
SAT Instances for Termination Analysis with
AProVE?

Carsten Fuhs

LuFG Informatik 2, RWTH Aachen University, Germany
fuhs@informatik.rwth-aachen.de

Abstract. Recently, SAT solving has become the backbone for tackling
the search problems in automated termination analysis for term rewrite
systems and for programming languages. Indeed, even since the last SAT
competition in 2007, many new termination techniques have been pub-
lished where automation heavily relies on the efficiency of modern SAT
solvers. Here, a successful satisfiability proof of the SAT instance results
in a step in the modular termination proof and simplifies the termination
problem to be analyzed.
The present SAT benchmark submission was created using the auto-
mated termination prover AProVE. The CNFs stem from termination
proof steps using various recent termination techniques. All instances
of this submission are satisfiable, and any speed-up for SAT solvers on
these instances will directly lead to performance improvements also for
automated termination provers.

1 Introduction

Termination is one of the most important properties of programs. Therefore,
there is a need for suitable methods and tools to analyze the termination behav-
ior of programs automatically. In particular, there has been intensive research on
techniques for termination analysis of term rewrite systems (TRSs) [2]. Instead
of developing many separate termination techniques for different programming
languages, it is a promising approach to transform programs from different lan-
guages into TRSs instead. Then termination tools for TRSs can be used for ter-
mination analysis of many different programming languages, cf. e.g. [11,19,20].

The increasing interest in termination analysis for TRSs is also demonstrated
by the International Competition of Termination Tools,1 held annually since
2004. Here, each participating tool is applied to the examples from the Termi-
nation Problem Data Base (TPDB)2 and gets 60 seconds per termination prob-
lem to prove or disprove termination. Thus, in order for a termination prover
to be competitive, one needs efficient search techniques for finding termination
(dis)proofs automatically.
? Description of benchmark instances submitted to the SAT Competition 2009.
1 See http://termination-portal.org/wiki/Termination_Competition.
2 The current version 5.0.2 of this standard database for termination problems is

available at http://dev.aspsimon.org/projects/termcomp/downloads/.

http://termination-portal.org/wiki/Termination_Competition
http://dev.aspsimon.org/projects/termcomp/downloads/


However, many of the arising search problems in automated terminating
analysis for TRSs are NP-complete. Due to the impressive performance of mod-
ern SAT solvers, in recent years it has become common practice to tackle such
problems by encoding them to SAT and by then applying a SAT solver on the
resulting CNF. This way, performance improvements by orders of magnitude
over existing dedicated search algorithms have been achieved, and also for new
termination techniques, SAT solving is the method of choice for automation (cf.
e.g. [3,4,5,6,7,8,9,14,16,17,21,23]).

Nowadays, techniques like the Dependency Pair framework [1,12,13,15] allow
for modular termination proofs. This means that it is not necessary to show ter-
mination of a term rewriting system in a single proof step, but instead one can
show termination of the different functions of the system separately and incre-
mentally. In this setting, one can use SAT solving in such a way that a successful
satisfiability proof of the encoded SAT instance results in an incremental step in
the modular termination proof which allows to simplify the termination problem
to be analyzed.

On the other hand, also speed-ups on unsatisfiable instances are beneficial
for automated termination analysis. The faster one finds out that a particular
termination technique does not succeed on a given termination problem (e.g.,
by a SAT solver returning UNSAT for an encoding of this technique for the
termination problem), the more time is left to apply other techniques from the
plethora of available termination analysis methods.

Nevertheless, this benchmark submission only contains satisfiable instances
which contribute directly to successful termination proofs.

2 Benchmark Instances

The present SAT benchmark submission was created using the automated ter-
mination prover AProVE [10], which can be used to analyze the termination be-
havior of term rewriting systems, logic programs [20], and Haskell 98 programs
[11].

AProVE was the most powerful termination prover for TRSs in all the termi-
nation competitions from 2004 – 2008. In AProVE, SAT encodings are performed
in two stages:

1. First, the search problem is encoded into a propositional formula with arbi-
trary junctors. The formula is represented via a directed acyclic graph such
that identical subformulas are shared.

2. Afterwards, this propositional formula is converted into an equisatisfiable
formula in CNF. This is accomplished using SAT4J’s [18] implementation of
Tseitin’s algorithm [22].

