
One-Time Trapdoor One-Way Functions

Julien Cathalo?1 and Christophe Petit??2

1 Smals
Avenue Fonsny 20, 1060 Bruxelles, Belgium

email: julien.cathalo@smals.be
2 UCL Crypto Group

Université catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
email: christophe.petit@uclouvain.be

Abstract. Trapdoors are widely used in cryptography, in particular for
digital signatures and public key encryption. In these classical applica-
tions, it is highly desirable that trapdoors remain secret even after their
use. In this paper, we consider positive applications of trapdoors that do
not remain secret when they are used. We introduce and formally de-
fine one-time trapdoor one-way functions (OTTOWF), a primitive simi-
lar in spirit to classical trapdoor one-way functions, with the additional
property that its trapdoor always becomes public after use. We provide
three constructions of OTTOWF. Two of them are based on factoring
assumptions and the third one on generic one-way functions. We then
consider potential applications of our primitive, and in particular the
fair exchange problem. We provide two fair exchange protocols using
OTTOWF, where the trapdoor is used to provide some advantage to
one of the parties, whereas any (abusive) use of this trapdoor will make
the advantage available to the other party as well. We compare our proto-
cols with well-established solutions for fair exchange and describe some
scenarios where they have advantageous characteristics. These results
demonstrate the interest of one-time trapdoor one-way functions, and
suggest looking for further applications of them.

Keywords Cryptographic primitive, trapdoor one-way function, fair
exchange

1 Introduction

In cryptography, a trapdoor is a secret piece of information that provides its
holder with some special power or advantage. This concept is usually formalized
through the definition of a trapdoor one-way function (TOWF), a function that
is computationally easy to compute and hard to invert but that becomes easy to
invert with the help of the trapdoor. TOWF are a fundamental tool for public

? The work of this author was done while he was a post-doctoral researcher at the
UCL Crypto Group and was supported by the Belgian Walloon Region under its
RW-WIST Programme, ALAWN Project.

?? Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS) at Uni-
versité catholique de Louvain (UCL).

key cryptography, for example to build digital signature or public key encryption
schemes.

The two most famous trapdoor one-way functions are arguably RSA [29] and
Rabin [28] TOWF. Both of them rely on the factoring assumption, the assump-
tion that factoring “big” composite numbers is “hard”. Even if the security link
between Rabin and factoring is better (in fact, breaking Rabin TOWF is equiv-
alent to factoring), the RSA TOWF has been much more used in practice. The
reason is that any use of Rabin TOWF will leak its trapdoor with a probability
of one half, whereas RSA trapdoor remains completely secret even after many
uses.

If trapdoors provide their owners with some specific advantage, their leakage
will, on the other hand, strongly limit this power. Fresh parameters will have
to be generated after each use, which is an important limitation in many ap-
plications. For this reason, leaking trapdoors have usually been considered as
undesirable and RSA has been preferred to Rabin in applications. However, we
remark that limiting the use of a trapdoor also seems appealing and potentially
very useful in other applications:

– To ensure that the trapdoor is only used once, assuming that it becomes
useless as soon as it becomes public. This seems appealing for an electronic
cash system, to ensure that coins are only spent once.

– To prove that the trapdoor has been used, assuming that it becomes public
if and only if it is used. This could be useful in a digital right management
system supporting delegation, to trace the fact that the proxy has used its
trapdoor.

– To ensure some fairness between various parties in a protocol, since the
special power given to the holder of the trapdoor will also become available
to the other parties after its use.

In this paper, we therefore introduce one-time trapdoor one-way functions
(OTTOWF), a cryptographic primitive close to trapdoor one-way functions but
with the additional property that trapdoors always become public after their
use. We provide a formal definition and three constructions of OTTOWF satis-
fying various flavors of this definition. Our first construction is a natural exten-
sion of Rabin TOWF. It relies on the factoring assumption for RSA numbers.
The second construction is a modification of Paillier’s trapdoor one-way per-
mutation [26] and relies on a different factoring assumption. Finally, our third
construction is based only on generic one-way functions (but is not a trapdoor
one-way function in the usual sense).

As an example of application, we consider the fair exchange problem, a very
important problem for e-commerce. A fair exchange of signatures between two
parties requires that both parties are guaranteed to give their own signature only
if they receive the other signature in exchange. We design two fair exchange pro-
tocols using OTTOWF. In these protocols, we use the trapdoor of an OTTOWF
to provide one of the parties with some protection mechanism, and we use its
leakage property to ensure fairness to the other party even if the first party

abusively uses its trapdoor. A comparison with state-of-the-art protocols reveals
some advantages of our approach in particular situations. We believe that these
results illustrate the interest of our new primitive, and encourage research for
further applications.

This paper is organized as follows. We define our notations and we recall
standard security notions in Section 2. We introduce one-time trapdoor one-
way functions in Section 3.1 and give our three constructions in Sections 3.2, 3.3
and 3.4. We provide and analyze two new protocols for fair exchange in Section 4,
and we conclude the paper in Section 5.

2 Preliminaries

2.1 Notations

In this paper, we will use the notation ` for the security parameter involved
in our definitions. For any ` ≥ 2, we write P` for the set of prime numbers p
such that 2`−1 ≤ p < 2`. By {S(`), ` = 1, 2, . . . } we mean a sequence of sets
S(1),S(2), ..., one set for each value of the security parameter `. For any function
f , we write Dom(f) and Im(f) for its domain and codomain. We say that a
function f : N → R+ is negligible if for any polynomial p, there exists `0 ∈ N
such that f(`) < 1/p(`) for any ` ≥ `0. We say that a function g : N → [0, 1] is
overwhelming if there exists a negligible function f such that g = 1− f .

When x and y are two bitstrings, we write 〈x, y〉 for their concatenation. We
denote by 1` a bitstring made of ` consecutive 1. We write {0, 1}∗ for the set
of all bitstrings with a finite length. We say that an algorithm A is probabilistic
polynomial time or just PPT if there exists a polynomial p such that the aver-
age running time of A on inputs of size ` is smaller than p(`). We say that a
computational task is computationally infeasible if no PPT algorithm succeeds
in performing the task with a non-negligible probability.

We say that a set R is samplable if there exists a PPT algorithm that ran-
domly picks an element from the uniform distribution on R. When R is sam-

plable, we write r
$← R for the experiment of uniformly selecting a random value

from R and assigning it to r. We say that a set R is decidable if there exists a
PPT algorithm that on input (bitstring representations of) x and R, returns 1
if and only if x ∈ R. If Alg is a deterministic algorithm we note Alg(x) for the
value outputted by Alg on input x. If Alg is probabilistic, y ∈ Alg(x) means
that Alg returns y on input x for some values of its internal random coins,
whereas y = Alg(x) denotes the experiment of running Alg on input x and
assigning its output to y. By Pr[A : B;C] we mean the probability that a logical
expression A holds given an experiment that consists in successively executing
B and C.

