
Synthesizing Shortest Linear Straight-Line

Programs over GF(2) using SAT⋆

Carsten Fuhs1 and Peter Schneider-Kamp2

1 LuFG Informatik 2, RWTH Aachen University, Germany
fuhs@informatik.rwth-aachen.de

2 IMADA, University of Southern Denmark, Denmark
petersk@imada.sdu.dk

Abstract. Non-trivial linear straight-line programs over the Galois field
of two elements occur frequently in applications such as encryption or
high-performance computing. Finding the shortest linear straight-line
program for a given set of linear forms is known to be MaxSNP-complete,
i.e., there is no ǫ-approximation for the problem unless P = NP .
This paper presents a non-approximative approach for finding the short-
est linear straight-line program. In other words, we show how to search
for a circuit of XOR gates with the minimal number of such gates. The
approach is based on a reduction of the associated decision problem (“Is
there a program of length k?”) to satisfiability of propositional logic.
Using modern SAT solvers, optimal solutions to interesting problem in-
stances can be obtained.

1 Introduction

Straight-line programs over the Galois field of two elements, often denoted
GF(2), have many practically relevant applications. The most prominent ones
are probably in high performance computing (inversion of sparse binary matri-
ces), networking and storage (error detection by checksumming), and encryption
(hashing, symmetric ciphers).

In this paper, we focus on linear straight-line programs over GF(2) with
applications in cryptography. The motivation behind this choice is that modern
symmetric ciphers like AES can be implemented by lookup tables and addition
in GF(2). Multiplication and addition in GF(2) correspond to the Boolean AND
and XOR operations, respectively. In other words, we are looking at straight-line
programs composed of array lookups and sequences of XOR operations.

The goal of this paper is, given a specification of a linear function from a
number of inputs to a number of outputs, to find the shortest linear straight-line
program over GF(2) that satisfies the specification. In other words, we show
how to find a XOR circuit with the minimal number of gates that connects
inputs to outputs. Finding such shortest programs is obviously interesting both
for software and for hardware implementations of, for example, the symmetric
cipher Advanced Encryption Standard (AES) [13].

⋆ In Proc. SAT’10, LNCS, 2010. Supported by the G.I.F. grant 966-116.6 and the
Danish Natural Science Research Council.

While there are heuristic methods for finding short straight-line linear pro-
grams [4] (see also [3] for the corresponding patent application), to the best of
our knowledge, there is no feasible method for finding an optimal solution. In
this paper, we present an approach based on reducing the associated decision
problem (“Is there a program of length k?”) to satisfiability of propositional
logic. The reduction is performed in a way that every model found by the SAT
solver represents a solution. Recent work [11] has shown that reductions to sat-
isfiability problems are a promising approach for circuit synthesis. By restricting
our attention to linear functions, we now obtain a polynomial-size encoding.

The structure of this paper is as follows. In Section 2, we formally introduce
our optimization problem and show how linear straight-line programs can be
used to compute a given set of linear forms. Section 3 presents a novel encoding
for the associated decision problem to SAT. Then, we discuss in Section 4 how
to tackle our optimization problem by reducing it to the associated decision
problem using a customized search for k.

In Section 5 we present an empirical case study where we try to optimize an
important component of AES. To prove optimality of the solution found, the case
study prompts us to improve the performance of our encoding for the decision
problem in the unsatisfiable case. For this, we discuss different approaches in
Section 6. We conclude with a summary of our contributions in Section 7.

2 Linear Straight-Line Programs

In this paper, we assume that we have n inputs x1, . . . , xn and m outputs
y1, . . . , ym. Then the linear function to be computed can be specified by m

equations of the following form:

y1 = a1,1 · x1 ⊕ a1,2 · x2 ⊕ . . .⊕ a1,n · xn

y2 = a2,1 · x1 ⊕ a2,2 · x2 ⊕ . . .⊕ a2,n · xn

. . .

ym = am,1 · x1 ⊕ am,2 · x2 ⊕ . . .⊕ am,n · xn

We call each equation a linear form. Note that each aℓ,j is a constant from GF(2)
= {0, 1}, each xj is a variable over GF(2), and ⊕ and · denote standard addition
and multiplication on GF(2), respectively. In this paper, we always assume that
the linear forms are pairwise different.

