
Aachen
Department of Computer Science

Technical Report

Improving Context-Sensitive

Dependency Pairs

Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl,

Raúl Gutiérrez, Salvador Lucas, Peter Schneider-Kamp,

René Thiemann

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-13

RWTH Aachen · Department of Computer Science · Sept. 2008 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Improving Context-Sensitive Dependency Pairs⋆

Beatriz Alarcón1, Fabian Emmes2, Carsten Fuhs2, Jürgen Giesl2, Raúl
Gutiérrez1, Salvador Lucas1, Peter Schneider-Kamp2, and René Thiemann3

1 DSIC, Universidad Politécnica de Valencia, Spain
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 Institute of Computer Science, University of Innsbruck, Austria

Abstract. Context-sensitive dependency pairs (CS-DPs) are currently
the most powerful method for automated termination analysis of context-
sensitive rewriting. However, compared to DPs for ordinary rewriting,
CS-DPs suffer from two main drawbacks: (a) CS-DPs can be collapsing.
This complicates the handling of CS-DPs and makes them less powerful
in practice. (b) There does not exist a “DP framework” for CS-DPs which
would allow one to apply them in a flexible and modular way. This paper
solves drawback (a) by introducing a new definition of CS-DPs. With
our definition, CS-DPs are always non-collapsing and thus, they can be
handled like ordinary DPs. This allows us to solve drawback (b) as well,
i.e., we extend the existing DP framework for ordinary DPs to context-
sensitive rewriting. We implemented our results in the tool AProVE and
successfully evaluated them on a large collection of examples.

1 Introduction

Context-sensitive rewriting [22, 23] models evaluations in programming langua-
ges. It uses a replacement map µ with µ(f) ⊆ {1, ..., arity(f)} for every function
symbol f to specify the argument positions of f where rewriting may take place.

Example 1. Consider this context-sensitive term rewrite system (CS-TRS)

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0), minus(p(x), p(y)), x) (1)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with µ(if) = {1} and µ(f) = {1, . . . , arity(f)} for all other symbols f to model
the usual behavior of if: in if(t1, t2, t3), one may evaluate t1, but not t2 or t3. It
will turn out that due to µ, this CS-TRS is indeed terminating. In contrast, if
one allows arbitrary reductions, then the TRS would be non-terminating:

⋆ Authors from Valencia were partially supported by the EU (FEDER) and the Span-
ish MEC/MICINN, under grants TIN 2007-68093-C02-02 and HA 2006-0007. B.
Alarcón was partially supported by the Spanish MEC/MICINN under FPU grant
AP2005-3399. R. Gutiérrez was partially supported by the Spanish MEC/MICINN,
under grant TIN 2004-7943-C04-02. Authors from Aachen were supported by the
DAAD under grant D/06/12785 and by the DFG under grant GI 274/5-2.

minus(0, 0) →+ if(gt(0, 0), minus(0, 0), 0) →+ if(..., if(gt(0, 0), minus(0, 0), 0), ...) →+ ...

There are two approaches to prove termination of context-sensitive rewriting.
The first approach transforms CS-TRSs to ordinary TRSs, cf. [12, 25]. But trans-
formations often generate complicated TRSs where all termination tools fail.

Therefore, it is more promising to adapt existing termination techniques from
ordinary term rewriting to the context-sensitive setting. Such adaptions were
done for classical methods like RPO or polynomial orders [7, 18, 24]. However,
much more powerful techniques like the dependency pair (DP) method [5] are
implemented in almost all current termination tools for TRSs. But for a long
time, it was not clear how to adapt the DP method to context-sensitive rewriting.

This was solved first in [1]. The corresponding implementation in the tool
mu-term [3] outperformed all previous tools for termination of CS rewriting.

Nevertheless, the existing results on CS-DPs [1, 2, 4, 19] still have major dis-
advantages compared to the DP method for ordinary rewriting, since CS-DPs
can be collapsing. To handle such DPs, one has to impose strong requirements
which make the CS-DP method quite weak and which make it difficult to extend
refined termination techniques based on DPs to the CS case. In particular, the
DP framework [13, 16, 20], which is the most powerful formulation of the DP
method for ordinary TRSs, has not yet been adapted to the CS setting.

In this paper, we solve these problems. After presenting preliminaries in
Sect. 2, we introduce a new notion of non-collapsing CS-DPs in Sect. 3. This new
notion makes it much easier to adapt termination techniques based on DPs to
context-sensitive rewriting. Therefore, Sect. 4 extends the DP framework to the
context-sensitive setting and shows that existing methods from this framework
only need minor changes to apply them to context-sensitive rewriting.

All our results are implemented in the termination prover AProVE [15]. As
shown by the empirical evaluation in Sect. 5, our contributions improve the power
of automated termination analysis for context-sensitive rewriting substantially.

2 Context-Sensitive Rewriting and CS-Dependency Pairs

See [6] and [22] for basics on term rewriting and context-sensitive rewriting,
respectively. Let Pos(s) be the set of positions of a term s. For a replacement
map µ, we define the active positions Posµ(s): For x ∈ V let Posµ(x) = {ε}
where ε is the root position. Moreover, Posµ(f(s1, . . . , sn)) = {ε} ∪ {i p | i ∈
µ(f), p ∈ Posµ(si)}. We say that s�µ t holds if t = s|p for some p ∈ Posµ(s) and
s�µ t if s�µ t and s 6= t. Moreover, s�

�µ
t if t = s|p for some p ∈ Pos(s)\Posµ(s).

We denote the ordinary subterm relations by � and �.
A CS-TRS (R, µ) consists of a finite TRS R and a replacement map µ. We

have s →֒R,µ t iff there are ℓ → r ∈ R, p ∈ Posµ(s), and a substitution σ with
s|p = σ(ℓ) and t = s[σ(r)]p. This reduction is an innermost step (denoted i→֒R,µ)
if all t with s|p �µ t are in normal form w.r.t. (R, µ). A term s is in normal form
w.r.t. (R, µ) if there is no term t with s →֒R,µ t. A CS-TRS (R, µ) is terminating
if →֒R,µ is well founded and innermost terminating if i→֒R,µ is well founded.

4

Let D = {root(ℓ) | ℓ → r ∈ R} be the set of defined symbols. For every
f ∈ D, let f ♯ be a fresh tuple symbol of same arity, where we often write “F”
instead of “f ♯”. For t = f(t1, . . . , tn) with f ∈ D, let t♯ = f ♯(t1, . . . , tn).

Definition 2 (CS-DPs [1]). Let (R, µ) be a CS-TRS. If ℓ → r ∈ R, r�µt, and
root(t) ∈ D, then ℓ♯ → t♯ is an ordinary dependency pair.4 If ℓ → r ∈ R, r �µ x
for a variable x, and ℓ 6�µ x, then ℓ♯ → x is a collapsing DP. Let DPo(R, µ) and
DPc(R, µ) be the sets of all ordinary resp. all collapsing DPs.

Example 3. For the TRS of Ex. 1, we obtain the following CS-DPs.

GT(s(x), s(y)) → GT(x, y) (2) M(x, y) → IF(gt(y, 0), minus(p(x),p(y)), x) (5)
IF(true, x, y) → x (3) M(x, y) → GT(y, 0) (6)
IF(false, x, y) → y (4) D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

D(s(x), s(y)) → M(x, y) (8)

To prove termination, one has to show that there is no infinite chain of DPs.
For ordinary rewriting, a sequence s1 → t1, s2 → t2, . . . of DPs is a chain if there
is a substitution σ such that tiσ reduces to si+1σ.5 If all tiσ are terminating,
then the chain is minimal [13, 16, 21]. But due to the collapsing DPs, the notion
of “chains” has to be adapted when it is used with CS-DPs [1]. If si → ti is a
collapsing DP (i.e., if ti ∈ V), then instead of tiσ →֒∗

R,µ si+1σ (and termination
of tiσ for minimality), one requires that there is a term wi with tiσ �µ wi and

w♯
i →֒∗

R,µ si+1σ. For minimal chains, w♯
i must be terminating.

Example 4. Ex. 1 has the chain (5), (3), (5) as IF(gt(s(y), 0), minus(p(x),p(s(y))), x)

→֒∗

R,µ IF(true, minus(p(x),p(s(y))), x) →֒(3),µ minus(p(x),p(s(y))) and (minus(p(x),

p(s(y))))♯ = M(p(x),p(s(y))) is an instance of the left-hand side of (5).

A CS-TRS is terminating iff there is no infinite chain [1]. As in the non-CS
case, the above notion of chains can also be adapted to innermost rewriting. Then
a CS-TRS is innermost terminating iff there is no infinite innermost chain [4].

Due to the collapsing CS-DPs (and the corresponding definition of “chains”),
it is not easy to extend existing techniques for proving absence of infinite chains
to CS-DPs. Therefore, we now introduce a new improved definition of CS-DPs.