2.2 One-way function

Intuitively, a one-way function (OWF) is a function that is easy to compute but
computationally hard to invert.

Definition 1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if it is:

– Easy compute: there exists a PPT algorithm that on input x returns f(x).
– Hard to invert: there exists no PPT algorithm A such that

Pr
[
f(x′) = y : x

$← {0, 1}`; y = f(x);x′ = A(y)
]

is a non negligible function

of `.

2.3 Trapdoor one-way function

Intuitively, a trapdoor one-way function (TOWF) is a one-way function that
becomes easy to invert given an additional piece of information called a trapdoor.
Definition 2 A trapdoor one-way function is a set of three probabilistic poly-
nomial time algorithms:

– Setup: probabilistic algorithm that on input 1`, returns 〈f, t〉 where f ∈ F(`)
is the description of a function, together with a samplable set Dom(f) and
two sets Im(f) and T (f), and t ∈ T (f) is a corresponding trapdoor. (The
sets F(`), ` ∈ N0 are implicitly defined by Setup.)

– Eval: deterministic algorithm that on input 〈f, x〉 where f ∈ F(`) and x ∈
Dom(f), returns y ∈ Im(f).

– Preimage: probabilistic algorithm that on input 〈f, t, y〉 where f ∈ F(`) is
the description of a function, t ∈ T (f) is a trapdoor and y ∈ Im(f), returns
x ∈ Dom(f).

Moreover, the algorithms satisfy the following properties:

– One-wayness: there exists no PPT algorithm A such that

Pr
[
f(x′) = y : 〈f, t〉 = Setup(1`);x

$← Dom(f); y = Eval(f, x);x′ = A(f, y)
]

is non negligible.
– Trapdoor: for any 〈f, t〉 = Setup(1`), any x ∈ Dom(f), and any x′ ∈

Preimage(f, t,Eval(f, x)), we have Eval(f, x′) = y.

2.4 Signature scheme

Informally, a digital signature scheme is made of three algorithms, Setup, Sign
and Ver. The Setup algorithm creates a pair of private and public keys; the
private key is used for signing and the public key for verifying a signature.
Definition 3 A digital signature scheme is a set of three PPT algorithms:

– Setup: a probabilistic algorithm that on input 1`, returns 〈SK,PK〉 where
PK ∈ P(`) is a public key (implicitly defining a set S(PK), a samplable set
M(PK) and a decidable set Σ(PK)) and SK ∈ S(PK) is a corresponding
private key. (The sets P(`), ` ∈ N0 are implicitly defined by Setup.)

– Sign: a probabilistic algorithm that on input 〈m,SK〉 where m ∈M(PK) is
a message and SK ∈ S(PK) is a private key corresponding to some public
key PK, returns a signature σ ∈ Σ(PK).

– Ver: a deterministic algorithm that on input 〈m,PK, σ〉 where m ∈M(PK)
is a message, PK ∈ S(`) is a public key and σ ∈ Σ(PK) is a signature,
returns either 0 or 1.

Moreover, the algorithms are required to satisfy the following properties:

– Correctness: for any ` ∈ N, for any 〈SK,PK〉 ∈ Setup(1`), any m ∈
M(PK) and any σ ∈ Sign(m,SK), we have Ver(m,PK, σ) = 1.

– Existential unforgeability against adaptive chosen message attacks [19]:
no PPT algorithm A can succeed in the following game with a non-negligible
probability.
• A challenger algorithm runs Setup(1`), keeps the private key SK and

forwards the public key PK to A.
• A chooses a polynomial number of messages mi ∈ M(PK) and queries

the challenger for signatures Sign(mi, SK) on these messages.
• A outputs 〈m,σ〉 where m ∈M(PK), σ ∈ Σ(PK), Ver(m,PK, σ) = 1

and m was not queried before to the challenger.

2.5 The factoring assumption(s)

Informally, the factoring assumption states that (some classes of) integers are
computationally hard to factor. In this paper, we will consider composite integers
of the form n = pq or n = p2q where p and q are prime numbers.
Assumption 1 (Factoring assumption for RSA numbers.) There exists no PPT

algorithm A for which Pr
[
p = A(n); p

$← P`; q
$← P`;n = pq

]
is a non negligible

function of `.
Assumption 2 (Factoring assumption for Paillier numbers.) There exists no

PPT algorithm A for which Pr
[
p = A(n); p

$← P`; q
$← P`;n = p2q

]
is a non

negligible function of `.
These assumptions are widely believed to be true, and they have been inten-

sively used in cryptography.

2.6 RSA and Rabin TOWF

The most famous TOWF candidates are RSA [29] and Rabin [28] functions.
In both cases, the trapdoor t consists of two prime numbers 〈p, q〉. In RSA,
the description of f contains the product n = pq together with some integer e
such that 2 < e < n. In Rabin, it contains n = pq, where p and q are primes
congruent to 3 modulo 4. Given any input x ∈ {1, ..., n − 1}, the RSA and
Rabin Eval algorithms respectively return xe mod n and x2 mod n. For RSA,
the Preimage algorithm computes yd mod n where d := e−1 mod (p− 1)(q− 1)
cannot be computed without the trapdoor. For Rabin, the Preimage algorithm
computes square roots of y modulo p and q, then computes a square root modulo
n with the Chinese Remainder Theorem.

The security of Rabin’s trapdoor function can be proved based on Assump-
tion 1 solely, whereas RSA relies on a possibly stronger assumption. However,

Rabin’s TOWF has a big drawback compared to RSA, that makes it less ap-
pealing for cryptography despite its equivalence to factoring. In Rabin’s TOWF,
any use of the trapdoor will reveal it with a probability one half. On input y =
x2 mod n, the algorithm Preimage outputs some xε with ε ∈ {

(
±q−1 mod p

)
q+(

±p−1 mod q
)
p}. If the output is not x nor −x, the trapdoor 〈p, q〉 can be re-

covered by computing gcd(x+ xε, n). In contrast for RSA, a couple (x = yd, y)
does not reveal anything about the trapdoor since the same couple could also
have been computed without trapdoor as (x, y = xe). The leakage of a trapdoor
requires refreshing the parameters after each use, a serious limitation for classi-
cal cryptographic applications like digital signatures. In this paper, we observe
that a leaking trapdoor may also be benefic to some applications.