Our goal is to come up with an algorithm that computes these linear forms
given x1, . . . , xn as inputs. More specifically, we would like to express this al-
gorithm via a linear straight-line program (or, for brevity, just program). Here,
every line of the program has the shape u := e · v ⊕ f · w with e, f ∈ GF(2)
and v, w variables. Some lines of the program will contain the output, i.e., as-
sign the value of one of the desired linear forms to a variable. The length of a
program is the number of lines the program contains. Without loss of generality,
we perform write operations only to fresh variables, so no input is overwritten
and no intermediate variable is written to twice. A program is optimal if there
is no shorter program that computes the same linear forms.

2

Example 1. Consider the following linear forms:

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

y2 = x1 ⊕ x2 ⊕ x3 ⊕ x4

y3 = x1 ⊕ x2 ⊕ x3 ⊕ x5

y4 = x3 ⊕ x4 ⊕ x5

y5 = x1 ⊕ x5

A shortest linear program for computing these linear forms has length 6. The
following linear program is an optimal solution for this example.

v1 = x1 ⊕ x5 [y5]
v2 = x2 ⊕ v1
v3 = x3 ⊕ v2 [y3]
v4 = x4 ⊕ v3 [y1]
v5 = x5 ⊕ v4 [y2]
v6 = v2 ⊕ v5 [y4]

It is easy to check that for each output yℓ there is a variable vi that contains
the linear form for yℓ. In the above program, this mapping from intermediate
variables to outputs is given by annotating the program lines with the associated
output in square brackets.

Note that finding the shortest program over GF(2) is not an instance of the
common subexpression elimination problem known from program optimization.
The above shortest program makes extensive use of cancellation, i.e., of the fact
that for all x in GF(2), we have x ⊕ x = 0. For example, the output y4 is
computed by adding v2 and v5. These two variables are described by the linear
forms x1 ⊕ x2 ⊕ x3 ⊕ x4 and x1 ⊕ x2 ⊕ x5, respectively. By adding these two
linear forms, we obtain the desired x3 ⊕ x4 ⊕ x5 since x1 ⊕ x1 ⊕ x2 ⊕ x2 = 0
for all values of x1 and x2. Without cancellations, a shortest linear straight-line
program has length 8, i.e., it uses 25% more XOR gates.

The goal that we are now pursuing in this paper is to synthesize an optimal
linear straight-line program for a given set of linear forms both automatically
and efficiently. Formally, this problem can be described as follows:

Given n variables x1, . . . , xn over GF(2) and m linear forms yℓ = aℓ,1 ·
x1⊕ . . .⊕aℓ,n ·xn, find the shortest linear program that computes all yℓ.

Note that here we are aiming at a (provably) optimal solution. This is opposed
to allowing approximations with more lines than actually necessary, which is
currently the state of the art [2].

As a step towards solving this optimization problem, first let us consider the
corresponding decision problem:

Given n variables x1, . . . , xn over GF(2), m linear forms yℓ = aℓ,1 · x1 ⊕
. . . ⊕ aℓ,n · xn and a natural number k, decide if there exists a linear
program of length k that computes all yℓ.

3

Of course, if the answer to this question is “Yes”, we do not only wish to get
this answer, but we would also like to obtain a corresponding program of length
(at most) k. In line i, the variable vi is defined as the sum of two other variables.
Here, one may read from the variables x1, . . . , xn and also from the intermediate
variables v1, . . . , vj with j < i, i.e., from those intermediate variables that have
been defined before.

To facilitate the description of our encoding in the following section, we
reformulate the problem via matrices over GF(2). Here, given a natural number
k, we represent the given coefficients of the m linear forms over n inputs with
yℓ = aℓ,1 ·x1⊕aℓ,2 ·x2⊕ . . .⊕aℓ,n ·xn (1 ≤ ℓ ≤ m) as rows of an m× n-matrix A.
The ℓ-th row thus consists of the entries aℓ,1aℓ,2 . . . aℓ,n from GF(2).

Likewise, we can also express the resulting program via two matrices:

– A matrix B = (bi,j)k×n over GF(2), where bi,j = 1 iff in line i of the program
the input variable xj is read.

– A matrix C = (ck,k)k×k over GF(2) where ci,j = 1 iff in line i of the program
the intermediate variable vj is read.

To represent for example the program line v3 = x3 ⊕ v2 from Example 1, all
b3,j except for b3,3 and all c3,j except for c3,2 have to be 0. Thus, the third row
in B is

(

0 0 1 0 0
)

while in C it is
(

0 1 0 0 0 0
)

.
Now, for the matrices B and C to actually represent a legal linear straight-

line program, for any row i there must be exactly two non-zero entries in the
combined i-th row of B and C. That is, the vector

(

bi,1 . . . bi,n ci,1 . . . ci,k
)

must
contain exactly two 1s.