3 Non-Collapsing CS-Dependency Pairs

Ordinary DPs only consider active subterms of right-hand sides. So Rule (1) of
Ex. 1 only leads to the DP (5), but not to M(x, y) → M(p(x), p(y)). However, the
inactive subterm minus(p(x), p(y)) of the right-hand side of (1) may become ac-
tive again when applying the rule if(true, x, y) → x. Therefore, Def. 2 creates a
collapsing DP like (3) whenever a rule ℓ → r has a migrating variable x with r�µ

x, but ℓ 6�µ x. Indeed, when instantiating the collapse-variable x in (3) with an
instance of the “hidden term” minus(p(x), p(y)), one obtains a chain which sim-
ulates the rewrite sequence from minus(t1, t2) over if(..., minus(p(t1), p(t2)), ...)

4 A refinement is to eliminate DPs where ℓ �µ t, cf. [1, 8].
5 We always assume that different occurrences of DPs are variable-disjoint and consider

substitutions whose domains may be infinite.

5

to minus(p(t1), p(t2)), cf. Ex. 4. Our main observation is that collapsing DPs are
only needed for certain instantiations of the variables. One might be tempted to
allow only instantiations of collapse-variables by hidden terms.6

Definition 5 (Hidden Term). Let (R, µ) be a CS-TRS. We say that t is a
hidden term if root(t) ∈ D and if there exists a rule ℓ → r ∈ R with r �

�µ
t.

In Ex. 1, the only hidden term is minus(p(x), p(y)). But unfortunately, only al-
lowing instantiations of collapse-variables with hidden terms would be unsound.

Example 6. Consider µ(g) = {1}, µ(a) = µ(b) = µ(f) = µ(h) = ∅ and the rules

a → f(g(b)) (9) h(x) → x
f(x) → h(x) b → a

The CS-TRS has the following infinite rewrite sequence:

a →֒R,µ f(g(b)) →֒R,µ h(g(b)) →֒R,µ g(b) →֒R,µ g(a) →֒R,µ . . .

We obtain the following CS-DPs according to Def. 2:

A → F(g(b)) H(x) → x (10)
F(x) → H(x) B → A

The only hidden term is b, obtained from Rule (9). There is also an infinite chain
that corresponds to the infinite reduction above. However, here the collapse-
variable x in the DP (10) must be instantiated by g(b) and not by the hidden
term b, cf. the underlined part above. So if one replaced (10) by H(b) → b, there
would be no infinite chain anymore and one would falsely conclude termination.

The problem in Ex. 6 is that rewrite rules may add additional symbols like g
above hidden terms. This can happen if a term g(t) occurs at an inactive position
in a right-hand side and if an instantiation of t could possibly reduce to a term
containing a hidden term (i.e., if t has a defined symbol or a variable at an active
position). Then we call g(2) a hiding context, since it can “hide” a hidden term.
Moreover, the composition of hiding contexts is again a hiding context.

Definition 7 (Hiding Context). Let (R, µ) be a CS-TRS. The function sym-
bol f hides position i if there is a rule ℓ → r ∈ R with r �

�µ
f(r1, . . . , ri, . . . , rn),

i ∈ µ(f), and ri contains a defined symbol or a variable at an active position. A
context C is hiding iff C = 2 or C has the form f(t1, . . . , ti−1, C

′, ti+1, . . . , tn)
where f hides position i and C′ is a hiding context.

Example 8. In Ex. 6, g hides position 1 due to Rule (9). So the hiding con-
texts are 2, g(2), g(g(2)), . . . In the TRS of Ex. 1, minus hides both positions
1 and 2 and p hides position 1 due to Rule (1). So the hiding contexts are
2, p(2), minus(2, 2), p(p(2)), minus(2, p(2)), . . .

To remove collapsing DPs s → x, we now restrict ourselves to instantiations
of x with terms of the form C[t] where C is a hiding context and t is a hidden
term. So in Ex. 6, the variable x in the DP (10) should only be instantiated by

6 A similar notion of hidden symbols was presented in [2, 4], but there one only used
these symbols to improve one special termination technique (the dependency graph).

6

b, g(b), g(g(b)), etc. To represent these infinitely many instantiations in a finite
way, we replace s → x by new unhiding DPs (which “unhide” hidden terms).

Definition 9 (Improved CS-DPs). For a CS-TRS (R, µ), if DPc(R, µ) 6=∅,
we introduce a fresh7 unhiding tuple symbol U and the following unhiding DPs:

• s → U(x) for every s → x ∈ DPc(R, µ),
• U(f(x1, . . . , xi, . . . , xn)) → U(xi) for every function symbol f of any arity n

and every 1 ≤ i ≤ n where f hides position i, and
• U(t) → t♯ for every hidden term t.

Let DPu(R, µ) be the set of all unhiding DPs (where DPu(R, µ)=∅, if DPc(R, µ)
= ∅). Then the set of improved CS-DPs is DP(R, µ) = DPo(R, µ)∪DPu(R, µ).

Example 10. In Ex. 6, instead of (10) we get the unhiding DPs

H(x) → U(x), U(g(x)) → U(x), U(b) → B.

Now there is indeed an infinite chain. In Ex. 1, instead of (3) and (4), we obtain:8

IF(true, x, y)→U(x) (11) U(p(x))→U(x) (15)
IF(false, x, y)→U(y) (12) U(minus(x, y))→U(x) (16)

U(minus(p(x), p(y)))→M(p(x), p(y)) (13) U(minus(x, y))→U(y) (17)
U(p(x))→P(x) (14)

Clearly, the improved CS-DPs are never collapsing. Thus, now the definition
of (minimal)9 chains is completely analogous to the one for ordinary rewriting.

Definition 11 (Chain). Let P and R be TRSs and let µ be a replacement
map. We extend µ to tuple symbols by defining µ(f ♯) = µ(f) for all f ∈ D and
µ(U) = ∅.10 A sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R, µ)-
chain iff there is a substitution σ with tiσ →֒∗

R,µ si+1σ and tiσ is terminating
w.r.t. (R, µ) for all i. It is an innermost (P ,R, µ)-chain iff tiσ

i→֒∗
R,µ si+1σ, siσ

is in normal form, and tiσ is innermost terminating w.r.t. (R, µ) for all i.

Our main theorem shows that improved CS-DPs are still sound and complete.

Theorem 12 (Soundness and Completeness of Improved CS-DPs). A
CS-TRS (R, µ) is terminating iff there is no infinite (DP(R, µ),R, µ)-chain and
innermost terminating iff there is no infinite innermost (DP(R, µ),R, µ)-chain.

Proof. We only prove the theorem for “full” termination. The proof for innermost
termination is very similar and can be found in Appendix A.

Soundness

M∞,µ contains all minimal non-terminating terms: t ∈ M∞,µ iff t is non-termi-

7 Alternatively, one could also use different U-symbols for different collapsing DPs.
8 We omitted the DP U(p(y)) → P(y) that is “identical” to (14).
9 Since we only regard minimal chains in the following, we included the “minimality

requirement” in Def. 11, i.e., we require that all tiσ are (innermost) terminating.
As in the DP framework for ordinary rewriting, this restriction to minimal chains is
needed for several DP processors (e.g., for the reduction pair processor of Thm. 21).

10 We define µ(U) = ∅, since the purpose of U is only to remove context around hidden
terms. But during this removal, U’s argument should not be evaluated.

7

nating and every r with t �µ r terminates. A term u has the hiding property iff

• u ∈ M∞,µ and
• whenever u �

�µ
s �µ t′ for some terms s and t′ with t′ ∈ M∞,µ, then t′ is an

instance of a hidden term and s = C[t′] for some hiding context C.

We first prove the following claim:

Let u be a term with the hiding property and let u →֒R,µ v �µ w
with w ∈ M∞,µ. Then w also has the hiding property.

(18)

Let w �
�µ

s �µ t′ for some terms s and t′ with t′ ∈ M∞,µ. Clearly, this also
implies v �

�µ
s. If already u � s, then we must have u �

�µ
s due to the minimality

of u. Thus, t′ is an instance of a hidden term and s = C[t′] for a hiding context C,
since u has the hiding property. Otherwise, u6�s. There must be a rule ℓ → r ∈ R,
an active context D (i.e., a context where the hole is at an active position), and
a substitution δ such that u = D[δ(ℓ)] and v = D[δ(r)]. Clearly, u 6�s implies
δ(ℓ) 6�s and D 6�s. Hence, v �

�µ
s means δ(r)�

�µ
s. (The root of s cannot be

above 2 in D since those positions would be active.) Note that s cannot be at
or below a variable position of r, because this would imply δ(ℓ) � s. Thus, s is
an instance of a non-variable subterm of r that is at an inactive position. So
there is a r′ 6∈ V with r �

�µ
r′ and s = δ(r′). Recall that s �µ t′, i.e., there is a

p ∈ Posµ(s) with s|p = t′. If p is a non-variable position of r′, then δ(r′|p) = t′

and r′|p is a subterm with defined root at an active position (since t′ ∈ M∞,µ

implies root(t′) ∈ D). Hence, r′|p is a hidden term and thus, t′ is an instance of a
hidden term. Moreover, any instance of the context C′ = r′[2]p is hiding. So if we
define C to be δ(C′), then s = δ(r′) = δ(r′)[t′]p = δ(C′)[t′] = C[t′] for the hiding
context C. On the contrary, if p is not a non-variable position of r′, then p = p1 p2

where r′|p1
is a variable x. Now t′ is an active subterm of δ(x) (more precisely,

δ(x)|p2
= t′). Since x also occurs in ℓ, we have δ(ℓ)�δ(x) and thus u�δ(x). Due

to the minimality of u this implies u �
�µ

δ(x). Since u �
�µ

δ(x) �µ t′, the hiding

property of u implies that t′ is an instance of a hidden term and that δ(x) = C[t′]
for a hiding context C. Note that since r′|p1

is a variable, the context C′ around
this variable is also hiding (i.e., C′ = r′[2]p1

). Thus, the context C = δ(C′)[C]
is hiding as well and s = δ(r′) = δ(r′)[δ(x)[t′]p2

]p1
= δ(C′)[C[t′]] = C[t′].