3 One-time trapdoor one-way functions

We now define one-time trapdoor one-way functions (OTTOWF). Intuitively,
a one-time trapdoor one-way function is a one-way function with a trapdoor
and the additional property that any use of the trapdoor will reveal it. More
precisely, there exists an extraction algorithm that can extract a trapdoor from
any couple of messages with the same image, provided that the first message
was generated “normally” and the second one was computed with the trapdoor.
We give three practical constructions of OTTOWF. The first one is a natural
extension of Rabin’s trapdoor function; the second one is inspired by Paillier’s
trapdoor permutation [26]; the third one is based on generic one-way functions.

3.1 Definition

Definition 4 A one-time trapdoor one-way function is given by a set of five
probabilistic polynomial time algorithms:

– Setup: probabilistic algorithm that upon input of a security parameter `,
returns 〈k, t〉 where k ∈ K(`) is a key (implicitly defining a set T (k), a
samplable and decidable set R(k) and a decidable set H(k)) and t ∈ T (k) is
a corresponding trapdoor. (The sets K(`) for ` ∈ N0 are implicitly defined by
Setup.)

– Eval: algorithm that upon input of 〈k, r〉 where k ∈ K(`) is a key and r ∈
R(k) is a message, outputs a hash value h ∈ H(k).

– Verify: deterministic algorithm that upon input of 〈k, r, h〉 where k ∈ K(`)
is a key, r ∈ R(k) is a message and h ∈ H(k) is a hash value, outputs either
0 or 1.

– Preimage: deterministic algorithm that upon input of 〈k, h, t〉 where k ∈
K(`) is a key, h ∈ H(k) is a hash value and t ∈ T (k) is a trapdoor, outputs
a message r ∈ R(k).

– TrapExtr: deterministic algorithm that upon input of 〈k, r, r′〉 where k ∈
K(`) is a key and r, r′ ∈ R(k) are two messages, outputs either ⊥ or a
trapdoor t ∈ T (k).

Moreover, these algorithms are required to satisfy the following properties :

– Correctness: For any 〈k, t〉 ∈ Setup(1`) and any r ∈ R(k), we have
Verify(k, r,Eval(k, r)) = 1.

– Onewayness: There exists no PPT algorithm A such that

Pr
[
Verify(k, r′, h) = 1 : 〈k, t〉 ∈ Setup(1`); r

$← R(k);h = Eval(k, r); r′ = A(k, h)
]

is non negligible.
– Trapdoor: For any 〈k, t〉 ∈ Setup(1`), any r ∈ R(k) and any h ∈ Eval(k, r),

we have
Verify(k,Preimage(k, h, t), h) = 1.

– Fairness: For any 〈k, t〉 ∈ Setup(1`), the probability

Pr
[
TrapExtr(k, r,Preimage(k,Eval(k, r), t)) = t : r

$← R(k)
]

is overwhelm-

ing.

We say that an OTTOWF has verifiable setup if the sets K(`) are decidable.
We say it is deterministic if the algorithm Eval is deterministic. We say it is
surjective if for any k ∈ K(`) and any h ∈ H(k), there exists r ∈ R(k) such that
Eval(k, r) = h. We say it has trivial verification if the algorithm Verify upon
input of 〈k, r, h〉 simply computes Eval(k, r) and compares the result with h. We
say it has uniform inversion if Preimage(k, h, t) can return any valid preimage
of h with the same probability.

The onewayness and trapdoor properties simply state that finding preimages
is hard without the trapdoor and easy with the trapdoor. The fairness property
states that, given a message and a preimage of the hash of this message computed
with the trapdoor, anyone can recover the trapdoor. For surjective OTTOWF
the trapdoor property is equivalent to the following property: for any 〈k, t〉 ∈
Setup(1`) and any h ∈ H(k), we have Verify(k,Preimage(k, h, t), h) = 1. The
trapdoor and one-wayness properties together imply that it is hard to recover
the trapdoor from the key. Finally, our definition implies that for random r
values, the probability that Preimage(k,Eval(k, r), t) = r is negligible. Indeed,
if the probability that Preimage(k,Eval(k, r), t) = r was non-negligible, an
adversary against the one-wayness property would obtain the trapdoor with a
non-negligible probability by computing TrapExtr(k, r, r) on random r values.

We point out that an OTTOWF is not necessarily a TOWF in the sense of
Definition 2. Indeed, the correctness property of OTTOWF does not require that
Eval(Preimage(h)) = h for all h, but only that the Preimage algorithm finds
a value that passes the Verify algorithm. However, any deterministic OTTOWF
with trivial verification is a TOWF.

Definition 4 is sufficiently flexible to allow at least three different construc-
tions based on various assumptions. The construction we give based on Rabin
is deterministic and it has trivial verification and uniform inversion but it is
not surjective. The construction based on Paillier’s permutation is determinis-
tic, surjective and it has trivial verification and uniform inversion. Both of these
constructions are TOWF in the sense of Definition 2. The construction from
generic OWF is deterministic and surjective, but it has non uniform inversion

and it is not a TOWF since it does not have trivial verification. (We remark that
otherwise, we would have a reduction from the existence of TOWF to the exis-
tence of OWF, a long-standing open problem.) The construction based on OWF
has a verifiable setup, whereas the constructions based on Rabin and Paillier
can be easily modified to also have a verifiable setup, at the cost of increasing
the key size.

3.2 OTTOWF based on Rabin’s TOWF

In this section, we give a deterministic non surjective OTTOWF with trivial ver-
ification and uniform inversion under the factoring assumption for RSA moduli
n = pq (Assumption 1). As observed above for Rabin’s trapdoor function, two
random square roots of a given number modulo a RSA number n = pq reveal
its factorization with a probability 1/2. In the following construction, Rabin’s
TOWF is modified to increase this probability up to essentially 1.

Let N : Z → Z be a function such that for any polynomial p, there exists
`0 ∈ N such that N(`) > log(p(`)) for any ` ≥ `0. We define the algorithms
Setup, Eval, Verify, Preimage and TrapExtr as follows:

– Setup: on input 1`, randomly choose two primes 2`−1 < p, q < 2` and
compute their product n = pq. SetN = N(`). Output 〈k, t〉 where k = 〈n,N〉
and t = 〈p, q〉. We have H(k) = R(k) = Zn.