Furthermore, for the represented program to actually compute our linear
forms, we have to demand that for each desired output yℓ, there is a line i in the
program (and the matrices) such that vi = yℓ where yℓ = aℓ,1 ·x1⊕ . . .⊕aℓ,n ·xn

and vi = bi,1 · x1 ⊕ . . . ⊕ bi,n · xn ⊕ ci,1 · v1 ⊕ . . . ⊕ ci,i−1 · vi−1. Note that we
only use the lower triangular matrix as a program may only read intermediate
values that have already been written. To represent the mapping of intermediate
variables to outputs, we use a function f : {1, . . . ,m} 7→ {1, . . . , k}.

Example 2. Consider again the linear forms from Example 1. They are repre-
sented by the following matrix A. Likewise, the program is represented by the
matrices B and C and the function f .

A =

1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1

B =

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

C =

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0

f =

1 7→ 4
2 7→ 5
3 7→ 3
4 7→ 6
5 7→ 1

Obviously, all combined rows of B and C contain exactly two non-zero elements.
Furthermore, by computing the vi and the yℓ, we can see that each of the linear
forms described by A is computed by the program represented by B and C.

4

3 Encoding to Propositional Logic

Now that the scenario has been set up and the matrix formulation has been
introduced, we start by giving a high-level encoding of the decision problem as
a logical formula in second order logic. Then we perform a stepwise refinement
of that encoding where in each step we eliminate some elements that cannot
directly be expressed by satisfiability of propositional logic.

For our first encoding, the carrier is the set of natural numbers, and we use
predicates over indices to represent the matrices A, B, and C as well as the
vectors x, y, and v. We also use a function f to map indices of outputs from y

to indices of intermediate variables from v. Finally, we make use of cardinality
constraints by predicates exactlyk that take a list of variables and check that
the number of variables that are assigned 1 is exactly k.

First, we need to ensure that B and C represent a legal linear straight-line
program. This is encoded by the following formula α1:

α1 =
∧

1≤i≤k

exactly2(B(i, 1), . . . , B(i, n), C(i, 1), . . . , C(i, i− 1))

Second, we demand that the values for the intermediate variables from v are
computed by using the values from B and C:

α2 =
∧

1≤i≤k

v(i) ↔
⊕

1≤j≤n

B(i, j) ∧ x(j) ⊕
⊕

1≤p<i

C(i, p) ∧ v(p)

Third, we ensure that the value of the intermediate variable determined by f for
the ℓ-th output actually takes the same value as the ℓ-th linear form:

α3(ℓ) = v(f(ℓ)) ↔
⊕

1≤j≤n

A(ℓ, j) ∧ x(j)

Here, v(f(ℓ)) denotes the intermediate variable which stores the result of the
linear form y(ℓ). In other words, the (existentially quantified) function f maps
the index ℓ of the linear form yℓ to the index i = f(ℓ) of the variable vi in v

which contains the result of yℓ.
Now we can give our first encoding by the following formula α:

α = ∃B.∃C.∃f.∀x.∃v. α1 ∧ α2 ∧
∧

1≤ℓ≤m

α3(ℓ)

Note that we indeed use the expressivity of second order logic as all our quantifi-
cations are over predicates and functions. Fortunately, all these only need to be
defined on finite domains. In order not to have to deal with quantification over
predicates representing matrices and vectors, we can just introduce a finite num-
ber of Boolean variables to represent the elements of the matrices and vectors
and work on these directly. For example, for the k × n matrix B we introduce
the k · n Boolean variables b1,1 . . . , bk,n.

5

Similarly, for the function f we introduce m · k Boolean variables fℓ,i that
denote that the ℓ-th linear form is computed by the i-th intermediate variable. To
make sure that these variables actually represent a function, we need to encode
well-definedness: for each ℓ there must be exactly one i with fℓ,i.

We obtain the refined overall constraint β, which is a formula from QBF:

β1 =
∧

1≤i≤k

exactly2(bi,1, . . . , bi,n, ci,1, . . . , ci,i−1)

β2 =
∧

1≤i≤k

vi ↔
⊕

1≤j≤n

bi,j ∧ xj ⊕
⊕

1≤p<i

ci,p ∧ vp

β3(ℓ) =
∧

1≤i≤k

fℓ,i →

vi ↔
⊕

1≤j≤n

aℓ,j ∧ xj

 ∧ exactly1(fℓ,1, . . . , fℓ,k)

β = ∃b1,1. . . . ∃bk,n.∃c1,1. . . . ∃ck,k.∃f1,1. . . . ∃fm,k.∀x1. . . . ∀xn.∃v1. . . . ∃vk.

