees in proportions to the 
miscalculations they output. We used the same fitness function as mentioned in 
[17]. The formula to find fitness score for each individual (set of similarity 
functions) is 

Fitness()=(RI∗10)−(WI∗2) 

Where RI means the number of right classification, and WI means the number of 
incorrect classification. 

In each evolution, there are some individuals in the population, which are not strong 
enough (low fitness score). These individuals cannot survive to the next generation. 
Thus, we remove them from the population. 

3 . 2  R e p r o d u c t i o n  

The fittest individuals have chances to reproduce new members of the population. 
The reproduction process can be done by using “cross over” between two 
individuals or by “mutation” of an existing individual. The number of new members 
might be varying. 

3 . 3  S e l e c t i o n  

The selection process mainly depends on the fitness score. The most n fittest 
individuals are selected to be in the next generation. On the opposite way, we can 
also remove the n weakest individual out from the population. 

3 . 4  C r o s s  O v e r  

The cross over process happens in the reproduction process. To produce a new 
member to the population, the new member usually comes from selecting features 
from a pair of existing members. This can happen randomly or by some selecting 
criteria. 

3 . 5  M u t a t i o n  

Mutation causes some changes in the genetic of an individual. By the way, the 
changes are very small, and don’t make big difference. It can happen by a 
biologically transformation of genes. It our project, it means changing some features 
in a set of similarity function. 



 

4  Evaluation Framework 

We evaluate our claim by comparing the result from Genetic Algorithm to the result 
from baseline experiment. The baseline experiment composes of training a classifier 
using 6 similarity functions (Levenstein, Jaccard, Jaro, Jaro-Winkler, Monge-Elkan, 
and Smith-Waterman) one at a time [4, 5, 6, 7]. This classifier is used to classify the 
test data. The baseline result comes from the best result of these 6 similarity 
functions. 

4 . 1  B a s e l i n e  r e s u l t  

Table 1 Baseline results 

Similarity functions Number of correctly 
classified records 

Number of 
misclassified 
records 

F-measure 

Jaccard 241 10 0.86111111112 

Jaro 250 1 0.98360655737 

Jaro-Winkler 240 11 0.81967213114 

Levenstein 243 8 0.88571428571 

Monge-Elkan 184 67 0.42735042735 

Smith-Waterman 240 11 0.81967213114 

As we can see that some similarity functions perform better than the others. This is 
because different similarity functions can work well with different kind of string. 
Our project aims to solve this problem by determining the most suitable similarity 
function for each attribute in a provided dataset. 

4 . 2  E x p e r i m e n t a l  r e s u l t s  

Our experiment is setup using the following configurations: 

1. Number of evolution: 20 

2. Using 6 similarity functions (as in the baseline): Levenstein, Jaccard, Jaro, 
Jaro-Winkler, Monge-Elkan, and Smith-Waterman 

3. Population size: 1296 

4. Number of evolutions: 20 

5. Number of selection: 1276 

6. Number of crossover: 20/evolution 

Average f-measure score as in figure 4 measures the result for each evolution. We 
can see that the average f-measure score increases every evolution.  

The result from the best individual in the last evolution is as follows: 

Correctly Classified Instances   250 99.6015% 

Incorrectly Classified Instances      1 0.3985%  

f-measure    0.9841269841269841 

 



 

Table 2 Confusion Matrix 

 Non-duplicate Duplicate 

Non-duplicate 219 1 

Duplicate 0 31 

 

 
Figure 4 Average f-measure for each evolution 

As a result, we obtained the six best sets of similarity functions, which can produce 
the same result, and have the same fitness score. 

 

Table 3 Best sets of similarity functions 

 Name Street Address City Kind of Food 

Set 1 Levenstein Jaro Jaro Levenstein 

Set 2 Levenstein Jaro Jaro Jaro 

Set 3 Levenstein Jaro Jaro Monge-Elkan 

Set 4 Levenstein Jaro Jaro Jaccard 

Set 5 Levenstein Jaro Jaro Smith-Waterman 

Set 6 Levenstein Jaro Jaro Jaro-Winkler 

 

5  Conclusion 

The results clearly show that we can learn similarity functions using genetic 
algorithms. Across our experiments the F-measure across generations always shows 
improvements as we training each advancing generation. We have seen that given a 
small selection of similarity functions viz 2 to 3 the genetic algorithm quickly (9th 
To 10th generation) converges to optimum selection of similarity functions. 
Although we would like to mentions the convergence is highly sensitive to number 
of choices available as similarity functions. In our final experiment we used 6 
similarity functions and the algorithm converged in the late 100’Th of generation. 
From our results its fair to assume that without any optimizations, finding the 



 

optimum set of similarity function using genetic algorithm can quickly becomes and 
computable intractable as the choice for similarity functions increases.  
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