– Eval: on input 〈n,N〉 and r = (r1, . . . , rN) ∈ ZN
n , output h = (r21 mod

n, . . . , r2N mod n).
– Verify: on input k = 〈n,N〉, r ∈ ZN

n and h ∈ ZN
n , output 1 if h = Eval(k, r)

else output 0.
– Preimage: on input 〈n,N〉, h = (h1, . . . , hN) ∈ ZN

n and t = 〈p, q〉, compute
E := {

(
±q−1 mod p

)
q +

(
±p−1 mod q

)
p} and pick random εi ∈ E for i =

1, . . . , N . For any i ∈ {1, . . . , N}, compute a square root of hi modulo p and
q, then compute a square root ri of hi modulo n with the Chinese remainder
theorem. Output r = (r1ε1 mod n, . . . , rN εN mod n).

– TrapExtr: on input 〈n,N〉, r = (r1, . . . , rN), r′ = (r′1, . . . , r
′
N), try to find

i ∈ {1, . . . , N} such that ri 6≡ ±r′i (mod n). If such i is found, find the factors
of n using gcd(ri − r′i, n) and output t = 〈p, q〉. Otherwise, output ⊥.

Proposition 1 Under Assumption 1, the above construction is a deterministic
(non surjective) OTTOWF with trivial verification and uniform inversion.

Proof. Let n = pq, let k = 〈n,N〉, let r = (r1, . . . , rN) ∈ ZN
n and let (r′1, . . . , r

′
N) :=

Preimage(k,Eval(k, r), t). For any i ∈ {1, . . . , N}, we have r′i is a random so-

lution of r′i
2

= r2i mod n. Therefore, the probability that ri 6= ±r′i mod n is 1
2

and the probability of success of TrapExtr is 1 − 1
2N

. This proves the fairness
property. The one-wayness property follows from Assumption 1 by a similar
reasoning. The other properties are trivial.

This construction is not surjective since only one fourth of the elements of
H(k) := Zn belong to the set QRn of quadratic residues modulo n. Making it

surjective would require to define H(k) := QRn, but deciding whether a random
element of Zn is a quadratic residue is believed to be a hard problem [?].

The construction as such does not have verifiable setup since it is presumably
hard to decide whether a composite number is an RSA modulus or not. However,
the setup can be made verifiable by adjoining to the key a non-interactive zero-
knowledge (NIZK) proof that the modulus was correctly generated. Such a proof
can be generated using the techniques of Gennaro et al. [18], at the cost of in-
creasing the keysize. This solution requires a slight adaptation of the correctness
property of Definition 4 to take into account the soundness and completeness
errors of the NIZK proof. Details are left aside in this paper.

3.3 OTTOWF based on Paillier’s trapdoor permutation

In this section, we provide a second construction based on the factoring assump-
tion, but this time for moduli n = p2q (Assumption 2). Compared to the previous
one, this construction has the advantage of requiring much smaller parameters
(key sizes, preimage sizes and image sizes). The idea here is to extend the domain
of Paillier’s trapdoor permutation [26] to make it non-injective. The resulting
construction is a deterministic, surjective OTTOWF with trivial verification and
uniform inversion.

– Setup:
on input 1`,
randomly choose two primes 2`−1 < p, q <
2`,
compute n = p2q,
randomly choose g < n, g 6= 0 mod p
return 〈k, t〉 where k = 〈n, g〉 and t =
〈p, q〉.
The key implicitly defines T (k) := P2

` ,
R(k) = {0, 1}4`−3 and H(k) = {1, ..., n −
1}.

– Eval:
on input 〈k, r〉,
parse r = 〈r1, r2〉, r1 < 2` and r2 < 23`−3,
compute h = gr1rn2 mod n,
return h.

– Verify:
on input 〈k, r, h〉,
compute ok = (r ∈ {0, 1}4`−3),
compute h′ = Eval(k, r),
return 1 if and only if ok = 1 and h = h′.

– Preimage:
on input 〈k, h, t〉,
compute H = hp−1 mod p2,
compute LH = (H − 1)/p,
compute G = gp−1 mod p2,
compute LG = (G− 1)/p,
compute r′1 = LH/LG mod p,
compute R2 = g−r

′
1h mod pq,

compute r′2 = R
n−1 mod (p−1)(q−1)
2 mod

pq,
randomly choose s < 2`−1,
compute r′′2 = r′2 + spq,
return r′ = 〈r′1, r′′2 〉.

– TrapExtr:
on input 〈k, r, r′〉,
parse r = 〈r1, r2〉, r1 < 2` and r2 < 23`−3,
parse r′ = 〈r′1, r′2〉, r′1 < 2` and r′2 < 23`−3,
compute t′ = gcd(|r1 − r′1|, n),
if t′ 6= n return t = 〈t′, n/t′2〉,
else compute t′′ = gcd(|r2 − r′2|, n),
if t′′ 6= n return t = 〈n/t′′, t′′2/n〉,
else return ⊥.

Before considering the security of this construction, we prove the following
lemma.

Lemma 1 Let p, q be prime numbers with 2`−1 < p, q < 2`. Let g 6= 0 mod p
and let n = p2q. Let f : {0, 1}` × {0, 1}3`−3 → {1, ..., n − 1} : (r1, r2) →
gr1rn2 mod n. For any r1, r

′
1 ∈ {0, 1}` and any r2, r

′
2 ∈ {0, 1}3`−3, we have

f(r1, r2) = f(r′1, r
′
2) ⇒ r1 = r′1 mod p and f(r1, r2) = f(r1, r

′
2) ⇔ r2 =

r′2 mod pq. Moreover, the Preimage algorithm always succeeds in inverting f .

Proof. The proof mainly follows the lines of [26]. Let Γp := {x ∈ N0|x = 1 mod
p}. The function log : Γp → Zp : x→ (x− 1)/p has the following homomorphic
properties:

∀x, y ∈ Γp, log(xy mod p2) = log(x) + log(y) mod p,
∀g ∈ Γp, r ∈ Zp, log(gr mod p2) = r log(g) mod p.

We first show that f(r1, r2) uniquely determines r1 modulo p, and that this
value is recovered by Preimage. Let G = gp−1 mod p2 and H = hp−1 mod p2

as in the Preimage algorithm of the construction. We have G,H ∈ Γp and H =

(gr1rn2)
p−1

mod p2 = (gr1)
p−1

mod p2 = Gr1 mod p2. The algorithm Preimage
computes LH = log(H) and LG = log(G). By the homomorphic properties of
log, we have LH = r1LG mod p, hence r1 is uniquely determined modulo p, and
this value is recovered by Preimage.

We then show that if r′2 = r2 mod pq then f(r1, r
′
2) = f(r1, r2) for any r1.

It suffices to show that r′n2 = rn2 mod n. Let c := (r′2 − r2)/pq ∈ Z. We have
r′n2 mod n = (r2 + cpq)n mod n = rn2 + (cpq)n + n(...) mod n = rn2 mod n. On
the other hand, if f(r1, r

′
2) = f(r1, r2) for some r1, r2, r

′
2 then r2 = r′2 mod pq.