Proof of Thm. 12 using Claim (18)

If R is not terminating, then there is a t ∈ M∞,µ that is minimal w.r.t. �. So
there are t, ti, si, t

′
i+1 such that

t
> ε

−֒→∗
R,µ t1

ε

→R s1 �µ t′2
> ε

−֒→∗
R,µ t2

ε

→R s2 �µ t′3
> ε

−֒→∗
R,µ t3 . . . (19)

where ti, t
′
i ∈ M∞,µ and all proper subterms of t (also at inactive positions)

terminate. Here, “ε” (resp. “> ε”) denotes reductions at (resp. strictly below)
the root.

Note that (18) implies that all ti have the hiding property. To see this, we
use induction on i. Since t trivially has the hiding property (as it has no non-

terminating proper subterms) and all terms in the reduction t
> ε
−֒→∗

R,µ t1 are

8

from M∞,µ (as both t, t1 ∈ M∞,µ), we conclude that t1 also has the hiding
property by applying (18) repeatedly. In the induction step, if ti−1 has the hiding
property, then one application of (18) shows that t′i also has the hiding property.
By applying (18) repeatedly, one then also shows that ti has the hiding property.

Now we show that t♯i →+
DP(R,µ) t′i+1

♯
and that all terms in the reduction

t♯i →
+
DP(R,µ) t

′
i+1

♯
terminate w.r.t. (R, µ). As t′i+1

♯ > ε
−֒→∗

R,µ t♯i+1, we get an infinite

(DP(R, µ),R, µ)-chain.
From (19) we know that there are ℓi → ri ∈ R and pi ∈ Posµ(si) with

ti = ℓiσ, si = riσ, and si|pi
= riσ|pi

= t′i+1 for all i. First let pi ∈ Pos(ri) with

ri|pi
/∈ V . Then ℓ♯

i → (ri|pi
)♯ ∈ DPo(R, µ) and t♯i = ℓ♯

iσ →DPo(R,µ) (ri|pi
)♯σ =

t′i+1
♯
. Moreover, as ti, t

′
i+1 ∈ M∞,µ, the terms t♯i and t′i+1

♯
are terminating.

Now let pi be at or below the position of a variable xi in ri. By minimality of
ti, xi only occurs at inactive positions of ℓi. Thus, ℓ♯

i → U(xi) ∈ DPu(R, µ) and
ri = Ci[xi] where Ci is an active context. Recall that ti = ℓiσ has the hiding
property and that ti ��µ

σ(xi)�µ t′i+1. Thus, we have σ(xi) = C[t′i+1] for a hiding
context C and moreover, t′i+1 is an instance of a hidden term. Hence we obtain:

t
♯
i = σ(ℓ♯

i)

→DPu(R,µ) U(σ(xi)) since ℓ
♯
i → U(xi) ∈ DPu(R, µ)

= U(C[t′i+1]) for a hiding context C

→∗

DPu(R,µ) U(t′i+1) since U(C[x]) →∗

DPu(R,µ) U(x) for any hiding context C

→DPu(R,µ) t′i+1
♯

since t′i+1 is an instance of a hidden term and

U(t) →DPu(R,µ) t♯ for any instance t of a hidden term

All terms in the reduction above are terminating. The reason is that again
ti, t

′
i+1 ∈ M∞,µ implies that t♯i and t′i+1

♯
are terminating. Moreover, all terms

U(. . .) are normal forms since µ(U) = ∅ and since U does not occur in R.

Completeness

Let there be an infinite chain v1 → w1, v2 → w2, ... of improved CS-DPs. First,
let the chain have an infinite tail consisting only of DPs of the form U(f(x1, ..., xi,
..., xn)) → U(xi). Since µ(U) = ∅, there are terms ti with U(t1)

ε

→DP(R,µ)U(t2)
ε

→DP(R,µ)... Hence, t1 �µ t2 �µ .. which contradicts the well-foundedness of �µ.
Now we regard the remaining case. Here the chain has infinitely many DPs

v → w with v = ℓ♯ for a rule ℓ → r ∈ R. Let vi → wi be such a DP and let
vj → wj with j > i be the next such DP in the chain. Let σ be the substitution
used for the chain. We show that then v♭

iσ →֒∗
R,µ C[v♭

jσ] for an active context

C. Here, (f ♯(t1, . . . , tn))♭ = f(t1, . . . , tn) for all f ∈ D. Doing this for all such
DPs implies that there is an infinite reduction w.r.t. (R, µ).

If vi → wi ∈ DPo(R, µ) then the claim is trivial, because then j = i + 1 and
v♭

iσ →֒R,µ C[w♭
iσ] →֒∗

R,µ C[v♭
i+1σ] for some active context C.

Otherwise, vi → wi has the form vi → U(x). Then v♭
iσ →֒R,µ C1[σ(x)] for an

active context C1. Moreover, U(σ(x)) reduces to U(δ(t)) for a hidden term t and
a δ by removing hiding contexts. Since hiding contexts are active, σ(x) = C2[δ(t)]

for an active context C2. Finally, t♯δ
> ε
−֒→∗

R,µ vjσ and thus, tδ
> ε
−֒→∗

R,µ v♭
jσ. By

defining C = C1[C2], we get v♭
iσ →֒+

R,µ C[v♭
jσ]. ⊓⊔

9

4 CS Dependency Pair Framework

By Thm. 12, (innermost) termination of a CS-TRS is equivalent to absence
of infinite (innermost) chains. For ordinary rewriting, the DP framework is the
most recent and powerful collection of methods to prove absence of infinite chains
automatically. Due to our new notion of (non-collapsing) CS-DPs, adapting the
DP framework to the context-sensitive case now becomes much easier.11

In the DP framework, termination techniques operate on DP problems in-
stead of TRSs. Def. 13 adapts this notion to context-sensitive rewriting.

Definition 13 (CS-DP Problem and Processor). A CS-DP problem is
a tuple (P ,R, µ, e), where P and R are TRSs, µ is a replacement map, and
e ∈ {t, i} is a flag that stands for termination or innermost termination. We
also call (P ,R, µ)-chains “(P ,R, µ, t)-chains” and we call innermost (P ,R, µ)-
chains “(P ,R, µ, i)-chains”. A CS-DP problem (P ,R, µ, e) is finite if there is
no infinite (P ,R, µ, e)-chain.

A CS-DP processor is a function Proc that takes a CS-DP problem as input
and returns a possibly empty set of CS-DP problems. The processor Proc is sound
if a CS-DP problem d is finite whenever all problems in Proc(d) are finite.

For a CS-TRS (R, µ), the termination proof starts with the initial DP prob-
lem (DP(R, µ),R, µ, e) where e depends on whether one wants to prove termina-
tion or innermost termination. Then sound DP processors are applied repeatedly.
If the final processors return empty sets, then (innermost) termination is proved.
Since innermost termination is usually easier to show than full termination, one
should use e = i whenever possible. As shown in [11], termination and innermost
termination coincide for CS-TRSs (R, µ) where R is orthogonal (i.e., left-linear
and without critical pairs). So (DP (R, µ),R, µ, i) would be the initial DP prob-
lem for Ex. 1, even when proving full termination. In Sect. 4.1 - 4.3, we recapitu-
late 3 important DP processors and extend them to context-sensitive rewriting.

4.1 Dependency Graph Processor

The first processor decomposes a DP problem into several sub-problems. To this
end, one determines which pairs can follow each other in chains by constructing
a dependency graph. In contrast to related definitions for collapsing CS-DPs in
[1, 4], Def. 14 is analogous to the corresponding definition for non-CS rewriting.

Definition 14 (CS-Dependency Graph). For a CS-DP problem (P ,R, µ, e),
the nodes of the (P ,R, µ, e)-dependency graph are the pairs of P, and there is
an arc from v → w to s → t iff v → w, s → t is a (P ,R, µ, e)-chain.

Example 15. Fig. 1 shows the dependency graph for Ex. 1, for both e ∈ {t, i}.12

11 The proofs for this section can be found in Appendices B - D.
12 To improve readability, we omitted nodes (6) and (14) from the graph. There are

arcs from the nodes (8) and (13) to (6) and from all nodes (11), (12), (15), (16), (17)
to (14). But (6) and (14) have no outgoing arcs and thus, they are not on any cycle.

10

(7)
KK

// (8) // (5)

uukkkkkkkkkk

��
(2)
SS

(12)

,,

��

##G
GG

��

(11)

��

{{www

��

rr

(16)
��

~~

��
(15)
��

>>

##G
GG

-- (17)
��

``

{{www
nn

(13)

bb

Fig. 1. Dependency graph for Ex. 1

A set P ′ 6= ∅ of DPs is a cycle
if for every v→w, s→t∈P ′, there
is a non-empty path from v → w
to s→t traversing only pairs of P ′.
A cycle P ′ is a strongly connected
component (“SCC”) if P ′ is not a
proper subset of another cycle.

