
- 1 - 

University College London 

 
 

Dynamic Optimisation of Technical Trading Rules Using 
Genetic Programming 

 

MSc Intelligent Systems Project 2003/2004 
 

 

Tom Graham 

Project Supervisor: Chris Clack 

 

 

 
This report is submitted as part requirement for the MSc Intelligent systems 

degree in the Department of Computer Science at University College London. 

It is substantially the result of my own work except where explicitly indicated in 

the text. This report may be freely copied and distributed provided the source 

is explicitly acknowledged. 

 

 



- 2 - 

Abstract 
 
This Report presents the design of a GP-based system for learning technical 

trading rules for financial markets. These rules are generated from 

combinations of commonly used technical indicators. The design includes a 

novel dynamically adaptive learning algorithm for continuously evaluating and 

updating the GP candidate solution population according to new market data. 

The trading performance of the system was tested in a series of experiments 

using historical price data from individual stocks and from the Dow Jones 

Industrial Average. Results show that the GP-generated trading rules were 

unable to consistently produce excess trading profits, relative to a simple buy-

and-hold strategy, using either the standard ‘static’ GP learning algorithm or 

the new dynamic method. 
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1. Introduction 
 

Technical analysis is a technique widely used by investment managers and 

financial market traders for predicting future movements of asset prices. 

There is already a large body of work which investigates the use of Genetic 

Programming (GP) methods to learn profitable trading rules from 

combinations of technical indicator functions. Two main points emerge from 

the available literature. Firstly, the usefulness of technical trading rules 

generated in this way has not been proven: The ability of these rules to 

produce a trading profit that is significantly in excess of a relevant benchmark 

has not been demonstrated conclusively when used in simulated trading with 

out-of-sample data. Secondly, those authors who do claim significant excess 

trading returns note that this effect disappears as the input data gets further 

away in time from the data used to train the GP system. This suggests that 

market conditions change over time in such a way as to reduce the predictive 

power of GP-generated trading rules. 

 

This work investigates the ability of GP-generated technical trading rules to 

produce profitable returns from simulated trading for individual stocks and for 

the Dow-Jones Industrial Average. The design of the GP-based system for 

rule optimisation and trading takes into account the implementation details 

from previous similar experiments, as described in the available literature, 

together with the author’s own adaptations. Details of the system design are 

given later in this report together with a discussion of design choices and of 

issues arising from the implementation. 

 

In initial experiments the GP system was trained using a fixed sequence of 

historical asset price data and the evolved trading rules were evaluated in 

simulated trading on subsequent ranges of data. Particular focus is given to 

out-of-sample trading performance of the GP-generated technical trading 

rules relative to simple ‘naïve’ trading rules. Various methods for limiting the 

effect of over-fitting of the GP-evolved rules to the training data were tested, 

with the aim of maximising out-of-sample performance. This work includes an 
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investigation of the functional behaviour of the trading rules resulting from 

training of the GP system on particular sequences of price data. 

 

Further experiments were carried out with a system that uses periodic 

retraining to generate a sequence of optimised trading rules, and then with a 

system which implements a novel dynamic learning GP algorithm designed to 

continuously train and adapt to new data. Both of these methods were used to 

address the issue of the degradation of performance of individual optimised 

trading rules over time. One aim of these experiments was to investigate the 

nature of the changes in market behaviour which affect trading rule 

performance: The question of whether these changes are incremental, or 

whether they occur in discrete steps, was addressed by analysis of the 

changes in the structure and fitness of evolved trading rules over time. The 

dynamic GP algorithm was specifically designed to overcome problems 

relating to population convergence which have been seen to impair the 

performance of evolutionary techniques in applications which require 

dynamically adaptive learning.  

 

This report begins with an introduction to the theory and practice of technical 

analysis and a description of evolutionary computation techniques, with a 

particular focus on Genetic Programming. This is followed by a review of 

previous work on the application of Genetic Programming to the field of asset 

price forecasting and trading, and an analysis of techniques for implementing 

dynamically adaptive learning systems. Details of the design and 

implementation of the GP system are included next, together with a 

discussion of various design choices and also a description of the 

dynamically-adaptive GP algorithm. The next section gives a statement of the 

goals of the experimental work and describes the experimental procedures for 

achieving these, followed by the presentation and analysis of experimental 

results. Concluding remarks and suggestions for further work make up the 

final section. 
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2. Background 
 

2.1 Technical Analysis 
 

Technical Analysis uses the historical price data of traded assets in order to 

identify patterns or trends in the price movement. These are used to predict 

probable future trends, and thus indicate whether to buy or sell the asset. 

 

Particular classes of pattern are identified using Technical Indicators (TI). 

These indicators can be qualitative - looking for recognisable shapes in a plot 

of time series data - or quantitative. Many TI are derived from moving average 

calculations, or from sequences of local minima and maxima. A simple 

example of the latter is the Price Channel Breakout (PCB) indicator. In this 

case the current price is compared to the local minimum and maximum values 

within a given time widow. If the price goes outside this range the trend is 

predicted to carry on in the same direction. 

 

2.1.1 Theoretical basis for technical analysis 
This approach is based on the belief that asset price time series exhibit 

certain regularities. These regularities are explained in terms of psychological 

factors affecting the group behaviour of investors in the market. An example 

of this behaviour is used to justify the use of the PCB technical indicator: If the 

price of an asset has dropped from a previous peak, investors will think they 

have lost out by failing to sell at this peak value. When the price next reaches 

the same value they will be inclined to sell, inducing another price drop. This 

will happen repeatedly until the ‘resistance line’ is broken at which point the 

price is expected to continue on an upward trend. 

 

2.1.2 Technical Analysis and the Efficient Market Theory 
This supposition is contradicted by the Efficient Market Hypothesis (EMH), 

which states that all information about an asset’s value - including historical 

price information - is reflected in the current price (see Malkial, 1999). 

According to this theory, any regularity in price movement will be detected by 
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‘the market’. This information will affect trading in such a way as to destroy the 

regularity. Market prices follow a random walk and so are essentially 

unpredictable in nature. 

 

A weaker formulation of the EMH states that, although all markets may not be 

perfectly efficient at all times, inefficiencies can not be exploited to make a 

trading profit - any profits made will be negated by transaction costs. 

Because Technical analysis depends on inefficiency in the market, any 

evidence that this technique works can be seen as evidence against the EMH. 

 

The debate about the validity of the EMH and the effectiveness of Technical 

Analysis has not been resolved at present; the work of Alexander (1961) and 

Fama (1970) finds no evidence for the effectiveness of TI in making profitable 

trading decisions, concluding that Technical Analysis is a pointless practice. 