β1 ∧ β2 ∧
∧

1≤ℓ≤m β3(ℓ)

The above formula β is in prenex normal form and has a quantifier prefix
of the shape ∃+∀+∃+. This precludes us from using a SAT solver on β directly.
For this, we would need to have a quantifier prefix of the shape ∃+ alone. Thus,
unless we want to use a QBF solver, we need to get rid of the ∀+∃+ suffix of the
quantifier prefix of β. In other words, we need to get rid of the quantifications
over x1, . . . , xn and v1, . . . , vk.

We observe that β explicitly contains the computed values vi of the interme-
diate variables. We can eliminate them by unrolling the defining equations of an
intermediate variable vi to be expressed directly via x1, . . . , xn. In other words,
we do not regard the intermediate variables for “computing” the result of the
linear forms yℓ, but we directly use a closed expression that depends on the bi,j
and the ci,p. Here, we introduce the auxiliary formulae ϕ(i) for 1 ≤ i ≤ k whose
truth value should correspond to the value taken by the corresponding vi:

ϕ(i) = (
⊕

1≤j≤n

bi,j ∧ xj) ⊕ (
⊕

1≤p<i

ci,p ∧ ϕ(p))

We now reformulate β to obtain a refined encoding γ. Note that we do not need
to redefine β1 and we do not need an equivalent of β2 as we unroll the definition
of the vi into γ3 using ϕ(i).

γ3(ℓ) =
∧

1≤i≤k

fℓ,i →

ϕ(i) ↔
⊕

1≤j≤n

aℓ,j ∧ xj

 ∧ exactly1(fℓ,1, . . . , fℓ,k)

γ = ∃b1,1. . . .∃bk,n.∃c1,1. . . .∃ck,k.∃f1,1. . . .∃fm,k.∀x1. . . . ∀xn.β1∧
∧

1≤ℓ≤m γ3(ℓ)

Note that it looks as though for each i we had obtained many redundant copies of
the subformulae ϕ(i), which would entail a blow-up in formula size. However, in

6

practical implementations it is beneficial to represent propositional formulae not
as trees, but as directed acyclic graphs with sharing of common subformulae.
This technique is also known as structural hashing [6]. We perform standard
Boolean simplifications (e.g., ϕ ∧ 1 = ϕ), we share Boolean junctor applications
modulo commutativity and idempotence (where applicable), and we use varyadic
∧ and ∨. In contrast, the junctors ↔ and ⊕ are binary and associate to the left.

Nevertheless, we still have universal quantification over the inputs as part
of our encoding. This states that regardless of the input values for x1, . . . , xn,
our program should yield the correct result. Fortunately, we can now benefit
from linearity of the operation ⊕ on GF(2), which means that the absolute
positiveness criterion for polynomials [10] (a simple technique commonly used in
automated termination provers, cf. e.g. [7]) is not only sound, but also complete.
Essentially, the idea is that two linear forms compute the same function iff their
coefficients are identical. In this way, we can now drop the inputs x1, . . . , xn.

For 1 ≤ j ≤ n and 1 ≤ i ≤ k, we introduce the auxiliary formulae ψ(j, i),
which should denote the dependence of the value for vi with respect to xj (i.e.,
whether the value of vi toggles if xj changes or not):

ψ(j, i) = bi,j ⊕
⊕

1≤p<i

ci,p ∧ ψ(j, p)

We finally get an encoding δ in prenex normal form that can be used as input for a
SAT solver (by dropping explicit existential quantification, encoding cardinality
constraints using [5, 1], and performing Tseitin’s transformation [14]).

δ3(ℓ) =
∧

1≤i≤k

fℓ,i →
∧

1≤j≤n

(ψ(j, i) ↔ aℓ,j)

 ∧ exactly1(fℓ,1, . . . , fℓ,k)

δ = ∃b1,1. . . .∃bk,n.∃c1,1.∃ck,k.∃f1,1. . . . ∃fm,k. β1 ∧
∧

1≤ℓ≤m

δ3(ℓ)

For the implementation of δ we used the SAT framework in the verification
environment AProVE [8] and the Tseitin implementation from SAT4J [12].