One can prove termination se-
parately for each SCC. Thus, the
following processor (whose sound-
ness is obvious and completely
analogous to the non-context-sensitive case) modularizes termination proofs.

Theorem 16 (CS-Dependency Graph Processor). For d = (P ,R, µ, e),
let Proc(d) = {(P1,R, µ, e), . . . , (Pn,R, µ, e)}, where P1, . . . ,Pn are the SCCs of
the (P ,R, µ, e)-dependency graph. Then Proc is sound.

Example 17. The graph in Fig. 1 has the three SCCs P1 = {(2)}, P2 = {(7)},
P3 = {(5), (11)-(13), (15)-(17)}. Thus, the initial DP problem (DP(R, µ),R, µ, i)
is transformed into the new problems (P1,R, µ, i), (P2,R, µ, i), (P3,R, µ, i).

As in the non-context-sensitive setting, the CS-dependency graph is not com-
putable and thus, one has to use estimations to over-approximate the graph. For
example, [1, 4] adapted the estimation of [5] that was originally developed for
ordinary rewriting: Cap

µ(t) replaces all active subterms of t with defined root
symbol by different fresh variables. Multiple occurrences of the same such sub-
term are also replaced by pairwise different variables. Ren

µ(t) replaces all active
occurrences of variables in t by different fresh variables (i.e., no variable occurs
at several active positions in Ren

µ(t)). So Ren
µ(Cap

µ(IF(gt(y, 0), minus(p(x),
p(y)), x))) = Ren

µ(IF(z, minus(p(x), p(y)), x)) = IF(z′, minus(p(x), p(y)), x).
To estimate the CS-dependency graph in the case e = t, one draws an arc

from v → w to s → t whenever Ren
µ(Cap

µ(w)) and s unify.13 If e = i, then one
can modify Cap

µ and Ren
µ by taking into account that instantiated subterms

at active positions of the left-hand side must be in normal form, cf. [4]. Cap
µ
v (w)

is like Cap
µ(w), but the replacement of subterms of w by fresh variables is not

done if the subterms also occur at active positions of v. Similarly, Ren
µ
v (w) is

like Ren
µ(w), but the renaming of variables in w is not done if the variables

also occur active in v. Now we draw an arc from v → w to s → t whenever
Ren

µ
v (Cap

µ
v (w)) and s unify by an mgu θ where vθ and sθ are in normal form.14

It turns out that for the TRS of Ex. 1, the resulting estimated dependency
graph is identical to the “real” graph in Fig. 1.

13 Here (and also later in the instantiation processor of Sect. 4.3), we always assume
that v → w and s → t are renamed apart to be variable-disjoint.

14 These estimations can be improved further by adapting existing refinements to the
context-sensitive case. However, different to the non-context-sensitive case, for e = i

it is not sufficient to check only for unification of Cap
µ
v (w) and s (i.e., renaming

variables with Ren
µ
v is also needed). This can be seen from the non-innermost ter-

minating CS-TRS (R, µ) from [4, Ex. 8] with R = {f(s(x), x) → f(x, x), a → s(a)}

11

4.2 Reduction Pair Processor

There are several processors to simplify DP problems by applying suitable well-
founded orders (e.g., the reduction pair processor [16, 20], the subterm criterion
processor [21], etc.). Due to the absence of collapsing DPs, most of these pro-
cessors are now straightforward to adapt to the context-sensitive setting. In the
following, we present the reduction pair processor with usable rules, because it is
the only processor whose adaption is more challenging. (The adaption is similar
to the one in [4, 19] for the CS-DPs of Def. 2.)

To prove that a DP problem is finite, the reduction pair processor generates
constraints which should be satisfied by a µ-reduction pair (%,≻) [1]. Here, % is
a stable µ-monotonic quasi-order, ≻ is a stable well-founded order, and % and
≻ are compatible (i.e., ≻ ◦ % ⊆ ≻ or % ◦ ≻ ⊆ ≻). Here, µ-monotonicity means
that si % ti implies f(s1, ..., si, ..., sn) % f(s1, ..., ti, ..., sn) whenever i ∈ µ(f).

For a DP problem (P ,R, µ, e), the generated constraints ensure that some
rules in P are strictly decreasing (w.r.t. ≻) and all remaining rules in P and R
are weakly decreasing (w.r.t. %). Requiring ℓ% r for all ℓ→ r ∈ R ensures that
in a chain s1 → t1, s2 → t2, ... with tiσ →֒∗

R,µ si+1σ, we have tiσ % si+1σ for
all i. Hence, if a reduction pair satisfies the constraints, then one can delete the
strictly decreasing pairs from P as they cannot occur infinitely often in chains.

To improve this idea, it is desirable to require only a weak decrease of certain
instead of all rules. In the non-context-sensitive setting, when proving innermost
termination, it is sufficient if just the usable rules are weakly decreasing [5]. The
same is true when proving full termination, provided that % is Cε-compatible,
i.e., c(x, y) % x and c(x, y) % y holds for a fresh function symbol c [16, 21].

For a term containing a symbol f , all f -rules are usable. Moreover, if the
f -rules are usable and f depends on h (denoted f ◮R h) then the h-rules are
usable as well. Here, f ◮R h if f = h or if there is a symbol g with g ◮R h and
g occurs in the right-hand side of an f -rule. The usable rules of a DP problem
are defined to be the usable rules of the right-hand sides of the DPs.

As in [4, 19], Def. 18 adapts15 the concept of usable rules to the CS setting,
resulting in U◮(P ,R, µ). But as shown in [19], for CS rewriting it is also helpful
to consider an alternative definition of “dependence” 3R,µ where f also depends

on symbols from left-hand sides of f -rules. Let Fµ(t) (resp. F�µ(t)) contain all
function symbols occurring at active (resp. inactive) positions of a term t.

Definition 18 (CS-Usable Rules). Let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}.
For any symbols f, h and CS-TRS (R, µ), let f ◮R,µ h if f = h or if there is a
symbol g with g ◮R,µ h and a rule ℓ → r ∈ Rls(f) with g ∈ Fµ(r). Let f 3R,µ h
if f = h or if there is a symbol g with g 3R,µ h and a rule ℓ → r ∈ Rls(f) with

and µ(f) = {1}, µ(s) = ∅. Clearly, Cap
µ

F(s(x),x)(F(x, x)) = F(x, x) does not unify

with F(s(y), y). In contrast, Ren
µ

F(s(x),x)(Cap
µ

F(s(x),x)(F(x, x))) = F(x′, x) unifies with

F(s(y), y). Thus, without using Ren
µ

F(s(x),x) one would conclude that the dependency

graph has no cycle and wrongly prove (innermost) termination.
15 The adaptions can also be extended to refined definitions of usable rules [14, 16].

12

g ∈ F�µ(ℓ) ∪ F(r). We define two forms of usable rules:

U◮(P ,R, µ) =
⋃

s→t∈P,f∈Fµ(t),f◮R,µg Rls(g)

U3(P ,R, µ) =
⋃

s→t∈P,f∈F�µ(s)∪F(t),f3R,µg
Rls(g) ∪

⋃
ℓ→r∈R,f∈F�µ(r),f3R,µg

Rls(g)

Example 19. We continue Ex. 17. U◮(P1,R, µ) = ∅ for P1 = {(2)}, since there
is no defined symbol at an active position in the right-hand side GT(x, y) of (2).
For P2 = {(7)}, U◮(P2,R, µ) are the minus-, if-, and gt-rules, since minus occurs
at an active position in D(minus(x, y), s(y)) and minus depends on if and gt. For
P3 = {(5), (11)-(13), (15)-(17)}, U◮(P3,R, µ) are the gt- and p-rules, as gt and
p are the only defined symbols at active positions of right-hand sides in P3.

In contrast, all U3(Pi,R, µ) contain all rules except the div-rules, as minus
and p are root symbols of hidden terms and minus depends on if and gt.

As shown in [4, 19], the direct adaption of the usable rules to the context-
sensitive case (i.e., U◮(P ,R, µ)) can only be used for conservative CS-TRSs (if
e = i) resp. for strongly conservative CS-TRSs (if e = t).16 Let Vµ(t) (resp.
V�µ(t)) be all variables occurring at active (resp. inactive) positions of a term t.

Definition 20 (Conservative and Strongly Conservative). A CS-TRS
(R, µ) is conservative iff Vµ(r) ⊆ Vµ(ℓ) for all rules ℓ → r ∈ R. It is strongly
conservative iff it is conservative and moreover, Vµ(ℓ)∩V�µ(ℓ) = ∅ and Vµ(r) ∩
V�µ(r) = ∅ for all rules ℓ → r ∈ R.

Now we can define the reduction pair processor.