However, there is some work that contradicts these findings (Levich & 

Thomas, 1993), and many investment professionals trading in stocks, 

commodities and currencies use Technical Analysis methods. 

 

2.2 Evolutionary Computing 
 

The field of Evolutionary Computation is concerned with using computer 

programs to emulate the mechanisms of natural selection for the purpose of 

optimisation, adaptation or search. All evolutionary algorithms involve the 

representation of set of possible solutions to a given problem as a population 

of individuals. The performance, or fitness, of each candidate solution is 

tested and the best individuals are permitted to survive and produce ‘children’ 

based upon themselves. This is analogous to Darwinian selection, which is 

seen to create complex and highly adapted organisms - optimised solutions to 

the problem of survival and reproduction in the natural environment. Particular 

evolutionary algorithms differ in the way candidate solutions are represented 

and how they are reproduced. 
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One advantage of Evolutionary Computing techniques is that they can be 

used on non-numerical problem domains. Many other optimisation methods 

such as hill climbing algorithms and artificial neural networks rely on a 

numerically differentiable solution space. Evolutionary algorithms are an 

efficient way of searching for optimum solutions due to the effect of ‘parallel 

search’: Many candidate solutions are evaluated simultaneously, and high 

fitness individuals are recombined to create new solutions, so a wide region of 

the search space can be explored efficiently. 

 
2.2.1 Genetic Algorithms (GA) 
A widely used Evolutionary Computing technique is the Genetic Algorithm 

(GA), originally developed by Holland (1975). A Genetic Algorithm operates 

on a population of individuals represented by character strings. These are 

evaluated according to a fitness function appropriate to the problem in hand. 

Pairs of individuals, selected at random but biased according to fitness, are 

recombined to create members of a new population. Starting from an initial 

population of randomly generated candidate solutions, successive 

generations are produced until some termination criterion is reached: This 

may be the convergence of the average and maximum fitness values, or 

simply a limit on the number of generations. 

 

String representation 
Genetic Algorithms represent candidate solutions as strings - finite sequences 

of characters from a given alphabet (typically binary or integer numeric). The 

method of mapping a candidate solution to a GA string depends on the 

problem domain: The string may represent, for example, an ordered 

sequence of operations, or a set of independent parameters. However, a 

particular location in the string sequence always represents the same part or 

parameter of the solution. 

 
Crossover and mutation operations 

The string representation used in GA is analogous to the structure of 

biological genetic material - DNA. In the same way, the method of creating 

new GA strings mimics the recombination mechanisms of DNA. 
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Crossover is the operation of exchanging information, or ‘genetic material’, 

between two individuals. It works by swapping the values at corresponding 

locations between pairs of strings. There are various methods for 

implementing crossover suited to different applications. The simplest method 

is single point crossover: a point is selected at random to divide each string 

into two sections, one of which is swapped over. Alternatively, a greater 

number of crossover points may be used so that more than one contiguous 

sub-sequence is exchanged between ‘parent’ strings. Another method, 

uniform crossover, acts on individual locations - swapping each according to a 

fixed probability. 

 

The mechanism of crossover is believed to be the source of GA’s power as an 

optimising search method. This assumes that an optimal solution will be 

composed of individually optimal ‘genes’, where a gene can be thought of as 

a set of one or more position-value pairs from an individual string. A useful 

gene set will be passed on to an offspring only if all of its members remain 

together after crossover. The larger the set, the less likely it is to survive 

reproduction intact. The action of fitness selective bias in reproduction means 

that beneficial genes will tend to propagate through the population over time. 

Because of this, the diversity of different gene sets decreases and population 

members become more similar - on average - over successive generations. 

As the population converges in this way, it becomes more likely that the 

information being exchanged in crossover will be the same in both individuals. 

This increases the probability that genes will be reproduced intact; crossover 

any part of two identical strings and they will still be the same. The result is 

that the GA algorithm is able to combine progressively larger sets of optimal 

genes with successive generations - this is the Building Block Hypothesis of 

Genetic Algorithms (Goldberg, 1989).  

 

Mutation is simply the action of randomly changing the value of individual 

locations or sub-strings within a GA sequence. Although crossover is the main 

factor in the evolutionary behaviour in GA, mutation is important because it is 

the only way of introducing new genetic material into the overall population. 
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Fitness based selection 

As stated previously, individuals are selected for reproduction randomly, but 

with the probability of selection weighted according the measured fitness of 

the candidate solution. There are three commonly used methods to implement 

fitness based selection: 

 

Fitness Proportional Selection (FPS) 

The sum total of the fitness values of all population members is calculated 

and a random number is selected between zero and this value. Running 

through all population members, the fitness values are summed a second 

time. When the sum exceeds the randomly generated number, the current 

population member is returned. If the total fitness sum is thought of as the 

circumference of a circle, then each individual is represented by a sector 

of the circle equal to its fitness value. If a pointer is placed at a random 

position on the wheel, the probability of it falling within any individual 

sector is proportional to the fitness of that individual. This is why FPS is 

also known as ‘Roulette Wheel Selection’. A disadvantage of this method 

is that a fitness proportional selection weighting may not always be 

suitable. It may be desirable to disproportionately bias selection in favour 

of individuals whose fitness is only marginally greater than average, or to 

have only a small bias towards individuals who have very high relative 

measured fitness. Another problem with this method is that it does not 

work with negative fitness values. 

 

Rank Selection  

This method works like FPS, only the fraction of the ‘roulette wheel’ 

assigned to each individual is dependent on rank position rather than 

absolute fitness. The degree of bias can be controlled by using the rank 

position value raised by a chosen polynomial factor. This is a 

comparatively slow method because the population must be sorted 

according to fitness. 
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Tournament Selection 

A group of Individuals are selected from the population at random. The 

fittest member of this group is returned. The degree of selection bias is 

related to the size of the group or tournament - the greater the size, the 

greater the relative weight of fitter individuals: With a tournament size of 

two, the fittest member of the population is twice as likely to be selected as 

the median. This method is the most computationally efficient as only the 

individuals selected for the tournament need to be inspected. 

 

 
2.2.2 Genetic Programming (GP) 

GP is an extension of GA, originated by Koza (1992). GP uses a similar 

evolutionary procedure for search and optimisation based on selective 

recombination from a population of candidate solutions. It differs from GA in 

the representation of the candidate solutions.  

 
Tree structure representation 
The tree structure is a hierarchical graphical model consisting of a set of 

interconnected nodes (see figure 1). Each node can have several connections 

to nodes at a lower level, but only a single ‘parent’ connection.  