3.1 Size of the Encoding

Given a decision problem with an m×n matrix and a natural number k (where
w.l.o.g. m ≤ k holds since for m > k, we could just set δ = 0), our encoding δ
has size O(n ·k2) if the cardinality constraints are encoded in space linear in the
number of arguments [5]. To see this, consider the following size estimation for
δ where due to the use of structural hashing we can look at δ3 and ψ separately.

|δ| = O(k · n+ k · k +m · k + |β1| +m · |δ3| + n · k · |ψ|)

For β1 and δ3 we obtain the following estimations where g is a function describing
the size of the cardinality constraint:

|β1| = O(k · g(n+ k)) |δ3| = O(k · n+ g(k))

7

For ψ we immediately obtain the size estimation |ψ| = O(k). Now, we can
simplify the estimation for δ by using m ≤ k:

|δ| = O(k · n+ k · k +m · k + k · g(n+ k) +m · (k · n+ g(k)) + n · k · k)

= O(n · k2 + k · g(n+ k) +m · g(k))

3.2 Tuning the Encoding

The models of the encoding δ from this section are all linear straight-line pro-
grams of length k that compute the m linear forms y1, . . . , ym. The programs can
be decoded from a satisfying assignment of the propositional formula by simply
reconstructing the matrices B and C.

In this paper, we are interested in finding short programs. Thus, we can ex-
clude many programs that perform redundant computations. We do so by adding
further conjuncts that exclude those undesired programs. While we change the
set of models, note that we do not change the satisfiability of the decision prob-
lem. That is, if there is a program that computes the given linear forms in k steps,
we will find one which does not perform these kinds of redundant computation.

The first kind of redundant programs are programs that compute the same
linear form twice, i.e., there are two different intermediate variables that contain
the same linear form. We exclude such programs by demanding that for all
distinct pairs of intermediate variables vi and vp, there is also some xj that
influences exactly one of the two variables:

∧

1≤i≤k

∧

1≤p<i

∨

1≤j≤n

(ψ(j, p) ⊕ ψ(j, i))

The second kind of redundant programs are programs that compute the constant
0 or a linear form just depending on the value of one input variable. To exclude
such programs, we add cardinality constraints stating that each compute linear
form must depend on at least two input variables.

∧

1≤i≤k

atLeast2(ψ(1, i), . . . , ψ(n, i))

In fact, statements that compute linear forms that only depend on two input
variables can be restricted not to use any other intermediate variables (as they
could be computed in one step from the inputs).

∨

1≤j<i

ci,j →
∧

1≤i≤k

atLeast3(ψ(1, i), . . . , ψ(n, i))

Apart from disallowing redundant programs, we additionally include implied
conjuncts to further constrain the search space. In this way, the SAT solver
becomes more efficient as unit propagation can be employed in more situations.

As stated in Section 2, we require that the input does not contain duplicate
linear forms. Consequently, we may require f to be injective, i.e., any interme-
diate variable covers at most one linear form.

8

∧

1≤i≤k

atMost1(f1,i, . . . , fm,i)

Often, CDCL-based SAT solvers are not very good at solving the pigeonhole
problem. Additional constraints facilitate better unit propagation in these cases.
Since f maps from {1, . . . ,m} to {1, . . . , k}, only at most k of the fℓ,i may
become true.

atMostk(f1,1, . . . , fm,k)

Similarly, we can even state that at least m of the fℓ,i need to become true as
we have to compute all given (distinct) m linear forms.

atLeastm(f1,1, . . . , fm,k)

4 From Decision Problem to Optimization

A simple approach for solving an optimization problem given a decision proce-
dure for the associated decision problem is to search for the parameter to be
optimized by repeatedly calling the decision procedure.

In our case, for minimizing the length k of the synthesized linear straight-
line program, we start by observing that this minimal length must be at least
the number of linear forms. At the same time, if we compute each linear form
separately, we obtain an upper bound for the minimal length. More precisely, we
know that the minimal length kmin is in the closed interval from m to |A|1 −m

where | · |1 denotes the number of 1s in a matrix.
Without further heuristic knowledge about the typical length of shortest

programs, the obvious thing to do is to use a bisecting approach for refining the
interval. That is, one selects the middle element of the current interval and calls
a decision procedure based on our encoding from Section 3 for this parameter.
If there is a model, the interval is restricted to the lower half of the previous
interval and we continue bisecting. If there is no model and δ is unsatisfiable,
the interval is restricted to the upper half of the previous interval. When the
interval becomes empty, the lower limit indicates the minimal parameter kmin .

The above approach requires a logarithmic number of calls to the decision
procedure, approximately half of which will return the result “unsatisfiable”.
This approach is very efficient if we can assume that our decision procedure takes
approximately the same time for a positive answer as for a negative answer. As
we will see in the case study of the following section, though, for realistic problem
instances the negative answers may require orders of magnitude more time.