Theorem 21 (CS-Reduction Pair Processor). Let (%,≻) be a µ-reduction
pair. For a CS-DP Problem d = (P ,R, µ, e), the result of Proc(d) is

• {(P \ ≻,R, µ, e)}, if P ⊆ (≻ ∪ %) and at least one of the following holds:

(i) U◮(P ,R, µ) ⊆ %, P ∪ U◮(P ,R, µ) is strongly conservative, % is Cε-compatible

(ii) U◮(P ,R, µ) ⊆ %, P ∪ U◮(P ,R, µ) is conservative, e = i

(iii) U3(P ,R, µ) ⊆ %, % is Cε-compatible

(iv) R ⊆ %

• {d}, otherwise.

Then Proc is sound.

Example 22. As U◮(P1,R, µ) = ∅ and P1 = {(2)} is even strongly conservative,
by Thm. 21 (i) or (ii) we only have to orient (2), which already works with the
embedding order. So (P1,R, µ, i) is transformed to the empty set of DP problems.

16 The corresponding counterexamples in [4, 19] show that these restrictions are still
necessary for our new notion of CS-DPs. In cases where one cannot use U◮ , one can
also attempt a termination proof where one drops the replacement map, i.e., where
one regards the ordinary TRS R instead of the CS-TRS (R, µ). This may be helpful,
since U3 is not necessarily a subset of the non-context-sensitive usable rules.

13

For P2 = {(7)}, U◮(P2,R, µ) contains the if-rules which are not conservative.
Hence, we use Thm. 21 (iii) with a reduction pair based on the following max-
polynomial interpretation [9]: [D(x, y)] = [minus(x, y)] = [p(x)] = x, [s(x)] =
x+1, [if(x, y, z)] = max(y, z), [0] = [gt(x, y)] = [true] = [false] = 0. Then the DP
(7) is strictly decreasing and all rules from U3(P2,R, µ) are weakly decreasing.
Thus, the processor also transforms (P2,R, µ, i) to the empty set of DP problems.

Finally, we regard P3 = {(5), (11)-(13), (15)-(17)} where we use Thm. 21
(iii) with the interpretation [M(x, y)] = [minus(x, y)] = x + y + 1, [IF(x, y, z)] =
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Then the DPs (16) and (17) are strictly decreasing, whereas all other
DPs from P3 and all rules from U3(P3,R, µ) are weakly decreasing. So the
processor results in the DP problem ({(5), (11)-(13), (15)},R, µ, i).

Next we apply [M(x, y)] = [minus(x, y)] = x + 1, [IF(x, y, z)] = max(y, z + 1),
[if(x, y, z)] = max(y, z), [U(x)] = [p(x)] = [s(x)] = x, [0] = [gt(x, y)] = [true] =
[false] = 0. Now (12) is strictly decreasing and all other remaining DPs and usable
rules are weakly decreasing. Removing (12) yields ({(5), (11), (13), (15)},R, µ, i).

Thm. 21 (iii) and (iv) are a significant improvement over previous reduction
pair processors [1, 2, 4, 19] for the CS-DPs from Def. 2. The reason is that all
previous CS-reduction pair processors require that the context-sensitive subterm
relation is contained in % (i.e., �µ ⊆ %) whenever there are collapsing DPs. This
is a very hard requirement which destroys one of the main advantages of the DP
method (i.e., the possibility to filter away arbitrary arguments).17 With our new
non-collapsing CS-DPs, this requirement is no longer needed.

Example 23. If one requires �µ⊆ %, then the reduction pair processor would fail
for Ex. 1, since then one cannot make the DP (7) strictly decreasing. The reason
is that due to 2 ∈ µ(minus), �µ⊆ % implies minus(x, y) % y. So one cannot “filter
away” the second argument of minus. But then a strict decrease of DP (7) to-
gether with µ-monotonicity of % implies D(s(x), s(s(x))) ≻ D(minus(x, s(x)),
s(s(x))) % D(s(x), s(s(x))), in contradiction to the well-foundedness of ≻.

4.3 Transforming Context-Sensitive Dependency Pairs

To increase the power of the DP method, there exist several processors to trans-
form a DP into new pairs (e.g., narrowing, rewriting, instantiating, or forward
instantiating DPs [16]). We now adapt the instantiation processor to the context-
sensitive setting. Similar adaptions can also be done for the other processors.18

17 Moreover, previous CS-reduction pair processors also require f(x1, . . . , xn) %

f ♯(x1, . . . , xn) for all f ∈ D or f(x1, . . . , xn) ≻ f ♯(x1, . . . , xn) for all f ∈ D. This
requirement also destroys an important feature of the DP method, i.e., that tuple
symbols f ♯ can be treated independently from the original corresponding symbols
f . This feature often simplifies the search for suitable reduction pairs considerably.

18 In the papers on CS-DPs up to now, the only existing adaption of such a processor
was the straightforward adaption of the narrowing processor in the case e = t, cf.
[2]. However, this processor would not help for the TRS of Ex. 1.

14

The idea of this processor is the following. For a DP s → t, we investigate
which DPs v → w can occur before s → t in chains. To this end, we use the same
estimation as for dependency graphs in Sect. 4.1, i.e., we check whether there is
an mgu θ of Ren

µ(Cap
µ(w)) and s if e = t and analogously for e = i.19 Then

we replace s → t by the new DPs sθ → tθ for all such mgu’s θ. This is sound
since in any chain . . . , v → w, s → t, . . . where an instantiation of w reduces to
an instantiation of s, one could use the new DP sθ → tθ instead.

Theorem 24 (CS-Instantiation Processor). Let P ′ = P ⊎ {s → t}. For
d = (P ′,R, µ, e), let the result of Proc(d) be (P ∪ P,R, µ, e) where

– P = {sθ → tθ | θ = mgu(Ren
µ(Cap

µ(w)), s), v → w ∈ P ′}, if e = t

– P = {sθ → tθ | θ = mgu(Ren
µ
v (Cap

µ
v (w)), s), v → w ∈ P ′, sθ, vθ normal}, if e = i

Then Proc is sound.

Example 25. For the TRS of Ex. 1, we still had to solve the problem ({(5), (11),
(13), (15)},R, µ, i), cf. Ex. 22. DP (11) has the variable-renamed left-hand side
IF(true, x′, y′). So the only DP that can occur before (11) in chains is (5) with the
right-hand side IF(gt(y, 0), minus(p(x), p(y)), x). Recall Ren

µ(Cap
µ(IF(gt(y, 0),

minus(p(x), p(y)), x))) = IF(z′, minus(p(x), p(y)), x), cf. Sect. 4.1. So the mgu is
θ = [z′/true, x′/minus(p(x), p(y)), y′/x]. Hence, we can replace (11) by

IF(true, minus(p(x), p(y)), x) → U(minus(p(x), p(y))) (20)

Here the CS variant of the instantiation processor is advantageous over the non-
CS one which uses Cap instead of Cap

µ, where Cap replaces all subterms with
defined root (e.g., minus(p(x), p(y))) by fresh variables. So the non-CS processor
would not help here as it only generates a variable-renamed copy of (11).

When re-computing the dependency graph, there is no arc from (20) to (15)
as µ(U) = ∅. So the DP problem is decomposed into ({(15)},R, µ, i) (which is
easily solved by the reduction pair processor) and ({(5), (20), (13)},R, µ, i).

Now we apply the reduction pair processor again with the following rational
polynomial interpretation [10]: [M(x, y)] = 3

2x + 1
2y, [minus(x, y)] = 2x + 1

2y,
[IF(x, y, z)] = 1

2x + y + 1
2z, [if(x, y, z)] = 1

2x + y + z, [U(x)] = x, [p(x)] =
[gt(x, y)] = 1

2x, [s(x)] = 2x + 2, [true] = 1, [false] = [0] = 0. Then (20) is strictly
decreasing and can be removed, whereas all other remaining DPs and usable rules
are weakly decreasing. A last application of the dependency graph processor then
detects that there is no cycle anymore and thus, it returns the empty set of DP
problems. Hence, termination of the TRS from Ex. 1 is proved. As shown in our
experiments in Sect. 5, this proof can easily be performed automatically.

5 Experiments and Conclusion

We have developed a new notion of context-sensitive dependency pairs which
improves significantly over previous notions. There are two main advantages:

19 The counterexample of [4, Ex. 8] in Footnote 14 again illustrates why Ren
µ
v is also

needed in the innermost case (whereas this is unnecessary for non-CS rewriting).

15

(1) Easier adaption of termination techniques to CS rewriting
Now CS-DPs are very similar to DPs for ordinary rewriting and consequently,
the existing powerful termination techniques from the DP framework can
easily be adapted to context-sensitive rewriting. We have demonstrated this
with some of the most popular DP processors in Sect. 4. Our adaptions
subsume the existing earlier adaptions of the dependency graph [2], of the
usable rules [19], and of the modifications for innermost rewriting [4], which
were previously developed for the notion of CS-DPs from [1].

(2) More powerful termination analysis for CS rewriting
Due to the absence of collapsing CS-DPs, one does not have to impose extra
restrictions anymore when extending the DP processors to CS rewriting, cf.
Ex. 23. Hence, the power of termination proving is increased substantially.