 

The name Genetic Programming refers to the fact that the tree structure is 

usually used to represent a function in the style of a computer program syntax 

tree. The branch nodes represent functions - they take values passed by their 

immediate descendents as input arguments and return an output to their 

parent. The terminal ‘leaf’ nodes represent input arguments or variables. In 

this way the branching hierarchy denotes the nesting, or evaluation ordering 

of functions. The tree structure can be used in other ways according to how a 

particular problem domain is best represented. For example Li & Tsang 

(1999) use the GP structure as a decision tree. 

 

In contrast to Genetic Algorithms, the tree representation of GP is able to 

generate candidate solutions of variable size and complexity - crossover and 

mutation operations can alter the size of individual trees. Another important 
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difference is that, unlike GA, there is no specific mapping of individual parts of 

the tree to a part of a candidate solution. The GP function parse tree returns a 

single output value from a given set of input variables. 

 
Operators and terminals 
The GP tree structure is constructed from two sets of node types - functions 

and terminals.  The branch nodes - those which have at least one connection 

to a child node - are taken from the function set. This set typically consists of 

simple logical (AND, OR, etc), conditional (IF-THEN-ELSE) arithmetic (+, -, *, 

/), or comparison (<, >, =) operators. The choice of function set is a design 

decision which depends on the problem domain and on the data types that 

GP function should take as input and return as output. The terminal set 

consists of all the data input variables which are to be evaluated by the GP 

function. 

 

Function and terminal sets must be chosen such that they are capable of 

expressing a solution to the problem. This means that the designer should 

have knowledge about the problem domain - including some idea of the likely 

form of solutions. 

 
GP Crossover and mutation 
Genetic Programming implements crossover and mutation operations 

equivalent to those used in GA. To carry out crossover on a pair of GP trees, 

a single node is selected at random from each - these form the crossover 

points. The sub-trees originating at these nodes are swapped over, creating 

two new GP trees (shown in figure 2). If the two sub-trees contain a different 

number of nodes then the resulting offspring trees will be of different sizes to 

the parents. Crossover is easy to implement in code by swapping over 

pointers between parent and child nodes at the selected points. 

 

Mutation works in a similar way - a new randomly generated sub-tree is 

inserted at a randomly selected node and the displaced section is discarded. 

Because crossover can exchange sub-trees between different locations, 

unlike in GA, there is less need for mutation in creating and maintaining 
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diversity in the population of candidate solutions. Therefore the mutation 

operator is sometimes left out of GP algorithms if the population is made large 

enough to ensure sufficient initial diversity of available building blocks 

(Mitchell, 1998). 

 
Figure 1: GP parse-tree representation of two functions taking four separate 

input parameters 

. 

 
Figure 2: Result GP of crossover. 
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2.3 Application of GP to technical analysis 
 

Research indicates that the application of individual TI to asset price 

forecasting does not result in significant improvements in investment returns 

(see Fama, 1970; Dempster and Jones, 2000). It is common practice for 

traders in financial markets to combine individual TI into trading rules. The 

problem of learning profitable trading rules can be seen as a search for 

optimal combinations from a finite set of base mathematical functions. This 

problem domain would seem to be well suited to the GP representation of 

candidate solutions. There already exists a significant body of work which 

addresses the application of GP in this way (see following section). 

 
2.3.1 Literature review 
The following summary and analysis of relevant literature serves two 

purposes: Firstly, the implementation details of previous GP trading systems 

are assessed and compared. This information is used to assist in the design 

of the GP system used in the current project. Secondly, the results reported 

for each method are analysed in order to ascertain whether there is valid 

evidence of profitable trading performance for any of the systems. The last 

paper included in the literature review does not relate specifically to the 

application of evolutionary computing methods to market forecasting or 

trading - rather it is concerned with the general effectiveness of evolutionary 

algorithms in dynamic optimisation applications. 

 

Using Genetic Algorithms to find technical trading rules, 
Franklin Allen and Risto Karjalainen (1999) 
The authors used genetic programming to learn technical trading rules for the 

S&P 500 index. The GP system creates trading rules using a set of simple 

input functions (minimum, maximum and average) computed from the 

historical index price data. The functions take a numerical value input which 

specifies the time window over which to evaluate the function. They output a 
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numerical value. The terminal node set consists of these functions plus the 

current price value and some numerical constants. 

 

The function set for this GP system uses a combination of logical operators 

(AND, OR, etc), arithmetic operators (+, -, *, /), comparison operators (<, >, =) 

and numerical and Boolean constants. Because the non-terminal nodes 

operate on a mixture of Boolean and numerical data types the crossover and 

mutation functions have to implement a method of type checking to ensure 

that sub-trees of nodes are only substituted with those which return the same 

data type. 

 

The report includes particularly detailed statistical analysis of the results. The 

authors conclude with the following assertion: 

 

 “After transaction costs, the [GP-evolved] do not earn consistent 

excess returns over a simple buy and hold strategy”. 

 
Optimization of Technical Rules on the Basis of Intelligent Hybrid 
Systems, 

A. Kapishnikov (2002) 
The GP system described here uses a set of existing commonly used 

mathematical Technical Indicator functions - including Moving Average 

Convergence-Divergence (MACD) and K-Stochastic - for the terminal node 

inputs. Boolean function nodes (AND, OR, XOR etc) are used to combine the 

input TI values into a single output function. The method of constructing 

trading rules from combinations of known TI is an alternative to that used by 

Allen and Karjalainen which evolves rules from a set of simple mathematical 

functions. 

 

One unique aspect of this work is that technical indicators are combined with 

artificial neural network inputs in the terminal set for the GP trading system. 

Apart from the use of neural networks there are two other noteworthy features 

of the system design and experimental methodology: 
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The logical operators in the function set use three-way Boolean values, BUY/ 

SELL/HOLD, to match the output of individual TI, instead of TRUE/FALSE, 

which is a neat way of avoiding having to evolve separate GP rules for buy 

and sell indicators. 

 

During training, transaction costs (the costs incurred from executing 

transactions in simulated trading) are set to a higher rate to minimize the 

influence of noise in the data and hence avoid over-fitting. In this way 

evolutionary selection may be biased towards rules which correctly predict 

large price movements but trade at a lower frequency and hence incur lower 

overall transaction costs.  

 

Results showed that trading rules based on optimised combinations of 

Technical Indictors outperformed individual TI but did not significantly 

outperform benchmark buy-and-hold strategies on out of sample data when 

taking transaction costs into account. The performance of evolved trading 

rules on out-of-sample data was found to be higher the closer in time it was to 

the training data. This leads the author to suggest that implementation of 

adaptive learning may improve the results of the system. 