Indeed, we have gr1rn2 = gr1r′n2 mod n hence rn2 = r′n2 mod n and rn2 = r′n2 mod

pq. Finally, r2 = (rn2)n
−1 mod (p−1)(q−1) = (r′n2)n

−1 mod (p−1)(q−1) = r′2 mod pq.
Now, we show that Preimage always succeeds if h = f(r1, r2) for some

〈r1, r2〉. Indeed, Preimage computes R2 = g−r
′
1h mod pq = g−r1−k1pgr1rn2 mod

pq = g−k1prn2 mod pq and r′2 = R
n−1 mod (p−1)(q−1)
2 mod pq = r2g

−k1p[n
−1 mod (p−1)(q−1)] mod

pq. Since adding a multiple of pq to r′2 does not change the value of f , we have

f(r′1, r
′
2) = f

(
r1 + k1p, r2g

−k1p[n
−1 mod (p−1)(q−1)] mod pq

)
= f

(
r1 + k1p, r2g

−k1p[n
−1 mod (p−1)(q−1)] mod n

)
= gr1rn2 g

k1p
(
g−k1p[n

−1 mod (p−1)(q−1)]
)n

mod n

= gr1rn2 mod n = f(r1, r2).

Finally, we show that f is surjective. Indeed, the restriction of f to {0, ..., p −
1} × {0, ..., pq − 1} is clearly invertible and injective by the above reasoning.
It is therefore bijective, hence f is surjective and Preimage succeeds on any
h ∈ {0, ..., n− 1}.

Proposition 2 Under the factoring assumption for Paillier numbers (Assump-
tion 2), the above construction is a deterministic surjective OTTOWF with triv-
ial verification and uniform inversion.

Proof. The correctness property of the construction is clear since Eval is deter-
ministic. The trapdoor property directly follows from the lemma and its proof.
The one-wayness property follows from the hardness of factoring n: if the func-
tion was not one-way, then it would be possible to factor n by choosing a ran-
dom r = 〈r1, r2〉 ∈ {0, 1}4`−3, computing h = Eval(〈n, g〉, r), and calling the
one-wayness adversary to get r′ = 〈r′1, r′2〉. By Lemma 1, h has O(2`) preimages
in the correct range, so the probability that r = r′ is negligible. If r1 6= r′1 then
|r′1 − r1| = p by Lemma 1 and since r1, r

′
1 < 2`. Otherwise, gcd(|r2 − r′2|, n) is

pq with an overwhelming probability. The factorization of n follows. A similar
reasoning proves the fairness property of the construction. The other properties
are trivial.

The construction as such does not have a verifiable setup. Deciding whether
a number n has the form n = p2q is likely to be as difficult as deciding whether
it has the form n = pq, and the latest problem is believed to be hard [?]. Like
the construction of Section 3.2, the setup can be made verifiable by appending
a non-interactive zero-knowledge proof that the product was well-formed.

Remark. Actually, the NIZK proof can be avoided in most applications (includ-
ing our protocols of Section 4), under the additional assumption that the function
f defined in Lemma 1 cannot be efficiently inverted when n is a square-free com-
posite number. The above analysis assumed that n was properly generated as
n = p2q for two prime numbers p and q of the correct size. However, the trap-
door can also be recovered if the sizes of p and q are not as expected. Indeed,
either gcd(r1 − r′1, n) = p or gcd(r2 − r′2, n) = pq, and the sum of the sizes of r1
and r2 is about 4/3 of the size of n. It is also straightforward to check that the
Preimage algorithm and the proof of Lemma 1 remain valid if q is not prime.

The only cheating Setup strategy left to a tentative adversary is to generate
n as a square-free product of primes. Clearly, Lemma 1 does not hold anymore
in that case. Indeed, we have gcd(n, ϕ(n)) = 1 so for any h and any r1 there
exists r2 such that h = f(r1, r2) := gr1rn2 mod n. Inverting f in that case seems
to be a hard problem related to discrete logarithm and factoring, but unfortu-
nately we are not aware of any clear reduction. If we assume that inverting f is
computationally hard in that case, then no matter how the OTTOWF has been
generated either the trapdoor does not help in finding preimages or the preim-
ages computed with the trapdoor will leak it through the algorithm TrapExtr.
In any case, any preimage computed with the trapdoor will reveal it so the secu-
rity of the protocols of Section 4 will not be affected at all by a malicious Setup
procedure. Indeed, in both protocols the party generating the key is also the one
who may need to invert the function, and their security only requires a trapdoor
extraction algorithm when a preimage can be computed.

3.4 OTTOWF based on one-way functions

One-time trapdoor one-way functions can also be built from generic one-way
functions. Our construction is loosely inspired by the (non-injective) trapdoor

one-way function of [7]. The trapdoor is a domain element of the OWF and
its image is part of the public key. The algorithm Verify always accepts the
trapdoor as a valid “preimage” of any hash value. Since the algorithm Verify is
not trivial, this construction is not a TOWF in the sense of Definition 2.

Let f be a one-way function in the sense of Definition 1. We build the algo-
rithms Setup, Eval, Verify, Preimage, TrapExtr as follows:

– Setup: on input 1n, randomly choose t ∈ {0, 1}`. Compute β = f(t). Output
〈k, t〉 where k = 〈f, β〉.
The key implicitly defines T (k) := {0, 1}`, R(k) := {0, 1}` and H(k) :=
{0, 1}`.

– Eval: on input 〈〈f, β〉, r〉, return f(r).
– Verify: on input 〈〈f, β〉, r, h〉, return 1 if f(r) = h or f(r) = β, else return

0.
– Preimage: on input 〈〈f, β〉, h, t〉, return t.
– TrapExtr: on input 〈〈f, β〉, r, r′〉, return r′.

Proposition 3 The above construction is a deterministic, surjective OTTOWF
with verifiable setup (but non trivial verification and non uniform inversion).

Proof. The Verify algorithm accepts two distinct kinds of values for r. It ac-
cepts preimages (by f) of h, which implies that correctness is satisfied. It also
accepts preimages of β, so the trapdoor property is satisfied too. Fairness is
also straightforward: for any 〈k, t〉 ∈ Setup(1`), Preimage(k,Eval(k, r), t)) = t
by definition of Preimage, so TrapExtract(k, r,Preimage(k,Eval(k, r), t)) =
TrapExtract(k, r, t) = t. Thus the probability to successfully extract the trap-
door from 〈k, r, r′〉 is 1. Finally, one-wayness of the fair trapdoor one-way func-
tion follows from the one-wayness of f . Informally, winning the one-wayness
game implies inverting f , either by computing a preimage of h or a preimage of
β.