To substantiate Claim (2), we performed extensive experiments. We imple-
mented our new non-collapsing CS-DPs and all DP processors from this paper
in the termination prover AProVE [15].20 In contrast, the prover mu-term [3]
uses the collapsing CS-DPs. Moreover, the processors for these CS-DPs are not
formulated within the DP framework and thus, they cannot be applied in the
same flexible and modular way. While mu-term was the most powerful tool for
termination analysis of context-sensitive rewriting up to now (as demonstrated
by the International Competition of Termination Tools 2007 [26]), due to our
new notion of CS-DPs, now AProVE is substantially more powerful. For instance,
AProVE easily proves termination of our leading example from Ex. 1, whereas
mu-term fails. Moreover, we tested the tools on all 90 context-sensitive TRSs
from the Termination Problem Data Base that was used in the competition. We
used a time limit of 120 seconds for each example. Then mu-term can prove
termination of 68 examples, whereas the new version of AProVE proves termi-
nation of 78 examples (including all 68 TRSs where mu-term is successful).21

Since 4 examples are known to be non-terminating, at most 8 more of the 90
examples could potentially be detected as terminating. So due to the results of
this paper, termination proving of context-sensitive rewriting has now become
very powerful. To experiment with our implementation and for details, we refer
to http://aprove.informatik.rwth-aachen.de/eval/CS-DPs/.

References

1. B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs. In
Proc. FSTTCS’06, LNCS 4337, pages 297-308, 2006.

2. B. Alarcón, R. Gutiérrez, and S. Lucas. Improving the context-sensitive depen-
dency graph. In Proc. PROLE’06, ENTCS 188, pages 91-103, 2007.

3. B. Alarcón, R. Gutiérrez, J. Iborra, S. Lucas. Proving termination of context-
sensitive rewriting with mu-term. Pr. PROLE’06, ENTCS 188, p. 105-115, 2007.

20 We also used the subterm criterion and forward instantiation processors, cf. Sect. 4.
21 If AProVE is restricted to use exactly the same processors as mu-term, then it still

succeeds on 74 examples. So its superiority is indeed mainly due to the new CS-DPs
which enable an easy adaption of the DP framework to the CS setting.

16

4. B. Alarcón and S. Lucas. Termination of innermost context-sensitive rewriting
using dependency pairs. In Proc. FroCoS’07, LNAI 4720, pages 73-87, 2007.

5. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
7. C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-

sensitive. In Proc. CADE’02, LNAI 2392, pages 314-331, 2002.
8. N. Dershowitz. Termination by abstraction. ICLP’04, LNCS 3132, p. 1-18, 2004.
9. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.

Maximal termination. In Proc. RTA’08, LNCS 5117, pages 110-125, 2008.
10. C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp.

Search techniques for rational polynomial orders. In Proc. AISC’08, LNAI 5144,
pages 109-124, 2008.

11. J. Giesl and A. Middeldorp. Innermost termination of context-sensitive rewriting.
In Proc. DLT’02, LNCS 2450, pages 231-244, 2003.

12. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Journal of Functional Programming, 14(4):379-427, 2004.

13. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: combining tech-
niques for automated termination proofs. In LPAR’04, LNAI 3452, 301-331, 2005.

14. J. Giesl, R. Thiemann, P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. FroCoS’05, LNAI 3717, pages 216-231, 2005.

15. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination
proofs in the DP framework. In Proc. IJCAR’06, LNAI 4130, pages 281-286, 2006.

16. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automatic Reasoning, 37(3):155-203, 2006.

17. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-
ing. Appl. Algebra in Engineering, Comm. and Computing, 5:131-151, 1994.

18. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In
Proc. RULE’02, ACM Press, pages 29-41, 2002.

19. R. Gutiérrez, S. Lucas, and X. Urbain. Usable rules for context-sensitive rewrite
systems. In Proc. RTA’08, LNCS 5117, pages 126-141, 2008.

20. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172-199, 2005.

21. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

22. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1):1-61, 1998.

23. S. Lucas. Context-sensitive rewriting strategies. Inf. Comp., 178(1):293-343, 2002.
24. S. Lucas. Polynomials for proving termination of context-sensitive rewriting. In

Proc. FOSSACS’04, LNCS 2987, pages 318-332, 2004.
25. S. Lucas. Proving termination of context-sensitive rewriting by transformation.

Information and Computation, 204(12):1782-1846, 2006.
26. C. Marché and H. Zantema. The termination competition. In Proc. RTA’07, LNCS

4533, pages 303-313, 2007.
27. X. Urbain. Modular & incremental automated termination proofs. Journal of

Automated Reasoning, 32(4):315-355, 2004.

A Proof of Thm. 12 for Innermost Termination

The proof is similar to the proof for full termination.

17

For soundness, M∞,µ now denotes the set of all minimal non-innermost -
terminating terms: t ∈ M∞,µ iff t is not innermost terminating and every active
proper subterm of t is innermost terminating. If R is not innermost terminating,
then there must be terms t, ti, si, t

′
i+1 such that

t
i >ε

−֒→∗
R,µ t1

i ε
−֒→R,µ s1 �µ t′2

i >ε

−֒→∗
R,µ t2

i ε
−֒→R,µ s2 �µ t′3

i >ε

−֒→∗
R,µ t3 . . .

where ti, t′i ∈ M∞,µ for all i ≥ 1 and where all proper subterms of t are innermost
terminating.

The proof that all ti have the hiding property now works as before. To show
that this implies Thm. 12, one additionally has to prove that all terms in the
reduction t♯i →+

DP(R,µ) t′i+1
♯

except t′i+1
♯

are in normal form w.r.t. (R, µ). This
holds as each proper subterm at an active position of a ti is in normal form
w.r.t. (R, µ). Since the replacement map for the tuple symbols is the same as
for the corresponding defined symbols, and since tuple symbols do not occur in
R, we conclude that each t♯i is in normal form. All other terms in the reduction

except t′i+1
♯

have the form U(. . .) where µ(U) = ∅. Thus, they are in normal
form as well.

For completeness, the proof is again analogous to the one for full termination.
One only has to show that the innermost evaluation strategy is respected in the
context-sensitive reduction sequence that is obtained from the infinite innermost
chain v1 → w1, v2 → w2, . . . But this follows from the fact that for an innermost
chain each σ(vi) is in normal form and thus, every proper subterm at an active
position of σ(v♭

i) is in normal form as well. ⊓⊔

B Proof of Thm. 16

Every infinite chain must end in an SCC of the dependency graph. Thus, if there
is an infinite (P ,R, µ, e)-chain, then there is also an infinite (Pi,R, µ, e)-chain
for some SCC Pi. ⊓⊔

C Proof of Thm. 21

We first need some definitions and results. To prove that we only need the us-
able rules instead of all the rules for proving finiteness of a CS-DP problem, we
use a transformation [16, 17, 19, 21, 27] (in the innermost case this is not nec-
essary). Let Cε = {c(x, y) → x, c(x, y) → y} and we extend any replacement
map µ to the fresh symbol c by defining µ(c) = {1, 2}. Then the idea is to
transform an infinite (P ,R, µ)-chain into an infinite (not necessarily minimal)
(P ,U◮(P ,R, µ)∪Cε, µ)-chain if P∪U◮(P ,R, µ) is strongly conservative and into
an infinite (not necessarily minimal) (P ,U3(P ,R, µ) ∪ Cε, µ)-chain otherwise.
Here, in a possibly non-minimal chain s1 → t1, s2 → t2, . . . with tiσ →֒∗ si+1σ,
one does not impose the requirement that all tiσ are terminating. In the follow-
ing, let F be the set of all function symbols and let T (F ,V) denote the set of all
terms over the symbols F and the variables V . The transformation I1 is needed
for the usable rules U3 and I2 is needed for the usable rules U◮.

18

Definition 26 (I1). Let ∆ ⊆ F and let t ∈ T (F ,V). We define I1(t):

• I1(x) = x if x ∈ V
• I1(f(t1, . . . , tn)) = f(I1(t1), . . . , I1(tn)) if f ∈ ∆ or if f(t1, . . . , tn) is non-

terminating w.r.t. (R, µ)
• I1(f(t1, . . . , tn)) = Comp({f(I1(t1), . . . , I1(tn))} ∪ Red1(f(t1, . . . , tn))) if

f /∈ ∆ and f(t1, . . . , tn) is terminating w.r.t. (R, µ)

where Red1(t)={I1(t
′) | t →֒R,µ t′}. Moreover, Comp({t}⊎M)=c(t, Comp(M))

and Comp(∅) = d, where d is a fresh constant. To make Comp well defined, in
“{t} ⊎ M”, we assume that t is smaller than all terms in M w.r.t some total
well-founded order on terms.

Definition 27 (I2). Let ∆ ⊆ F and let t ∈ T (F ,V) be a terminating term
w.r.t. (R, µ). We define I2(t):

• I2(x) = x if x ∈ V
• I2(f(t1, . . . , tn)) = f(t1, . . . , tn) if f ∈ ∆
• I2(f(t1, . . . , tn)) = Comp({f(t1, . . . , tn)} ∪ Red2(f(t1, . . . , tn))) if f /∈ ∆

where Red2(t) = {I2(t
′) | t →֒R,µ t′}. Moreover, ti = I2(ti) if i ∈ µ(f) and

ti = ti otherwise.