 

Improving Technical Analysis Predictions: An Application of Genetic 
Programming, 
Jin Li and Edward Tsang (1999) 

This paper describes another system which evolves Genetic Programming 

based trading rules using technical analysis. Trading rules are created by 

combining a set of existing TI rules in the manner of Kapishnikov, rather than 

building combinations of simple functions with variable parameters as in Allen 

& Karjalainen. 

 

The unique aspect of this work is in the GP representation of the trading rules. 

In all other cases seen, the GP tree structure represents a LISP-style function, 

where terminal nodes represent input variables and non-terminal nodes are 

operators (logical or arithmetic) which take values passed by their child nodes 

as inputs. Here, the GP structure represents a decision tree, where (non-
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terminal) branch nodes evaluate a particular condition (e.g. “Is today’s price 

higher than the 10-day maximum”) and ‘leaf nodes’ are simply BUY, SELL or 

HOLD decisions. This results in trading rules in the form of IF(…) THEN(…) 

ELSE(…) statements. 

 

This method is less flexible than the LISP style tree as it would not support the 

function set described in Allen & Karjalainen which uses a mixed set of 

numerical and logical operators and inputs. The decision tree method has 

exactly the same expressive power as a system using only logical operators 

with logical-valued TI inputs. Given that they have the same set of TI available 

as input you can represent the same conditional technical trading rule by 

either method using a similar number of nodes. This means that the two 

methods are functionally equivalent. 

 

The authors report that the evolved trading rules can generate large profits. 

These claims may not be valid, because the simulated trading does not 

include any transaction cost factor which would be expected to reduce trading 

profits in real-life situations. Also the performance of the trading rules is not 

compared to that of a buy-and-hold strategy over the same time period. 

Therefore the results are not conclusive. 

 

GP-evolved Technical Trading Rules Can Outperform Buy and Hold, 
Lee A. Becker and Mukund Seshadri (2003) 

This paper presents experiments using GP-evolved technical trading rules, 

based on known TI functions, for forecasting the S&P 500 index. The one 

interesting methodology change from previous work is in the use of a fitness 

function which penalises complex trading rules. The purpose of this was to 

avoid over-fitting of the evolved trading rules in order to improve out-of-

sample trading returns. 

 

The authors report that without the complexity penalising factor the maximum-

fitness evolved trading rules produced negative excess returns, relative to a 

baseline buy-and-hold strategy, in the out-of-sample evaluation period. When 

using the C-P factor there was a reduction in the evolved fitness values and 
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an increase in the average return for the out-of-sample period. This average 

value exceeds the buy-and-hold return for the same period - hence the title of 

the paper. However, the published data shows that the margin of difference is 

well within the Standard Deviation of returns over the range of GP runs, so the 

reported positive excess return does not appear to be statistically significant. 

 
A Real-Time Adaptive Trading System Using Genetic Programming, 

M. A. H. Dempster and C.M. Jones (2001) 
In this paper the authors assert two important points regarding Technical 

Analysis based trading systems. The first is that the use of individual technical 

indicators is not effective for making profitable trading decisions. Therefore it 

is common practice to use technical trading rules which consist of 

combinations of a range of indicators. The second point is that in the real 

world, particular trading rules are only used for a finite period of time: as 

market conditions change a trading rule which was previously found to be 

profitable will become loss making. Traders must therefore find new trading 

rules over time in order to continue to make excess returns on the market. 

 

In the experiment described, the GP evolved strategies were prompted to re-

optimise when trading losses were encountered. It is not entirely clear how 

the re-optimisation takes place but it seems to be by retraining the GP from 

scratch with the latest quarter’s market data. The results show that static 

evolved strategies perform worse the further in time the system runs from the 

period of the training data; this suggests re-optimisation would be beneficial. 

However, in further experiments where periods of loss trigger re-optimisation, 

overall performance actually deteriorates. The explanation offered for this is 

that in retraining the strategies are over-fitted to the latest period of data only 

and is in effect “chasing losses”.  

 

The authors’ assertion that statically evolved trading rules are “significantly 

profitable” is somewhat dubious as they assume that any positive return from 

trading two currencies on the Foreign Exchange (FX) market is significant. 

They do not account for the fact that long term trends in exchange rates may 
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make a simple buy-and-hold strategy profitable over the time period from 

which they take both their training and validation data. 

 

The paper is particularly relevant to this project because the system 

implements GP based adaptive selection of technical trading rules, although 

the system retrains from scratch rather than implementing a true dynamic (i.e. 

continuously adaptive) optimisation method. The poor experimental 

performance of this method suggests that this is a suitable area for further 

investigation. 

 

An appendix gives mathematical descriptions of a number of Technical 

Indicators, including Simple Moving Average Crossover (SMAC), Adaptive 

Moving Averages (AMA), Price Channel Breakout (PCB), K-Stochastic, 

Relative Strength Index (RSI), and the Commodity Channel Index. Several of 

the TI functions used in the system program for this project are based on 

these definitions. 

 
Diversity Does Not Necessarily Imply Adaptability, 
Marcus Andrews and Andrew Tuson (2003) 

Evolutionary techniques are by nature well suited to dynamic optimisation 

problems as they mimic natural processes which are inherently dynamic. A 

diverse population is desirable for dynamic optimisation problems as it allows 

continuous exploration of a search space. 

 

This paper compares the performance of Evolutionary Algorithms (in this case 

a GA) to a standard hill-climbing algorithm on a simple test dynamic problem. 

The results show that the performance of the GA is generally superior. The 

authors also investigated the effect of population size on performance of the 

GA. They state that population size has “a complex effect on performance 

when adapting to changing problems”. 

 

2.3.2 Summary 
None of the work presented in the preceding section gives a clear 

demonstration of the ability of GP evolved technical trading rules to 
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consistently generate significant positive excess returns in realistically 

simulated trading. Several of the authors do make such claims but careful 

analysis of the published data shows that their results do not back these up 

conclusively. The report which contains the most rigorous statistical analysis 

of experimental results (Allen and Karjalainen, 1999) reports no significant 

excess returns. 

 

2.4 Dynamic learning techniques 
 

The work of Dempster and Jones (2000) and Kapishnikov (2002), described 

above, indicates that technical trading rules which are optimal (in the sense of 

generating trading profits) in one particular period will subsequently lose 

efficacy over time. These results suggest that it may be beneficial to 

implement some form of dynamic learning in the system which generates 

trading rules. Such a system should be able to adapt the rules it produces 

over time in order to maintain optimal trading performance. 