4 Application to fair exchange

In this section, we apply our new primitive to the fair exchange problem. We
introduce two new protocols that use OTTOWF for the fair exchange of signa-
tures, and we compare them with state-of-the-art solutions.

4.1 Fair exchange of signatures

In our increasingly electronic societies, more and more business transactions are
conducted over the internet. A large amount of electronic transactions may be
seen as two parties exchanging their digital signatures on a predetermined con-
tract. Fairness is a fundamental requirement of contract signing protocols: no
party wants to send his signature if he does not get the other party’s signa-
ture in exchange. This problem of exchanging signatures in a fair manner has
been extensively investigated in the last 30 years [8, 10, 14, 24, 1, 2, 17, 5, 4, 11,
25, 27, 16, 9, 12, 13, 6, 3, 23, 33, 15, 32, 22, 21, 20, 31]. Most fair exchange protocols

have four communication rounds, during which the two parties, the initiator and
the responder, first exchange partial signatures and then full signatures. Many
protocols involve a semi-trusted third party (STTP) to ensure fairness. Such an
STTP has been called optimistic when it is only invoked to resolve conflicts
when “something goes wrong” in the protocol [1], either when a party attempts
to cheat or when the communication network is defective. Other protocols do
not require an STTP, but at the price of a reduced notion of fairness. Concur-
rent signatures (CS) [13] and verifiably committed signatures (VCS) [16] have
emerged as the two most convincing approaches proposed so far for fair exchange,
respectively without and with STTP.

4.2 Fair exchange without STTP

Concurrent signatures The main idea of concurrent signatures (CS) [13] is to
use ambiguous signatures to construct the partial signatures. From the point of
view of any third party, partial signatures are meaningless since they could have
been generated either by the initiator or by the responder. The ambiguity of both
partial signatures is removed when the initiator releases a piece of information
called the keystone. Full signatures are made of a partial signature plus the
keystone.

Concurrent signatures do not require any STTP but on the other hand, they
only provide a reduced notion of fairness. In particular, if the initiator aborts
after the second step of the protocol, he obtains a full signature of the responder
while the responder only has a partial (meaningless) signature from the initiator.
The fairness of CS is guaranteed only once the initiator uses the full signature he
has built, and only if this signature is seen by the responder (since he therefore
gets the keystone).

The ambiguity property ensures that nobody is even able to see that the
initiator is willing to sign, unless they are able to see that the responder is
willing to sign as well. On the other hand, ambiguity creates an asymmetry in
the abortion facilities given to the parties. While the responder has committed to
provide a full signature after the second step, the initiator can abort the protocol
unilaterally, and the responder will not even be able to prove to a third party
that he had received a first message from the initiator. In a practical scenario,
this allows some vendor to pretend to sell the same good to various candidates,
and only conclude the transaction with the most offering one.

A trivial non-ambiguous solution When we are willing to give up ambiguity
for committing partial signatures, a very simple protocol comes in mind. In
this protocol, partial signatures are regular signatures of the parties, and full
signatures are the concatenation of both partial signatures. A drawback of this
protocol is that neither the initiator nor the responder can directly produce a
valid full signature on a message of their choice. This means that in an application
where they also need to be able to directly sign messages, such “direct” signatures
will have a different format than the full signatures.

Protocol 1: OTTOWF for fair exchange without STTP We now describe
our first fair exchange protocol (see Figure 1). It uses an unforgeable signature
scheme and a OTTOWF with verifiable setup. The message is concatenated
with the image of a randomness by a OTTOWF, and the result is signed to
form a partial signature. A full signature is made of a partial signature plus
the corresponding randomness. The protocol follows the usual “partial, then
full signatures” four communication rounds approach. With this approach, the
responder has an a priori advantage since he can aborts the protocol after re-
ceiving a full signature. We compensate this advantage with the trapdoor, which
gives the initiator the power to convert the responder’s partial signature into a
full signature. Finally, the consequences of any abusive use of the trapdoor are
limited by the fairness property of the OTTOWF.

Initiator Responder

〈SKI , PKI , PKR〉 〈SKR, PKI , PKR〉
〈k, t〉 = Setup(1`)

rI
$←R(`)

hI = Eval(k, rI)
mI = 〈text, hI , PKI , PKR, k〉
µI = Sig(mI , SKI)
If k ∈ K(`) and hI ∈ H(k) and Ver(mI , PKI , σI) = 1

rR
$←R(`)

hR = Eval(k, rR)
mR = 〈mI , hR〉
µR = Sig(mR, SKR)

If hR ∈ H(k) and Ver(mR, PKR, µR) = 1
If Verify(k, rI , hI) = 1
Check Verify(k, rR, hR) = 1

〈k, t〉 = Setup(1`)

rI
$←R(`)

hI = Eval(k, rI)
mI = 〈text, hI , PKI , PKR, k〉
µI = Sig(mI , SKI)
If k ∈ K(`) and hI ∈ H(k) and Ver(mI , PKI , µI) = 1

rR
$←R(`)

hR = Eval(k, rR)
mR = 〈mI , hR〉
µR = Sig(mR, SKR)

If hR ∈ H(k) and Ver(mR, PKR, µR) = 1
If Verify(k, rI , hI) = 1
Check Verify(k, rR, hR) = 1

m1 = 〈mI , µI〉

m2 = 〈mR, µR〉

m3 = rI

m4 = rR

Fig. 1. Description of Protocol 1 (the trapdoor is generated by the initiator). We
assume that the private and public key pairs have been previously distributed by a
PKI.

Our protocol requires an OTTOWF with verifiable setup, so it can be used
with the construction of Section 3.4, or the constructions of Sections 3.2 and 3.3
extended with NIZK proof of correctness for the parameters. As observed in the
end of Section 3.3, the construction based on Paillier’s trapdoor permutation
can also be used without NIZK proofs but under an additional complexity as-
sumption. The signature scheme must of course be existentially unforgeable, but
despite this minimal requirement any scheme can be chosen, either for optimiz-
ing the efficiency or for obtaining some specific extra properties. We now briefly
analyze the security.

– The checks at the beginning of Step 2 ensure the responder that the partial
signature he has received is valid, that the parameters for the OTTOWF
are correct (in particular, that he will be able to recover a trapdoor if the
initiator uses his one) and that if he ever gets a trapdoor he will be able to
find preimages to hI (and hence to compute a full signature of the initiator).

– The checks at the beginning of Step 3 ensure the initiator that he can extract
a preimage of hR and that the partial signature is valid.