The submitted CNFs are named AProVE09-n.dimacs. For the analyzed ter-
mination problems from the TPDB, Fig. 1 provides details on the encoded ter-
mination technique and on the termination problem for each n.



Fig. 1. Details on the submitted SAT instances from TPDB problems

n Encoded technique Termination problem

01 Recursive Path Order [3,4,21] TRS/Cime/mucrl1.trs

02 Recursive Path Order [3,4,21] TRS/TRCSR/inn/PALINDROME_complete_noand_C.trs

03 Recursive Path Order [3,4,21] TRS/TRCSR/PALINDROME_complete_iGM.trs

04 Matrix Order [5,16] SRS/secret06/matchbox/3.srs

05 Matrix Order [5,16] SRS/Trafo/hom01.srs

06 Matrix Order [5,16] SRS/Waldmann07b/size-12-alpha-3-num-535.srs

07 Matrix Order [5,16] SRS/Zantema/z049.srs

08 Matrix Order [5,16] SRS/Zantema/z053.srs

09 Matrix Order [5,16] TRS/secret05/cime5.trs

10 Polynomial Order [6] TRS/CSR_Maude/bool/RENAMED-BOOL_nokinds.trs

11 Max-Polynomial Order [7] TRS/secret05/cime1.trs

12 Max-Polynomial Order [7] TRS/Zantema/z09.trs

13 Non-Monotonic Max-Pol. Order [7] TRS/aprove08/log.trs

14 Rational Polynomial Order [9] SRS/Zantema/z117.srs

15 Rational Polynomial Order [9] TRS/endrullis08/morse.trs

16 Rational Polynomial Order [9] TRS/SchneiderKamp/trs/thiemann17.trs

17 Rational Polynomial Order [9] TRS/TRCSR/inn/Ex49_GM04_C.trs

18 Rational Polynomial Order [9] TRS/TRCSR/inn/Ex5_DLMMU04_C.trs

19 Bounded Increase [14] TRS/SchneiderKamp/trs/cade14.trs

20 Arctic Matrix Order [17] SRS/Endrullis/04.srs

21 Arctic Matrix Order [17], alt. enc. SRS/Endrullis/04.srs

For termination analysis, TRSs are a very suitable representation of algo-
rithms on user-defined data structures. However, another main challenge in ter-
mination analysis of programs are algorithms on pre-defined data types like
integers. Using standard representations of integers as terms leads to problems
in efficiency and power for termination analysis with termination tools for TRSs.

Therefore, very recently we extended TRSs by built-in integers [8]. This com-
bines the power of TRS techniques on user-defined data types with a powerful
treatment of pre-defined integers. To automate the corresponding constraint-
based termination techniques for this new formalism in AProVE, we again per-
form a reduction to SAT. For the empirical evaluation of these contributions,
we collected a set of integer termination problems from the literature and from
applications. This collection can be found on the web page of the evaluation at
http://aprove.informatik.rwth-aachen.de/eval/Integer/.

Fig. 2 again provides details on the technique and on the analyzed problems.

3 Conclusion

SAT solving has become a key technology for automated termination provers.
Thus, any improvements in efficiency of SAT solvers on the submitted SAT
instances will also have a direct impact on efficiency and power of the respective
termination tool.

http://aprove.informatik.rwth-aachen.de/eval/Integer/


Fig. 2. Details on the SAT instances from Integer TRSs

n Encoded technique Termination problem

22 Integer Max-Polynomial Order [8] Beerendonk/19.itrs
23 Integer Max-Polynomial Order [8] CADE07/A14.itrs
24 Integer Max-Polynomial Order [8] patrs/pasta/a.10.itrs
25 Integer Max-Polynomial Order [8] VMCAI05/poly4.itrs

References

1. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

2. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

3. Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order con-
straints for LPO termination. Journal on Satisfiability, Boolean Modeling and
Computation, 5:193–215, 2008.

4. Michael Codish, Peter Schneider-Kamp, Vitaly Lagoon, René Thiemann, and
Jürgen Giesl. SAT solving for argument filterings. In Proceedings of the 13th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 2006), volume 4246 of LNAI, pages 30–44, Phnom Penh, Cambodia,
2006.

5. Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations
for proving termination of term rewriting. Journal of Automated Reasoning, 40(2-
3):195–220, 2008.

6. Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, René Thiemann, Peter Schneider-
Kamp, and Harald Zankl. SAT Solving for Termination Analysis with Polynomial
Interpretations. In Proceedings of the 10th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2007), volume 4501 of LNCS, pages
340–354, Lisbon, Portugal, 2007.

7. Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, René Thiemann, Peter Schneider-
Kamp, and Harald Zankl. Maximal termination. In Proceedings of the 19th Interna-
tional Conference on Rewriting Techniques and Applications (RTA 2008), volume
5117 of LNCS, pages 110–125, Hagenberg, Austria, 2008.

8. Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan
Falke. Proving termination of integer term rewriting. In Proceedings of the 20th
International Conference on Rewriting Techniques and Applications (RTA 2009),
LNCS, Braśılia, Brazil, 2009. To appear.

9. Carsten Fuhs, Rafael Navarro-Marset, Carsten Otto, Jürgen Giesl, Salvador Lu-
cas, and Peter Schneider-Kamp. Search techniques for rational polynomial orders.
In Proceedings of the 9th International Conference on Artificial Intelligence and
Symbolic Computation (AISC 2008), volume 5144 of LNAI, pages 109–124, Birm-
ingham, UK, 2008.

10. Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proceedings of the 3rd
International Joint Conference on Automated Reasoning (IJCAR 2006), volume



4130 of LNAI, pages 281–286, Seattle, WA, USA, 2006. See also http://aprove.

informatik.rwth-aachen.de.
11. Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann.

Automated termination analysis for Haskell: From term rewriting to programming
languages. In Proceedings of the 17th International Conference on Rewriting Tech-
niques and Applications (RTA 2006), volume 4098 of LNCS, pages 297–312, Seat-
tle, WA, USA, 2006.

12. Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The DP framework:
Combining techniques for automated termination proofs. In Proceedings of the
11th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR 2004), volume 3452 of LNAI, pages 301–331, Montevideo,
Uruguay, 2005.

13. Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Mech-
anizing and improving dependency pairs. Journal of Automated Reasoning,
37(3):155–203, 2006.

14. Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp.
Proving termination by bounded increase. In Proceedings of the 21st International
Conference on Automated Deduction (CADE 2007), volume 4603 of LNAI, pages
443–459, Bremen, Germany, 2007.

15. Nao Hirokawa and Aart Middeldorp. Automating the dependency pair method.
Information and Computation, 199(1-2):172–199, 2005.

16. Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with
matrix interpretations. In Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA 2006), volume 4098 of LNCS, pages
328–342, Seattle, WA, USA, 2006.

17. Adam Koprowski and Johannes Waldmann. Arctic termination ... below zero. In
Proceedings of the 19th International Conference on Rewriting Techniques and Ap-
plications (RTA 2008), volume 5117 of LNCS, pages 202–216, Hagenberg, Austria,
2008.

18. Daniel Le Berre and Anne Parrain. SAT4J: The Java SAT Library. http://www.

sat4j.org, 2009.
19. Enno Ohlebusch. Termination of logic programs: Transformational methods re-

visited. Applicable Algebra in Engineering, Communication and Computing, 12(1-
2):73–116, 2001.

20. Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thiemann.
Automated termination proofs for logic programs by term rewriting. ACM Trans-
actions on Computational Logic. To appear.

21. Peter Schneider-Kamp, René Thiemann, Elena Annov, Michael Codish, and Jürgen
Giesl. Proving termination using recursive path orders and SAT solving. In Pro-
ceedings of the 6th International Symposium on Frontiers of Combining Systems
(FroCoS 2007), volume 4720 of LNAI, pages 267–282, Liverpool, UK, 2007.

22. Gregory Tseitin. On the complexity of derivation in propositional calculus. In
Studies in Constructive Mathematics and Mathematical Logic, pages 115–125. 1968.
Reprinted in Automation of Reasoning, volume 2, pages 466–483, Springer, 1983.

23. Harald Zankl and Aart Middeldorp. Satisfying KBO constraints. In Proceedings
of the 18th International Conference on Rewriting Techniques and Applications
(RTA 2007), volume 5117 of LNCS, pages 389–403, Paris, France, 2007.

http://aprove.informatik.rwth-aachen.de
http://aprove.informatik.rwth-aachen.de
http://www.sat4j.org
http://www.sat4j.org

	SAT Instances for Termination Analysis with AProVE
	Carsten Fuhs