 
2.4.1 Dynamic application of evolutionary computing 

Previous work (e.g. Andrews and Tuson, 2003) suggests that learning 

systems based on evolutionary computing methods can perform poorly on 

dynamic optimisation problems. The term ‘dynamic optimisation’ refers to a 

problem where the optimum solution is not always the same, or where the 

problem domain evolves in some way over time. The poor performance of 

evolutionary systems in these situations is attributed to population 

convergence: because high fitness members are favoured in reproductive 

selection, they and their offspring tend to dominate the population over 

successive generations of breeding. This results in a population which is 

eventually filled with copies of the fittest members - leading to a lack of 

genetic diversity. The result of this is that when there is a change in context or 

environment it is difficult or impossible for new solutions to be created from 

the available genetic stock. 
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Andrews and Tuson suggest that greater population diversity does not 

necessarily lead to improved adaptability in evolutionary systems. However, 

they equate diversity solely with population size, which is incorrect. It is 

reasonable to say that a large random population will initially be more diverse 

than a small one as it contains a greater number of candidate solutions. 

However, experiments with static population evolution show that convergence 

occurs no matter what the initial population size. This is a natural result of 

selection pressure which is a fundamental part of any GA or GP algorithm. A 

large population of identical (or nearly identical) genotypes is no more diverse 

than a small one. 

 

Population convergence is perhaps less of an issue for GP than GA because 

in the former it is possible to create distinct new structures from two identical 

parents under crossover (by moving sub-trees between different locations), 

whereas in the latter this is not the case. Convergence can still be a problem 

in that it may cause individual operator or terminal node types to be eliminated 

entirely from the population, in which case the mutation operation becomes 

important. 

 

Another potential advantage of GP over GA in dynamic applications is the 

possible existence of ‘introns’ in GP population members. The term ‘intron’ 

comes from biology and it refers to the existence of non-functional genetic 

code in chromosomes. It has been observed that a significant proportion of 

the genetic material in, for example, the human genome is never expressed - 

i.e. particular genes are not used biologically. Introns are also observed in 

evolved GP populations in the form of sub-trees of operators and terminals 

that have no effect on the evaluation behaviour of individual parse-tree 

functions. The proportion of intron material in GP trees is often observed to 

increase with successive evolved generations, a phenomenon known as ‘GP 

bloat’. The explanation for this is that a good candidate solution which 

contains a high proportion of introns and a low proportion of active genetic 

material is less likely to lose beneficial active material under crossover, and 

hence is more likely to produce high fitness children. The effective fitness of 

individuals thus depends not only on how it is scored by the fitness function, 
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but also on its ability to pass on useful characteristics to subsequent 

generations. Introns benefit reproductive fitness and therefore tend to 

propagate through the population over time even though, by definition, they 

have no direct effect on the evaluated fitness of individual candidate solutions. 

The presence of redundant material in a GP population may improve its ability 

to adapt dynamically, because it may include building blocks of operators and 

terminals which will be beneficial to candidate solutions at some future time. 

 

2.4.2 Other methods 
A popular method for dynamically adaptive learning is Swarming (Eberhart & 

Shi, 2001). This is a population-based method using a fixed-sized set of 

candidate solutions. In contrast to evolutionary computing, individual 

population members move through the solution space over time. Population 

dynamics are governed by a simple set of rules in such a way that the 

population is ‘attracted’ to the fittest member at any given time (hence the 

name). If the maximum fitness region of the search space moves over time 

the motion of individuals around the previous centre should allow this 

movement to be tracked. Convergence is avoided by the use of a rule which 

prevents individuals from moving within a certain distance of each other. 

Unfortunately it is not practical to implement this method using the GP parse-

tree representation of candidate solutions as there is no clear concept of 

relative position or movement in solution space for such individuals. 

 

Another candidate method for dynamic learning is that known as Expert 

Tracking, described in Herbster and Warmuth (1998), which is a dynamic 

adaptation of the fixed Expert Share algorithm. This algorithm uses a 

predefined fixed population of candidate solutions or ‘experts’ and learning 

occurs in a series of trials. The system predicts the outcome of each trial 

according to a weighted sum of the predictions of each individual expert. At 

each step the weight assigned to the experts is updated according to their 

accuracy in predicting the previous trial. Individuals that consistently give 

accurate predictions receive exponentially increasing weighting over time. The 

problem with this method is that poorly performing experts can attain 

arbitrarily small weightings which will not be recovered at some future time 
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when they become the best predicting experts: this can be seen as another 

form of convergence. The Expert Tracking algorithm alters the weight-

updating formula to place a lower limit on the relative weighting of individual 

experts so that small weights can be recovered. This framework could be 

used in the setting of predicting future values of asset prices, however the fact 

that it uses a fixed set of experts - new candidate solutions cannot be 

generated - makes it less than ideal for this particular application. 
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3 System Design and Implementation 
 

3.1 Problem Definition 
 

The material goal of this project is to produce a system for the GP-based 

optimisation of technical trading rules using historical asset price training data. 

This system must be able to perform the standard ‘static’ method for evolving 

optimised candidate solutions, as described in section 2.2 and in Koza (1992), 

and also implement an appropriate dynamically adaptive GP learning 

algorithm. 

 

In order both to train the GP system and to evaluate individual trading rules it 

is necessary to implement a method of simulated asset trading which 

accurately represents how the rules would perform in real life. This will involve 

firstly calculating TI values from the input market data, then evaluating the 

trading rules based on these values, and then enacting the trading 

recommendations and recording resulting profits for each individual candidate 

solution. 

 

The design for the system should take into account all useful information 

gained from previous work conducted in this field. The works covered in 

section 2.3.1 describe various measures to reduce the effect of over-fitting of 

the evolved rules to the training data, or to otherwise improve the trading 

performance of the GP-generated rules. In order to develop a system which 

achieves the best possible performance it is desirable to combine all of the 

most promising of these techniques into the design.  

 

The system should be as adaptable as possible, in terms of the control 

parameters for the GP algorithm and in other aspects of the design, in order 

to allow maximum optimisation of system performance. 
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3.2 Development Tools 
 

The system program was initially written in the Java programming language 

using the Sun Java compiler and virtual machine. The Java language was 

chosen because the design required an Object Oriented Programming 

language. Also, Java allows easy handling of pointers and automated 

garbage collection and there are features particular to this language which 

made certain parts of the design easier to implement. Later the program code 

was ported to J# (essentially the same language with different class libraries) 

in order to run on the Microsoft .NET platform and this was found to deliver a 

significant increase in speed performance. 