– If the initiator simply aborts after Step 2, none of the parties has a valid full
signature so the protocol is fair.

– The initiator can abort after Step 2 and use his trapdoor to build a full
signature of the responder. However, the fairness property of OTTOWF
ensures that the responder, after seeing this signature, will in turn be able
to build a full signature of the initiator. (Fairness is only provided in the
same reduced sense as in concurrent signatures.)

– If the responder aborts after Step 3, the initiator can extract a preimage of
hR to get a full signature.

This protocol resembles concurrent signatures protocol but it is not anony-
mous. Therefore after Step 2 of our protocol both parties have committed them-
selves to signing, and the responder can prove to a court or any other third
party that the initiator has committed himself to signing. On the other hand,
unlike the “trivial protocol” above, both parties can also generate full signatures
without any communication with the other party.

4.3 Fair exchange with STTP

Stronger fairness guarantees can be achieved if the parties are willing to partially
rely on a semi-trusted third party (STTP).

Verifiably committed signatures Verifiably committed signatures schemes
(VCS) [16] rely on an STTP that is able to convert partial signatures into full
signatures. VCS have the usual four communication rounds; the parties first ex-
change partial signatures and then full signatures. If one of the parties attempts
to cheat or aborts the protocol, the STTP can be called by the other party to
convert partial signatures into full signatures. In practice, it is clearly desirable
to reduce as much as possible both the work of the STTP and the trust the par-
ties have to place on it. The definition of VCS [16] also requires that signatures
converted by the SSTP are computationally indistinguishable from “regular” full
signatures.

Protocol 2: OTTOWF for fair exchange with STTP In our second pro-
tocol, we assume the existence of a STTP, and we let the STTP generate the
parameters of an OTTOWF and distribute the key to the parties. The protocol is
described in Figure 2. It is very similar to verifiably committed signatures [16],
but the fairness property of the OTTOWF allows further reducing the trust

placed into the STTP. Like in our first protocol, partial signatures are signatures
of the message concatenated with the image of a randomness by an OTTOWF,
and a full signature is made of a partial signature and the randomness. Since
the STTP holds the trapdoor of the OTTOWF, he can be called whenever one
of the parties attempts to cheat or when a communication problem occurs.

Initiator Responder

STTP

〈k, t〉 = Setup(1`)

Check k ∈ K(`) Check k ∈ K(`)

〈SKI , PKI , PKR, k〉 〈SKR, PKI , PKR, k〉

rI
$←R(`)

hI = Eval(k, rI)
mI = 〈text, hI , PKI , PKR〉
µI = Sig(mI , SKI)
If hI ∈ H(k) and Ver(mI , PKI , µI) = 1

rR
$←R(`)

hR = Eval(k, rR)
mR = 〈mI , hR〉
µR = Sig(mR, SKR)

If hR ∈ H(k) and Ver(mR, PKR, µR) = 1
If Verify(k, rI , hI) = 1
Check Verify(k, rR, hR) = 1

rI
$←R(`)

hI = Eval(k, rI)
mI = 〈text, hI , PKI , PKR〉
µI = Sig(mI , SKI)
If hI ∈ H(k) and Ver(mI , PKI , µI) = 1

rR
$←R(`)

hR = Eval(k, rR)
mR = 〈mI , hR〉
µR = Sig(mR, SKR)

If hR ∈ H(k) and Ver(mR, PKR, µR) = 1
If Verify(k, rI , hI) = 1
Check Verify(k, rR, hR) = 1

m1 = 〈mI , µI〉

m2 = 〈mR, µR〉

m3 = rI

m4 = rR

Fig. 2. Description of Protocol 2 (the trapdoor is generated by a semi-trusted third
party). We assume that the private and public key pairs have been previously dis-
tributed by a PKI.

Like our first protocol, this protocol requires an unforgeable signature scheme
and an OTTOWF with verifiable setup. Upon the appending of NIZK proofs
for the constructions based on Rabin and Paillier, the three constructions of
Section 3 can be used. If the OTTOWF used has uniform inversion, the protocol
becomes a particular case of VCS since converted full signatures and regular
signatures become indistinguishable. In particular, this protocol is a VCS if it is
used with the extended Rabin or the modified Paillier OTTOWF constructions.
The construction based on Paillier can be used without NIZK proof as well under
an additional complexity assumption.

We now analyze the security of the protocol. As a first step, we show that
it is fair if the STTP behaves honestly. The checks at the beginning of Steps 2
and 3 ensure that the STTP will be able to convert a partial signature into a
full one, and that the partial signatures sent were valid. Therefore, if either the
initiator or the responder aborts the protocol at Step 3 or 4 respectively, the

other party can go to the STTP and provide a proof that the first two rounds
have taken place. In that case and after verifying that both partial signatures
were valid, the STTP will release his trapdoor t, and both parties will be able
to convert partial signatures into full signatures.

The advantage of our approach appears when the STTP colludes with the
initiator. For VCS, this breaks down all fairness properties, since the STTP
can convert the responder’s partial signature after Step 2. Fairness of VCS can
be recovered in that situation, but only with the help of an external dispute
resolution system (a kind of “super honest” STTP, like a court of justice for
example). This restricted notion of fairness is called weak fairness by Asokan et
al. [1]. On the other hand, when the STTP colludes with the initiator our second
protocol actually amounts to our first one, and it therefore provides the same
fairness guarantees to the responder without any external resolution system.

If the STTP colludes with the responder, then he can either convert the
initiator’s partial signature after Step 1, or not convert the responder’s partial
signature when this one aborts after Step 3. Both attacks are also possible against
VCS, and both for VCS and for our protocol they require an external dispute
resolution system to solve them.

Our protocol reduces the trust that the responder has to place on the STTP,
which is useful in practical scenarios where one of the parties is much more likely
to corrupt the STTP. To be “fair” in our comparison with VCS, we mention a
drawback of our approach with respect to at least “the spirit” of VCS. In many
cases for VCS, in particular when they are built based on verifiably encrypted
signatures [2], the STTP can solve many conflicts without refreshing its param-
eters. In our protocol, the STTP must refresh his parameters every time he uses
them, since the trapdoor becomes public after each use. Therefore, our protocol
will become practical only for small infrastructures or for very optimistic con-
texts (in its usual sense in fair exchange), when a very large proportion of the
protocol instantiations will conclude normally.

4.4 Efficiency analysis

The efficiency of our protocols can be estimated through the bit lengths of partial
signatures, the randomness and full signatures. The following table summarizes
the performances for our three OTTOWF constructions.