Lemma 28 (Properties of I1). Let ∆ ⊆ F such that f ∈ ∆ whenever there
is a rule ℓ → r ∈ R with

• f ∈ F�µ(r) or
• root(ℓ) ∈ ∆ and f ∈ F(r) or
• root(ℓ) ∈ ∆ and f ∈ F�µ(ℓ)

Let t, s ∈ T (F ,V) and for any substitution σ, let I1(σ) be the substitution with
xI1(σ) = I1(xσ).

1. I1 is well defined.
2. If t ∈ T (∆,V), then I1(tσ) = tI1(σ).
3. If t ∈ T (F ,V) and all subterms t′ of t at inactive positions are from T (∆,V),

then I1(tσ) →֒∗
Cε,µ tI1(σ).

4. If t is terminating w.r.t. (R, µ) and t →֒{ℓ→r},µ s, where ℓ → r ∈ R, then

I1(t) →֒+
{ℓ→r}∪Cε,µ

I1(s) if root(ℓ) ∈ ∆ and I1(t) →֒+
Cε,µ I1(s) otherwise.

Proof. (1) According to Def. 26, to obtain an infinite term as result of I1(t),
we would have to perform an infinite number of applications of Red1. This
means that t is terminating and that there exists an infinite sequence of the
form t = u1 � t1 →֒R,µ u2 � t2 →֒R,µ u3 . . . where root(ti) /∈ ∆ and ti is
terminating for all i ≥ 1. W.l.o.g. we can assume that ti 6� ti+1 (otherwise,
we simply consider the modified sequence . . . � ti−1 →֒R,µ ui � ti+1 →֒R,µ

ui+1 � . . .). For i ≥ 1, there is a rule ℓ → r, an active position p of ti, and
a substitution σ such that ti = C[σ(ℓ)]p →֒R,µ C[σ(r)]p = ui+1 � ti+1. We
have the following possibilities:

19

– ti+1 is a subterm of ui+1 above position p, i.e., ti+1 �σ(r). Then ui+1 �µ

ti+1 because p is an active position.
– ti+1 is a subterm of ui+1 neither above nor below p. Then we already

have ti � ti+1 in contradiction to the prerequisite.
– ti+1 is a subterm of ui+1 strictly below position p, i.e., σ(r) � ti+1.

Note that there is no variable x in r such that σ(x) � ti+1, because that
would already imply ti� ti+1 in contradiction to the prerequisite. Hence,
there is a subterm s with s /∈ V and r � s such that σ(s) = ti+1. Since
root(s) /∈ ∆ and F�µ(r) ⊆ ∆, we have r �µ s and hence, ui+1 �µ ti+1.

The resulting sequence is: t = u1 �µ t1 →֒R,µ u2 �µ t2 →֒R,µ u3 . . ., contra-
dicting the termination of t.

(2) We use induction on t. If t is a variable then I1(tσ) = t I1(σ). If t =
f(t1, . . . , tn), since f ∈ ∆ we have I1(tσ) = I1(f(t1σ, . . . , tnσ)) = f(I1(t1σ),
. . . , I1(tnσ)). By the induction hypothesis we get f(I1(t1σ), . . . , I1(tnσ)) =
f(t1 I1(σ), . . . , tn I1(σ)) = t I1(σ).

(3) We use induction on t. If t is a variable then I1(tσ) = t I1(σ). Now let
t = f(t1, . . . , tn). By the prerequisite, if i /∈ µ(f) then ti only contains
∆-symbols and hence, I1(tiσ) = tiI1(σ) by (2). If i ∈ µ(f) then by the
induction hypothesis, I1(tiσ) →֒∗

Cε,µ tiI1(σ).
– If f ∈ ∆ or t is non-terminating, then I1(tσ) = I1(f(t1σ, . . . , tnσ)) =

f(I1(t1σ), . . . , I1(tnσ)) →֒∗
Cε,µ f(t1 I1(σ), . . . , tn I1(σ)) = t I1(σ).

– If f /∈ ∆ and t is terminating, then I1(tσ) →֒+
Cε,µ f(I1(t1σ), . . . , I1(tnσ)).

Hence, I1(tσ) →֒∗
Cε,µ t I1(σ) as before.

(4) We use induction on the position p of the redex in the reduction t →֒{ℓ→r},µ s.

First let root(t) ∈ ∆ and p = ε. So we have t = ℓσ
ε

→R rσ = s for some
substitution σ. Moreover, r ∈ T (∆,V) and all subterms ℓ′ of ℓ at inactive
positions are from T (∆,V) by the conditions on ∆. By (3) and (2) we get
I1(ℓσ) →֒∗

Cε,µ ℓ I1(σ) →֒{ℓ→r},µ r I1(σ) = I1(rσ).
Now let root(t) ∈ ∆ and p 6= ε. Hence, t = f(t1, . . . , ti, . . . , tn), s =
f(t1, . . . , si, . . . , tn), i ∈ µ(f), and ti →֒{ℓ→r},µ si. The induction hypoth-

esis implies I1(ti) →֒+
{ℓ→r}∪Cε,µ

I1(si) and hence, I1(t) →֒+
{ℓ→r}∪Cε,µ

I1(s).

Finally, we consider the case root(t) /∈ ∆. Due to termination of t, we
have I1(t) = Comp({. . .} ∪ Red1(t)). Since I1(s) ∈ Red1(t), we obtain
Comp({. . .} ∪ Red1(t)) →֒+

Cε,µ I1(s). ⊓⊔

Lemma 29 (Properties of I2). Let ∆ ⊆ F such that f ∈ ∆ whenever there
is a rule ℓ → r ∈ R with root(ℓ) ∈ ∆ and f ∈ Fµ(r). Let t, s, tσ ∈ T (F ,V) be
terminating w.r.t. (R, µ), and let σ be a terminating substitution w.r.t. (R, µ)
(i.e., σ(x) is terminating for all x ∈ V). Let [t, σ] be the term that results from t
by replacing occurrences of x ∈ V(t) at position p in t by I2(σ(x)) if p ∈ Posµ(t)
and by σ(x) if p 6∈ Posµ(t).

1. I2 is well defined.
2. If t ∈ T (F ,V) and for all non-variable subterms t′ at active positions of t

we have root(t′) ∈ ∆, then I2(tσ) = [t, σ].
3. I2(tσ) →֒∗

Cε,µ [t, σ].

20

4. If t →֒{ℓ→r},µ s then I2(t) →֒+
{ℓ→r}∪Cε,µ

I2(s) under the condition that when-

ever root(ℓ) ∈ ∆ then ℓ → r ∈ R is strongly conservative (i.e., Vµ(r) ⊆
Vµ(ℓ), Vµ(ℓ) ∩ V�µ(ℓ) = ∅, and Vµ(r) ∩ V�µ(r) = ∅).

Proof. (1) According to Def. 27, to obtain an infinite term as result of I2(t), we
would have to perform an infinite number of applications of Red2. Since t is
terminating, all subterms at active positions are terminating as well. Hence,
this is not possible.

(2) We use induction on t. If t is a variable then I2(tσ) = [t, σ]. Now let t =
f(t1, . . . , tn). Since f ∈ ∆ we have I2(tσ) = I2(f(t1σ, . . . , tnσ)) = f(t1σ, . . . ,
tnσ). For i ∈ µ(f), we have tiσ = I2(tiσ) = [ti, σ] by the induction hypoth-
esis. For i /∈ µ(f), we have tiσ = tiσ. This implies f(t1σ, . . . , tnσ) = [t, σ].

(3) We again use induction on t. If t is a variable then again I2(tσ) = [t, σ].
Now let t = f(t1, . . . , tn). If f ∈ ∆, then I2(tσ) = I2(f(t1σ, . . . , tnσ)) =
f(t1σ, . . . , tnσ) and if f /∈ ∆, then I2(tσ) →֒+

Cε,µ f(t1σ, . . . , tnσ). For i ∈

µ(f), we have tiσ = I2(tiσ) →֒∗
Cε,µ [ti, σ] by the induction hypothesis. For

i /∈ µ(f), we have tiσ = tiσ. Together, this implies f(t1σ, . . . , tnσ) →֒∗
Cε,µ

[t, σ].
(4) We use induction on the position p of the redex in the reduction t →֒{ℓ→r},µ s.

First let root(t) ∈ ∆ and p = ε. So we have t = ℓσ
ε

→R rσ = s for
some substitution σ. Moreover, for all subterms r′ at active positions of
r, root(r′) ∈ ∆ by the condition on ∆. For any term t, we define the sub-
stitution σt as σt(x) = I2(σ(x)) if x ∈ Vµ(t) and σt(x) = σ(x) otherwise.
As Vµ(ℓ) ∩ V�µ(ℓ) = ∅ and Vµ(r) ∩ V�µ(r) = ∅, we have [ℓ, σ] = ℓσℓ and
[r, σ] = rσr . Moreover, for all variables x we have xσℓ →֒∗

Cε,µ xσr . To see
this, note that by strong conservativity, σℓ and σr only differ on variables
x ∈ Vµ(ℓ) \ Vµ(r). Here, we have xσℓ = I2(xσ) →֒∗

Cε,µ [x, σ] = xσ = xσr by
(3). Hence,

I2(t) = I2(ℓσ)
→֒∗

Cε,µ [ℓ, σ] by (3)

= ℓσℓ

→֒∗
Cε,µ ℓσr

→{ℓ→r} rσr

= [r, σ]
= I2(rσ) by (2)

Now let root(t) ∈ ∆ and p 6= ε. Hence, t = f(t1, . . . , ti, . . . , tn), s =
f(t1, . . . , si, . . . , tn), i ∈ µ(f), and ti →֒{ℓ→r},µ si. The induction hypoth-

esis implies I2(ti) →֒+
{ℓ→r}∪Cε,µ I2(si) and hence, I2(t) →֒+

{ℓ→r}∪Cε,µ I2(s).