 

3.3 Implementation details 
 

3.3.1 GP tree structure representation of trading rules 
The GP-based technical trading systems describe in section 2.3 can be 

divided into two categories, according to the way trading rules are constructed 

within the GP tree structure. 

 

The first group, exemplified by Allen and Karjalainen (1999) and Jonsson et al 

(1997) uses just simple min/max and moving average functions, the current 

price value and numerical constants as the input set. These are combined 

using a large operator set including arithmetic, conditional and logical 

functions. The second group uses a set of known TI functions, such as PCB 

and Relative Strength Index (RSI), which are combined using Boolean 

operators. 

 

The advantage of the first method - letting strategies evolve from simple 

functions - is that, in a certain sense, it allows a greater degree of optimisation 

of the trading rules. The use of arithmetic and comparison operators allows 

rules to be created that could not be expressed using only Boolean functions. 

Also, having the min/max and average functions take a numerical input that 

defines the evaluation time window creates an extra level of optimisation. 
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Practitioners of technical analysis do adapt moving average based trading 

rules in this way to model supposed variations in the period of oscillating price 

trends.  

 

Other TI which have more complex mathematical formulations, such as the 

RSI, also have parameters which, technically, could be optimised within the 

GP in this way. It would be impractical to implement this however, as these TI 

are functions of their own previous values: therefore allowing variable 

parameters in these cases would necessitate the recalculated of an entire 

sequence of TI values for every occurrence of that TI in every GP-tree in the 

population at each time step. 

 

To illustrate this point, several TI use Exponential Moving Average (EMA) 

calculations of the form: 

 

)1()1()()( !"!+"= TEMAkTpricekTEMA  

 

where T is the current time, k is a parameter between 0 and 1 and EMA(T - 1) 

is the previous EMA value. 

 

The disadvantage with the method of Allen and Karjalainen is that it is limited 

- in another sense - by the simple input function set that it uses. Although 

many commonly used TI rules are derived from moving average calculations 

or local minima and maxima of past prices - and could therefore be generated 

from this simple function set - there are others which cannot be expressed in 

this way. The RSI indicator, for example, cannot be expressed as a 

combination of simple moving average and max/min functions. 

 

Another problem is that it can be hard to evaluate how rules evolved in this 

way actually function; large, complex GP parse-tree functions can be hard to 

comprehend. This is a significant factor in the choice of implementation 

method as one of the aims of the experimental work was to investigate how 
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optimal trading rules function and how rules trained on different time-

sequences of price data differ in their functional performance. 

 

Taking these factors into account, it was decided to implement the second 

method - using a set of commonly used existing TI and combining them to 

form ‘meta-indicator’ rules. Another reason for this choice was that the 

alternate method was implemented by Allen and Karjalainen and, in the most 

rigorous experimental analysis of all the works described in section 2.3, it was 

found not to be effective. 

  
3.3.2 Technical Indicator set 

I have chosen the following set of Technical Indicators, based on the available 

financial literature, including Brock et al (1992), and on the TI sets used in 

previous experiments (e.g. Kapishnikov, 2002).  

 

Simple Moving Average 

If the current price crosses above the average price of the previous n 

days, return a BUY indicator; if the price crosses below return SELL. 

 

Price Channel Breakout (PCB)  

If the current price exceeds the maximum from the previous n days, BUY; 

if it goes below the minimum from this period, SELL; otherwise HOLD. 

 

Simple Moving Average Crossover (SMAC) 

If a short term (5-day) moving average value crosses above a long term 

(50-day) moving average then BUY; if the short term average crosses 

below then SELL. 

 

Moving Average Convergence Divergence (MACD) 

The MACD is the difference between a short term and long term price 

EMA values (as described in section 3.3.1). If the MACD crosses above its 

own EMA value, return a BUY indicator; SELL if it crosses below. 

 

Relative Strength Index (RSI) 
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K-Stochastic 

For a mathematical definition of these two indicators, see the appendix of 

Dempster and Jones (2001). 

 

In addition to these indicators which are defined in the financial literature, the 

TI set also includes a 1-Day Price Change Indicator which gives a BUY signal 

if the price has risen from the previous day’s value and SELL if it has dropped. 

This is not a ‘legitimate’ TI as such: However, one of the naïve trading 

strategies that is being used to benchmark the performance of the GP-

evolved trading rules simply predicts that the direction of price movement for 

the current day will be the same as on the previous day (This will be termed 

the ‘Repeat Rule’). Therefore it seemed sensible to make the same rule 

available to the GP system. 

 

 

3.3.3 Implementation of the GP structure for candidate solutions 
The tree structure of candidate solutions is represented in the program as a 

set of instantiations of a node object class. There is a separate class for each 

function node type and for the terminal node, all derived from a base node 

class. The tree nodes are doubly linked; each has a pointer to its ‘parent’ 

node and the non-terminal function nodes have pointers to their ‘children’. The 

function nodes are evaluated recursively so that the output value from the 

parse-tree is computed simply by evaluating the root node.  

 
Terminal node set 
The input node set consists of the following Technical Indicators; each can 

return the values 1, 0 and -1, representing BUY, HOLD and SELL 

recommendations respectively 

 

1. 5-Day Simple Moving Average   

2. 50-Day Simple Moving Average 

3. 5-Day PCB 

4. 50-Day PCB 

5. SMAC 
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6. MACD 

7. RSI 

8. K-Stochastic 

9. 1-Day Price Change Direction 

 

Optionally, the terminal node set also includes three constant BUY, HOLD 

and SELL indicators. 

 

In the implementation of the program, the price statistics on which the 

technical indicators are based (e.g. moving averages and various function 

values used in the evaluation of the MACD, K-Stochastic and RSI indicators) 

are calculated and stored in memory along with the price data itself. In this 

way the computation of the actual TI values at each time step only requires 

evaluation of simple conditional statements (e.g. IF [variable x(t) < variable 

y(t)] THEN Return 1). Furthermore, the representation of the terminal nodes 

within the GP tree structures uses pointers to the actual TI values so that 

these only have to calculated once at each time step, rather than every time 

an individual terminal node is evaluated. These measures allow fast and 

efficient evaluation of the trading rule output recommendations - the most time 

consuming part of the GP algorithm. 

 
Function set 
The function set consists of logical AND, OR and NOT plus the conditional IF 

operator. These are all modified to operate on the ternary BUY/SELL/HOLD 

logical values, as suggested by Kapashnikov (2002). 