Thus, to minimize the number of calls to the decision procedure resulting in
a negative answer, we propose the following algorithm for refining the length k.

1. Start with k := |A|1 −m− 1.
2. Call the decision procedure with k.
3. If UNSAT, return k + 1 and exit.
4. If SAT, compute used length kused from B and C.
5. Set k := kused − 1 and go to Step 2.

9

Here, the used length of a program is the number of variables that are needed
directly or indirectly to compute the m linear forms. For given matrices B and
C and a function f , the set of used variables used is the least set such that:

– if f(ℓ) = i, then vi ∈ used and
– if vi ∈ used and ci,j = 1, then vj ∈ used .

The used length can then be obtained as the cardinality of the set used .
This algorithm obviously only results in exactly one call to UNSAT – directly

before finding the minimal solution. The price we pay for this is that in the worst
case we have to call the decision procedure a linear number of times. In practice,
though, for k > kmin , there are many solutions and the solution returned by the
SAT solver typically has kused < k. Consequently, at the beginning the algorithm
typically approaches kmin in rather large steps.

While it seems natural to use MaxSAT for our optimization problem instead
of calling the SAT solver repeatedly, the decision problems close to the optimum
are already so hard that solving these as part of a larger instance seems infeasible.

5 Case Study: Advanced Encryption Standard

As mentioned in the introduction, a major motivation for our work is the mini-
mization of circuits for implementing cryptographic algorithms. In this section,
we study how our contributions can be applied to optimize an important com-
ponent of the Advanced Encryption Standard (AES) [13].

The AES algorithm consists of the (repeated) application of four steps. The
main step for introducing non-linearity is the SubBytes step that is based on a
so-called S-box. This S-box is a transformation based on multiplicative inverses
in GF(28) combined with an invertible affine transformation. This step can be
decomposed into two linear parts and a minimal non-linear part.

For our case study, we consider the first of the linear parts (called the “top
matrix” in [4]) which is represented by the following 21 × 8 matrix A:

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 1 0 0 0 0 1

1 1 1 0 0 0 0 1

1 1 1 0 0 1 1 1

0 1 1 1 0 0 0 1

0 1 1 0 0 0 1 1

1 0 0 1 1 0 1 1

0 1 0 0 1 1 1 1

1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0

1 1 1 1 1 0 1 0

0 1 0 0 1 1 1 0

1 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0

1 0 0 1 1 0 1 0

0 0 1 0 1 1 1 0

1 0 1 1 0 1 0 0

1 0 1 0 1 1 1 0

0 1 1 1 1 1 1 0

1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0

0 0

0 1 0

0 0 1 0

1 0

0 0

0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Here, the matrices B and C represent a solution with length k = 23. This
solution was found in less than one minute using our decision procedure from

10

Section 3 with MiniSAT v2.1 as backend on a 2.67 GHz Intel Core i7. We strongly
conjecture that kmin = 23 and, indeed, the shortest known linear straight-line
program for the linear forms described by the matrix A has length k = 23 [4].
This shows that our SAT-based optimization method is able to find very good
solutions in reasonable time. The UNSAT case is harder, though. For k = 20
(which is trivially unsatisfiable due to the pigeonhole problem), without the
tunings from Section 3 we cannot show unsatisfiability within 4 days. But with
the tunings enabled we can show unsatisfiability in less than one second.

Unfortunately, proving the unsatisfiability for k = 22 proves to be much more
challenging. Indeed, we have run many different SAT solvers (including but not
limited to glucose, ManySat, MiniSat, MiraXT with 8 threads, OKsolver, PicoSAT,
PrecoSAT, RSat, SAT4J) on the CNF file for this instance of our decision problem.
Some of the more promising solvers for this instance were run for more than 40
days without returning either SAT or UNSAT.

In an effort to prove unsatisfiability of this instance and thereby prove op-
timality of the solution with k = 23, we have asked for and received a lot of
support and good advice from the SAT community (see the Acknowledgements
at the end of this paper). Still, to this day the unsatisfiability of this instance

k result time

8 UNSAT 0.4
9 UNSAT 0.5

10 UNSAT 1.2
11 UNSAT 5.0
12 UNSAT 76.8
13 SAT 1.0
14 SAT 3.4
15 SAT 2.8
16 SAT 1.5
17 SAT 4.3
18 SAT 2.7
19 SAT 2.5
20 SAT 3.0
21 SAT 3.0
22 SAT 3.5
23 SAT 3.6
24 SAT 5.5
25 SAT 5.9

remains a conjecture. Using pre-processing techniques, the
number of variables of this instance can be reduced from more
than 45000 to less than 5000 in a matter of minutes. The
remaining SAT problem seems to be very hard, though. 3