Table 1. Bit length complexities of our fair exchange signatures based on OTTOWF
(s = bit length size of a signature)

OTTOWF Partial signature Randomness Full signature

Rabin 2`N + s 2`N 2`N + s
Paillier 4`− 3 + s 4`− 3 3`+ s
OWF `+ s ` `+ s

5 Conclusion

In this paper, we introduced a new cryptographic primitive called a one-time
trapdoor one-way function (OTTOWF). An OTTOWF is similar in spirit to a
classical trapdoor one-way function, but it has the additional property that its
trapdoor always becomes public after its use. We provided a formal definition
of our primitive, and three constructions satisfying this definition. Two of our
constructions are based on factoring assumptions (for RSA and Paillier numbers)
and the third one on generic one-way functions.

The leakage of a trapdoor has traditionally been considered as damaging for
practical applications. In this paper, we emphasized its positive consequences.
In particular, we used OTTOWF to construct two new fair exchange protocols.
The main idea in these protocols is to provide a trapdoor to one user in order
to implement some defensive mechanism, but at the same time to limit this
power thanks to the leaking property of the trapdoor. We analyzed the security
of our protocols and described practical scenarios where they present some ad-
vantages over established solutions like concurrent signatures [13] and verifiably
committed signatures [16].

We believe that OTTOWF are of interest in many other applications where
the use of trapdoors must be restricted in a certain way. The results presented
here for fair exchange encourage the investigation of these applications.

Acknowledgments

The authors would like to thank Benoit Libert for his careful and very useful
review. We also thank Sylvie Baudine for her help in improving the paper.

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In ACM Conference on Computer and Communications Security, pages 7–17, 1997.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures (extended abstract). In EUROCRYPT, pages 591–606, 1998.

3. G. Ateniese. Verifiable encryption of digital signatures and applications. ACM
Trans. Inf. Syst. Secur., 7(1):1–20, 2004.

4. F. Bao. An efficient verifiable encryption scheme for encryption of discrete log-
arithms. In J.-J. Quisquater and B. Schneier, editors, CARDIS, volume 1820 of
Lecture Notes in Computer Science, pages 213–220. Springer, 1998.

5. F. Bao, R. H. Deng, and W. Mao. Efficient and practical fair exchange protocols
with off-line ttp. In IEEE Symposium on Security and Privacy, pages 77–85. IEEE
Computer Society, 1998.

6. F. Bao, G. Wang, J. Zhou, and H. Zhu. Analysis and improvement of micali’s
fair contract signing protocol. In H. Wang, J. Pieprzyk, and V. Varadharajan,
editors, ACISP, volume 3108 of Lecture Notes in Computer Science, pages 176–
187. Springer, 2004.

7. M. Bellare, S. Halevi, A. Sahai, and S. P. Vadhan. Many-to-one trapdoor functions
and their ralation to public-key cryptosystems. In H. Krawczyk, editor, CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 283–298. Springer, 1998.

8. M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing
contracts (extended abstract). In W. Brauer, editor, ICALP, volume 194 of Lecture
Notes in Computer Science, pages 43–52. Springer, 1985.

9. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

10. H. Bürk and A. Pfitzmann. Digital payment systems enabling security and unob-
servability. Computers & Security, 8(5):399–416, 1989.

11. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In
T. Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer
Science, pages 331–345. Springer, 2000.

12. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 126–144. Springer, 2003.

13. L. Chen, C. Kudla, and K. G. Paterson. Concurrent signatures. In C. Cachin and
J. Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer
Science, pages 287–305. Springer, 2004.

14. I. Damg̊ard. Practical and provably secure release of a secret and exchange of
signatures. In EUROCRYPT, pages 200–217, 1993.

15. Y. Dodis, P. J. Lee, and D. H. Yum. Optimistic fair exchange in a multi-user
setting. In T. Okamoto and X. Wang, editors, Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 118–133. Springer, 2007.

16. Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from
PODC 2003. In M. Yung, editor, Digital Rights Management Workshop, pages
47–54. ACM, 2003.

17. J. A. Garay, M. Jakobsson, and P. D. MacKenzie. Abuse-free optimistic contract
signing. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 449–466. Springer, 1999.

18. R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical
zero-knowledge proof system for quasi-safe prime products. In ACM Conference
on Computer and Communications Security, pages 67–72, 1998.

19. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17:281–
308, 1988.

20. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Ambiguous optimistic fair ex-
change. In J. Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in
Computer Science, pages 74–89. Springer, 2008.

21. Q. Huang, G. Yang, D. S. Wong, and W. Susilo. Efficient optimistic fair exchange
secure in the multi-user setting and chosen-key model without random oracles. In
T. Malkin, editor, CT-RSA, volume 4964 of Lecture Notes in Computer Science,
pages 106–120. Springer, 2008.

22. J. Liu, R. Sun, W. Ma, Y. Li, and X. Wang. Fair exchange signature schemes. Ad-
vanced Information Networking and Applications Workshops, International Con-
ference on, 0:422–427, 2008.

23. S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate
signatures and multisignatures without random oracles. In S. Vaudenay, editor,

EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 465–485.
Springer, 2006.

24. W. Mao. Verifiable escrowed signature. In V. Varadharajan, J. Pieprzyk, and
Y. Mu, editors, ACISP, volume 1270 of Lecture Notes in Computer Science, pages
240–248. Springer, 1997.

25. S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In
PODC ’03: Proceedings of the twenty-second annual symposium on Principles of
distributed computing, pages 12–19, New York, NY, USA, 2003. ACM.

26. P. Paillier. A trapdoor permutation equivalent to factoring. In H. Imai and
Y. Zheng, editors, Public Key Cryptography, volume 1560 of Lecture Notes in Com-
puter Science, pages 219–222. Springer, 1999.

27. J. M. Park, E. K. P. Chong, and H. J. Siegel. Constructing fair-exchange proto-
cols for e-commerce via distributed computation of rsa signatures. In PODC ’03:
Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 172–181, New York, NY, USA, 2003. ACM.

28. M. O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Technical report, Cambridge, MA, USA, 1979.

29. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

30. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394. ACM, 1990.

31. M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a
construction without random oracles. In H. Shacham and B. Waters, editors,
Pairing, volume 5671 of Lecture Notes in Computer Science, pages 17–34. Springer,
2009.

32. J. Zhang and J. Mao. A novel verifiably encrypted signature scheme without
random oracle. In E. Dawson and D. S. Wong, editors, ISPEC, volume 4464 of
Lecture Notes in Computer Science, pages 65–78. Springer, 2007.

33. H. Zhu and F. Bao. Stand-alone and setup-free verifiably committed signatures.
In D. Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer
Science, pages 159–173. Springer, 2006.