 
AND 

Input 1 Input 2 Output 

B B B 

B H H 

B S H 

H B H 

H H H 

H S H 
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S B H 

S H H 

S S S 

 
OR 

Input 1 Input 2 Output 

B B B 

B H B 

B S H 

H B B 

H H H 

H S S 

S B H 

S H S 

S S S 

 
NOT 

Input Output 

B S 

H H 

S B 

 

Table 1. Operator set truth tables 

 

 
3.3.4 Trading Strategy 

The GP evolved trading rules will output a trading recommendation (BUY 

SELL or HOLD), at each time step, according to the current TI values and the 

structure of the individual rules. A trading strategy controls how these 

recommendations are acted upon in simulated trading of an asset. 

 

The system can trade in either long or short positions. Trading long means a 

quantity of the asset is bought and held. A long position is exited when the 

total amount of the asset held is sold back into the market. Taking a short 

position involves selling a quantity of an asset that is not actually held by the 

seller. Short selling is permitted in some markets. The details of how short 

IF 

Input (IF) Output 

B Input(THEN) 

H H 

S Input(ELSE) 
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trades are executed are complicated but essentially what happens is that a 

quantity of the asset is borrowed from a lending institution and immediately 

sold on the open market. Cash is provided to the lender as collateral, equal to 

the value of the borrowed assets plus an amount to cover possible trading 

losses (this collateral is equivalent to the investment capital used to buy long 

positions in the context of the trading strategy). A short trade is exited when 

an equal quantity of the asset is bought from the market to cover the original 

loan. There is often a limit on how long a short position can be held. The 

system is also allowed to take an out-of-market position, meaning no amount 

of the asset is currently held or sold short. 

 

The system enters fixed-sized trades according to the trading rule 

recommendations. There is a time limit imposed on the holding of both long 

and short positions. Also there is a loss-trigger for exiting positions, such that 

if the value of an asset held in a long trade drops by a certain fraction from the 

original trade then the asset is sold. Alternately, a short position is exited if the 

value of the asset increases by the same fraction. In this way, once a position 

is entered there are three ways in which it may be exited, either an opposing 

trade recommendation is received, or the time limit is exceeded, or the loss 

trigger is activated. When a long position is held, a BUY or HOLD 

recommendation will cause no change. A SELL recommendation will exit the 

long position and immediately enter a short trade. Therefore, an out-of-market 

position will only occur when the time limit or loss trigger causes a long or 

short position to be exited, and will be held as long as the trade rule returns a 

HOLD recommendation. 

 

This trading strategy is designed to reflect that which may be used by a 

Hedge Fund. Traditional pooled investment vehicles such as mutual funds are 

prohibited by regulations from trading in short positions. Hedge funds are 

legally structured in such a way as to avoid these and other regulatory 

constraints (see Connor and Woo, 2003). A trading strategy that can trade in 

short positions is able to make a profit from periods of negative market price 

change, whereas the best a long-only strategy can achieve during a 

downward trend is to stay out of the market.  
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A realistic representation of the trading strategies that are used in real life is 

necessary to validate any experimental results. There are some details of the 

implementation which only approximate certain aspects of a market trading 

system - for example in the way transaction costs are represented, and the 

fact that stocks can only be traded in discrete quantities is ignored. These 

measures are justified because the aim of the experiments is to compare the 

performance of GP-evolved trading rules relative to simple trading strategies, 

rather than to measure the absolute returns generated by these rules. 

     

3.3.5 Imposition of transaction costs 

Transaction costs are incurred whenever stocks are traded on an open 

market and these will affect the total profit or loss achieved by any trading 

system. The two main sources of transaction cost are transaction charges - 

the costs incurred when a trade is executed (e.g. brokerage fees) - and 

slippage - the loss resulting from differences between the price when the 

decision is made to enter a trade and the actual transaction price. This system 

models transaction costs using a simple percentage deduction from the value 

of each trade entered into. 

 

3.3.6 Fitness Measurement 
The fitness of individual technical trading rules is measured directly from the 

returns generated by simulated trading using those rules. The same fitness 

function calculation is used both to score candidate solutions for evolutionary 

optimisation, and for the out-of-sample evaluation of their performance. 

 

Trading profit or loss is calculated daily according to the size and direction 

(long or short) of the current market position and the daily percentage price 

change in the asset value. Trades are always entered into in a fixed unit-size 

amount, minus transaction cost. Although returns are allowed to accumulate, 

or compound, for as long as a position is held, daily returns are relative to the 

initial investment amount. To illustrate this, suppose a long position is bought 

in a stock that appreciates at a constant 10% per day. If the transaction cost is 

10%, deducted from the initial investment capital, the return for the first day 
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will be -1% (-10% deduction plus 10% growth on the remaining 90%) then 

+9.9% then +10.89% and so on… 

 

The fitness function value is the daily return rate averaged over the evaluation 

period of simulated trading. 

 
3.3.7 Dynamic Evolution Implementation Method 

An effective dynamically-adaptive learning system based on evolutionary 

techniques depends on the preservation of diversity in the available candidate 

solutions in order to prevent population convergence. One way to achieve this 

aim is to employ active measures for maintaining genetic diversity in the 

population of candidate solutions. In order to do this, it is first necessary to 

have a way to measure diversity. 

 

Measurement of population diversity 

In this GP system, population diversity is indicated by the difference between 

the maximum and average fitness from the population. This is only an indirect 

measure of genetic diversity but it is easy to implement and relatively fast to 

compute. Convergence of the average fitness value to the maximum is used 

as an indicator to take action to increase diversity. 

 

Control of population diversity 
In the program there are two controls available to maintain or increase 

diversity over time. The first is the mutation rate - the frequency with which 

population members undergo mutation on their GP and GA structures: 

Mutation directly introduces more new genetic material into the population. 

 

The second method is to control the selection pressure - the bias in selection 

of members for reproduction towards fitter members. Reducing this bias will 

reduce the rate of convergence within the population. This can be 

implemented using either the rank selection or tournament selection methods, 

as described previously. Both selection methods have been implemented in 

my system and can be selected by the user.  
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By adjusting the parameters controlling selection bias the system attempts 

limit convergence so that new trading rules can be generated. This is similar 

to the way in which the fixed-share weight update used by Herbster and 

Warmuth (1998) adapts the best expert tracking algorithm to limit the growth 

and decay of prediction weighting from a group of experts. The purpose of this 

work is also to allow dynamic adaptation to a changing problem context. 