To analyze how difficult these problems really are, we con-
sider a small subset of the linear forms to be computed for
the top matrix. The table to the right shows how the run-
times in seconds of the SAT solver are affected by the choice
of k for the case that we consider only the first 8 out of 21
linear forms from A. In order to keep runtimes manageable
we already incorporated the symmetry breaking improvement
described in Section 6. Note that unsatisfiability for k = 12
is still much harder to show than satisfiability for kmin = 13.

To conclude this case study, we see that while finding
(potentially) minimal solutions is obviously feasible, proving
their optimality (i.e., unsatisfiability of the associated deci-
sion problem for k = kmin−1) is challenging. This observation
confirms observations made in [11]. In the following section
we present some of our attempts to improve the efficiency of
our encoding for the UNSAT case.

6 Towards Handling the UNSAT Case

Satisfiability of propositional logic is an NP-complete problem and, thus, we
can expect that at least some instances are computationally expensive. While

3 The reader is cordially invited to try his favorite SAT solver on one of the instances
available from: http://aprove.informatik.rwth-aachen.de/eval/slp.zip

11

SAT solvers have proven to be a Swiss army knife for solving practically relevant
instances of many different NP-complete problems, our kind of program synthesis
problems seems to be a major challenge for today’s SAT solvers even on instances
with “just” 1500 variables.

In this section we discuss three different approaches based on unary SAT
encodings, on Pseudo-Boolean satisfiability, and on symmetry breaking.

6.1 Unary encodings

As remarked by [9], encoding arithmetic in unary representation instead of the
more common binary (CPU-like) representation can be very beneficial for the
performance of modern conflict-driven SAT solvers on the resulting instances.
Unfortunately, encoding the computations not via XOR on GF(2), but rather
in unary representation on Z with a deferred parity check turned out to be
prohibitively expensive as the (integer) values for the i-th line are bounded only
by O(fib(i)) where fib is the Fibonacci function.

6.2 Encoding to Pseudo-Boolean Constraints

Instead of optimizing and tuning our encoding to SAT, we also implemented a
straight-forward encoding to Pseudo-Boolean constraints. The hope was that,
e.g., cutting plane approaches could be useful for showing unsatisfiability.

We experimented with MiniSat+, Pueblo, SAT4J, and SCIP but were not able
to obtain any improvements for e.g. the first 8 linear forms of the top matrix.

6.3 Symmetry Breaking

In general, having many solutions is considered good for SAT instances as the
SAT solver is more likely to “stumble” upon one of them. For UNSAT instances,
though, having many potential solutions usually means that the search space to
exhaust is very large.

One of the main reasons for having many solutions is symmetry. For example,
it does not matter if we first compute v1 = x1 ⊕ x2 and then v2 = x3 ⊕ x4 or
the other way around. Limiting these kinds of symmetries can be expected to
significantly reduce the runtimes for UNSAT instances.

In our concrete setting, being able to reorder independent program lines is
one of the major sources of symmetry. Two outputs in a straight-line programs
are said to be independent if neither of them depends on the other (directly
through the matrix C or indirectly).

Now, the idea for breaking symmetry is to impose an order on these lines:
the line which computes the “smaller” linear form (w.r.t. a total order on linear
forms, which can e.g. be obtained by lexicographic comparison of the coefficient
vectors) must occur before the line which computes the greater linear form.

We can encode the direct dependence of vi on vp:
∧

1≤i≤k

∧

1≤p<i

c(i, p) → dep(i, p)

12

Likewise, the indirect dependence of vi on vp can be encoded by transitivity:
∧

1≤i≤k

∧

1≤p<i

∧

p<q<i

c(i, q) ∧ dep(q, p) → dep(i, p)

We also need to encode the reverse direction, i.e.:

∧

1≤i≤k

∧

1≤p<i

dep(i, p) →

c(i, p) ∨
∨

p<q<i

(c(i, q) ∧ dep(q, p))

Now we can enforce that for i > p, the output vi depends on the output vp or
vi encodes a greater linear form than vp:

∧

1≤i≤k

∧

1≤p<i

(dep(i, p) ∨ [ψ(1, i), . . . , ψ(n, i)] >lex [ψ(1, p), . . . , ψ(n, p)])

Here lexicographic comparison of formula tuples is encoded in the usual way (see
for example the encodings in [7, 5]).