Finally, we consider the case root(t) /∈ ∆. We have I2(t) = Comp({. . .} ∪
Red2(t)). Since I2(s) ∈ Red2(t), we obtain Comp({. . .} ∪ Red2(t)) →֒+

Cε,µ

I2(s). ⊓⊔

Now we prove Thm. 21. First, we consider the case e = t. If (P ,R, µ, t) is
not finite, then there is an infinite (P ,R, µ)-chain s1 → t1, s2 → t2, . . . with
tiσ →֒∗

R,µ si+1σ for all i. Moreover, all tiσ are terminating.

21

If P∪U◮(P ,R, µ) is strongly conservative, we apply I2 and let ∆ consist of all
“usable” symbols, i.e., all symbols f where Rls(f) ⊆ U◮(P ,R, µ). Note that the
application of I2 is always possible since all terms tiσ and si+1σ are terminating
due to the minimality of the chain. If P∪U◮(P ,R, µ) is not strongly conservative,
we apply I1 and let ∆ consist of all “usable” symbols again, i.e., all symbols
f where Rls(f) ⊆ U3(P ,R, µ). Using Lemma 29 (4) (resp. Lemma 28 (4)),
we obtain I2(tiσ) →֒∗

U◮(P,R,µ)∪Cε,µ I2(si+1σ) (resp. I1(tiσ) →֒∗
U3(P,R,µ)∪Cε,µ

I1(si+1σ)).
Moreover, by the definition of U◮(P ,R, µ) (resp. U3(P ,R, µ)), for all non-

variable subterms t′i at active positions of ti, we have root(t′i) ∈ ∆ (resp. all ti are
terms over the signature ∆). So by Lemma 29 (2) and (3) we get tiσti

= [ti, σ] =
I2(tiσ) →֒∗

U◮(P,R,µ)∪Cε
I2(si+1σ) →֒∗

Cε,µ [si+1, σ] = si+1σsi+1
→֒∗

Cε,µ si+1σti+1

similar to the proof of Lemma 29 (3), where we now use the fact that P is
strongly conservative. Correspondingly, by Lemma 28 (2) and (3) we obtain
ti I1(σ) = I1(tiσ) →֒∗

U3(P,R,µ)∪Cε
I1(si+1σ) →֒∗

Cε,µ si+1 I1(σ).

Thus, we have

– siσti
≻ tiσti

(resp. si I1(σ) ≻ ti I1(σ)) for all i where si → ti ∈ P≻

– siσti
% tiσti

(resp. si I1(σ) % ti I1(σ)) for all other i
– tiσti

% si+1σti+1
(resp. ti I1(σ) % si+1 I1(σ)) for all i

Since ≻ is well founded and compatible with %, dependency pairs from P≻

cannot occur infinitely often in this chain. Thus, there is an n ≥ 0 such that
all pairs si → ti with i ≥ n are from P \ P≻. Therefore, if we omit the first
n − 1 pairs from the original chain, we obtain an infinite (P \ P≻,R, µ)-chain
sn → tn, sn+1 → tn+1, . . . Hence, (P \ P≻,R, µ, t) is not finite either.

Now, we consider the case e = i. Case (iii) of the theorem (i.e., the case
where we use U3(P ,R, µ)) is proved as for full termination. The only difference
is that we now define I2(t) for innermost terminating terms t and let Red2(t) =
{I2(t

′) | t i→֒R,µ t′}. Then Lemma 29 can be proved as before for all innermost
terminating terms t, s, tσ.

Thus, we now consider Case (ii) where U◮(P ,R, µ) is conservative, but not
necessarily strongly conservative. We show the following claim (similar to [16,
Lemma 23]). Here, U◮(t, µ) =

⋃
f∈Fµ(t),f◮R,µg Rls(g).

Let t, v be terms with tσ i→֒R,µ v and let σ(x) be normal for
all x ∈ Vµ(t). Then tσ i→֒U◮(t,µ) v. Moreover, there is a term u
and a substitution σ′ such that v = uσ′, σ′(x) is normal for all
x ∈ Vµ(u), and U◮(u, µ) ⊆ U◮(t, µ).

(21)

First note that (21) is enough to prove the theorem in Case (ii). The reason is
that by induction, (21) can be used to show that tσ i→֒∗

R,µ v implies tσ i→֒∗
U◮(t,µ),µ

v. Hence, if (P ,R, µ, i) is not finite, then there is an infinite innermost (P ,R, µ)-
chain s1 → t1, s2 → t2, . . . with tiσ

i→֒∗
R,µ si+1σ for all i and all siσ are in normal

form. With the claim above and conservativity of the DP si → ti, this means
tiσ

i→֒∗
U◮(ti,µ),µ si+1σ and thus, tiσ

i→֒∗
U◮(P,R,µ),µ si+1σ. Then one continues as

in the proof for full termination.

22

Now we prove Claim (21) by induction on the position of the reduction
tσ i→֒R,µ v. This position must be a non-variable position of t because σ(x) is
normal for all x ∈ Vµ(t). So t has the form f(t1, . . . , tn).

If the reduction is at the root position, then we have tσ = ℓσ′ i→֒R rσ′ = v
where ℓ → r ∈ U◮(t, µ). Note that σ′(x) is normal for all x ∈ Vµ(ℓ) due to the
innermost strategy and thus, this also holds for all x ∈ Vµ(r) since the rule ℓ → r
is conservative. By defining u = r, we obtain v = uσ′ and U◮(u, µ) ⊆ U◮(t, µ).

Otherwise, tσ = f(t1σ, . . . , tiσ, . . . , tnσ) i→֒R,µ f(t1σ, . . . , vi, . . . , tnσ) = v
where i∈µ(f) and tiσ

i→֒R,µ vi. The induction hypothesis implies tiσ
i→֒U◮(ti,µ),µ

vi and thus, tσ i→֒U◮(ti,µ),µ v. As U◮(ti, µ)⊆U◮(t, µ), we also have tσ i→֒U◮(t,µ),µ

v.
By the induction hypothesis there is some term ui and some substitution σi

with vi = uiσi and σi(x) is normal for all x ∈ Vµ(ui). Let u′
i result from ui by

replacing its variables x by corresponding fresh variables x′. We define σ′(x′) =
σi(x) for all these fresh variables and σ′(x) = σ(x) for all x ∈ V(t). Then for
u = f(t1, . . . , u

′
i, . . . , tn) we obtain v = uσ′ and σ′(x) is normal for all x ∈ Vµ(u).

Obviously, we have U◮(u′
i, µ) = U◮(ui, µ) and the induction hypothesis implies

U◮(ui, µ) ⊆ U◮(ti, µ) ⊆ U◮(t, µ). Since U◮(u, µ) differs from U◮(t, µ) only by
containing U◮(u′

i, µ) instead of U◮(ti, µ), we also obtain U◮(u, µ) ⊆ U◮(t, µ).
⊓⊔

D Proof of Thm. 24

We only prove the case e = t. For e = i the proof is similar.
Let . . . , v → w, s → t, v′ → w′, . . . be an (P ′,R, µ)-chain. By Def. 11 there

exist a substitution σ such that wσ →֒∗
R,µ sσ and tσ →֒∗

R,µ v′σ and tσ is termi-
nating. It is easy to show that then sσ = Ren

µ(Cap
µ(w))σδ for some substi-

tution δ whose domain only contains fresh variables introduced by Ren
µ resp.

Cap
µ. Thus we can assume w.l.o.g. that σ is equal to δ on all these fresh variables.

Hence, we have sσ = Ren
µ(Cap

µ(w))σ, which implies that there is an mgu θ
of s and Ren

µ(Cap
µ(w)) with σ = θτ for some substitution τ . This shows that

sθ → tθ ∈ P and thus we obtain wσ →֒∗
R,µ sσ = sθτ and tθτ = tσ →֒∗

R,µ v′σ.
Note that tθτ = tσ is terminating. Thus, . . . , v → w, sθ → tθ, v′ → w′, . . . is a
(P ∪ P ,R, µ)-chain. In this way, we can replace every occurrence of s → t in a
chain by a pair from P except for the first pair. However, if s → t, v1 → w1, v2 →
w2, . . . is an infinite chain, then so is v1 → w1, v2 → w2, ⊓⊔

23

24

Aachener Informatik-Berichte

This list contains all technical reports published during the past five
years. A complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the
above URL or send your request to: Informatik-Bibliothek, RWTH
Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-
aachen.de

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

25

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlussbericht des GI-Arbeitskreises “Fea-
tures”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

26

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

27

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Günec, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-
sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

28

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination
2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler
2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations
2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message
Passing Programs

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on
Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-
endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-
Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable
Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-
straction for stochastic systems by Erlang’s method of stages

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

29