While this approach eliminates some otherwise valid solutions of length k

and thus reduces the set of admissible solutions, obviously there is at least one
solution of length k which satisfies our constraints whenever solutions of length k
exist at all. This way, we greatly reduce the search space by breaking symmetries
that are not relevant for the result, but may slow down the search considerably.

Consider again the restriction of our S-box top matrix to the first 8 linear
forms. With symmetry breaking, we can show unsatisfiability for the “hard” case
k = 12 in 76.8 seconds. In contrast, without symmetry breaking, we cannot show
unsatisfiability within 4 days.

7 Conclusion

In this paper we have shown how shortest linear straight-line programs for given
linear forms can be synthesized using SAT solvers. To this end we have presented
a novel polynomial-size encoding of the associated decision problem to SAT and
a customized white-box method for again turning this decision procedure into
an optimization algorithm.

We have evaluated the feasibility of this approach by a case study where we
minimize an important part of the S-box for the Advanced Encryption Standard.
This study shows that our SAT-based approach is indeed able to synthesize
shortest-known programs for realistic problem settings within reasonable time.

Proving the optimality of the programs found by showing unsatisfiability of
the associated decision problem leads to very challenging SAT problems. To im-
prove the performance for the UNSAT case, we discussed three approaches based
on unary encodings, on a port to Pseudo-Boolean satisfiability, and on symmetry
breaking. We have shown that symmetry breaking significantly reduces runtimes
in the UNSAT case.

In future work, we consider to apply our method to other problems from cryp-
tography. Also, we plan to further enhance our encoding and specialize existing
SAT solvers to further improve performance in the UNSAT case.

13

Acknowledgements

Our sincere thanks go to Erika Ábrahám, Daniel Le Berre, Armin Biere, Youssef
Hamadi, Oliver Kullmann, Matthew Lewis, Lakhdar Säıs, and Laurent Simon
for input on and help with the experiments. Furthermore, we thank Joan Boyar
and René Peralta for providing us with information on their work and Michael
Codish for pointing out similarities to common subexpression elimination.

References

1. R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell. Cardinality
networks and their applications. In Proc. Theory and Applications of Satisfiability
Testing (SAT ’09), volume 5584 of LNCS, pages 167–180, 2009.

2. J. Boyar, P. Matthews, and R. Peralta. On the shortest linear straight-line pro-
gram for computing linear forms. In Proc. Mathematical Foundations of Computer
Science (MFCS ’08), volume 5162 of LNCS, pages 168–179, 2008.

3. J. Boyar and R. Peralta. A new technique for combinational circuit optimization
and a new circuit for the S-Box for AES. Patent Application Number 61089998
filed with the U.S. Patent and Trademark Office, 2009.

4. J. Boyar and R. Peralta. A new combinational logic minimization technique with
applications to cryptology. In Proc. International Symposium on Experimental
Algorithms (SEA ’10), volume 6049 of LNCS, 2010, To appear.

5. M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO
termination. Journal on Satisfiability, Boolean Modeling and Computation (JSAT),
5:193–215, 2008.

6. N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modelling and Computation (JSAT), 2(1–4):1–26,
2006.

7. C. Fuhs, J. Giesl, A. Middeldorp, R. Thiemann, P. Schneider-Kamp, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.
Theory and Applications of Satisfiability Testing (SAT ’07), volume 4501 of LNCS,
pages 340–354, 2007.

8. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termi-
nation proofs in the dependency pair framework. In Proc. International Joint
Conference on Automated Reasoning (IJCAR ’06), volume 4130 of LNAI, pages
281–286, 2006.

9. O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants au-
tomatically. In Proc. International Joint Conference on Automated Reasoning
(IJCAR ’06), volume 4130 of LNAI, pages 483–497, 2006.

10. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning (JAR), 21(1):23–38, 1998.

11. A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev. Finding efficient circuits using
SAT-solvers. In Proc. Theory and Applications of Satisfiability Testing (SAT ’09),
volume 5584 of LNCS, pages 32–44, 2009.

12. D. Le Berre and A. Parrain. SAT4J. http://www.sat4j.org.
13. Federal Information Processing Standard 197. The advanced encryption standard.

Technical report, National Institute of Standards and Technology, 2001.
14. G. Tseitin. On the complexity of derivation in propositional calculus. In Stud-

ies in Constructive Mathematics and Mathematical Logic, pages 115–125. 1968.
Reprinted in Automation of Reasoning, 2:466–483, 1983.

14