 

Dynamic evolution of the population 
The standard (i.e. non-dynamic) method for evolving optimum solutions using 

GA or GP, which shall be referred to as static evolution, involves using a fixed 

set of training data to evaluate the performance of successive generations of 

candidate solution populations. The entire population is replaced at each 

generation by new members produced by fitness based selection, crossover 

and mutation from members of the old generation (except where elitism is 

used to carry over a proportion of the fittest members unchanged into the new 

generation). 

 

In the case of market trading system the training data consists of asset price 

data covering a finite period of time. The fitness of candidate solutions is 

measured by running simulated trading over the period of the data and 

calculating the profit or return produced at the end of the run. All the work 

described in the literature implements this method in some way. 

 

In order to create a dynamically adaptive system a new algorithm has been 

devised which measures the fitness of candidate solutions and selectively 

reproduces them continuously as successive day’s price data are entered into 

the system.  

 

It should be made clear that simulated trading is run for all the individual 

population members, using the latest available data, for the purpose of 

evaluating and evolving new trading rules. At the same time, simulated trading 

is run for the system as a whole, acting on the trading recommendations of 

the current designated fittest population member.  
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The algorithm works as follows: 

Initialisation 
1. Create an initial population of randomly generated GP trading rules. 

Optionally, run static evolution on this population, with a range of 

training data preceding the dataset used to run the main dynamic 

algorithm, in order to ‘kick start’ the development of optimal trading 

rules. Limit the number of generations to prevent convergence. 

At each time step 
2. Record the current price data; calculate TI values and record the profit 

earned for that day by each rule in the population. Evaluate each GP 

trading rule according to the TI values and update their market 

positions according to the BUY/SELL/HOLD recommendations and the 

trading strategy. 

3. Evaluate the trading decision and record the daily profit for the system 

according to the current fittest trading rule. 

At every ith time step (where i is an adaptable parameter) 
4. Evaluate the fitness of all individuals over the preceding j days (j, 

the fitness range is also a variable). Select a small proportion of 

members to reproduce according to fitness. 

5. Copy the selected parents, subject the children to crossover and 

mutation then retrospectively run simulated trading with them over 

the previous trading range - this is done so that the new individuals 

can be assigned a fitness value as soon as they have been created. 

6. Temporarily remove the elite fittest members from the population. 

From the rest, randomly select a number, equal to the number of 

children, to replace. Selection in this case is biased according to 

inverse fitness - i.e. unprofitable trading rules are dropped from the 

population. Replace the elite members and new members into the 

population. 

7. Record the average and maximum fitness values. Adjust the 

mutation rate and selection bias accordingly. Update the current 

designated fittest population member. 
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Implementation of elitism for dynamic population optimisation 
Using the methods described above the aim is to maintain enough diversity to 

allow the system to adapt to changes in the environment - in this case 

changes in market conditions. In doing this the optimisation ability of the 

system may be impaired. An effective evolutionary learning system has to find 

the best trade-off of ‘exploration versus exploitation’. Maintaining high 

diversity helps exploration - searching through the solution space for local 

maxima - at the expense of exploitation - optimising and using high fitness 

individuals to make trading decisions for the system. This makes the use of 

elitism especially important to ensure that a proportion of the fittest individuals 

are preserved at all times. 

 

Use of mutation 
Individuals in the population can undergo mutation, with a given probability, 

only at the point when they are created. It is not desirable to subject 

individuals to mutation once they are running trading evaluations on the data. 

This is because the fitness of individuals is based on trading performance 

measured over the preceding range of days within the fitness evaluation 

period. If an individual has undergone a mutation within this period the fitness 

results are invalidated. This may lead to the system making trading decisions, 

or creating new candidate solutions, based on individuals which performed 

well in the past but which have recently been ‘disabled’ by a harmful mutation. 

 

3.4 System Testing 

 

In order to ensure that the program is error free the following testing schedule 

was used. Every program class was tested independently to verify that it 

functioned as specified. The system program includes functions to output all 

data from the calculation of TI values and population fitness statistics for 

testing and evaluation purposes. Additionally the system can output text files 

which record the GP tree structure, fitness, trading frequency and TI weighting 

for individual candidate solutions. 
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Test Schedule 
• Verify correct calculation of TI from input data - For simple TI the 

correct values can be calculated for comparison to the program output. 

More complex TI functions require published data for verification of 

output values. 

 

• Test data output to text files - The program records and outputs both 

the statistics used to compute the Technical Indicator values (e.g. 

moving average values) and the actual TI output (1, 0 or -1). 

 

• Correct initialisation of GP trees - Are the randomly generated trees 

structurally correct (and genuinely random)? Does each function node 

have the correct number of inputs? There is a facility in the program to 

output the structure of individual GP trees for examination. 

 

• Random selection of crossover and mutation points - Ensure the 

method devised for selecting nodes at random from a pointer-linked 

tree structure works correctly. 

 

• Crossover and mutation functions - Are the node sub-trees exchanged 

correctly? 

 

• Correct evaluation of GP parse-tree from TI inputs - Given a set of 

input values, does the parse-tree return the correct output value 

according to the structure of logical operators? 

 

• Trading mechanism and calculation of daily profit - Ensure that the 

system correctly implements the output recommendations according to 

the trading strategy. 

 

• Fitness calculation - Does this function correctly? 

 

• Selection and basic evolutionary performance - Verify that the average 

and maximum fitness values increase over time (see figure 3). 
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Figure 3: Demonstrating the evolutionary performance of the GP system 
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4 Experimental Design 
 

The purpose of the experiments was to test the ability the GP system detailed 

in the previous chapter to generate profitable technical trading rules, and to 

compare the effectiveness of the static and dynamic learning methods.  

 

4.1 Experimental Input Data 
 

The experiments used stock market price data for simulated evaluation of 

trading strategies, both for the fitness evaluation of trading rules in the 

evolutionary stage of experiments, and for the out-of-sample testing of those 

rules.  

 

All the stock market historical price data used for these experiments was 

obtained from the Yahoo Finance website. This is a respected source of 

accurate financial data used by academics and professionals. Yahoo provides 

data on all individual company stocks traded on major exchanges. Opening, 

closing, range high and low prices and trading volumes are given for each 

day. The trading system uses only the adjusted closing price data; this is the 

daily closing price adjusted for stock splits and dividend payments which 

otherwise distort the price data. 

 

Experiments were conducted using share price data for Delta Airlines 

and International Business Machines (IBM) stocks traded on the New York 

Stock Exchange. In addition to these individual stocks, the system was tested 

using data from the Dow Jones Industrial Average (DJIA). Data for all stocks 

covers the same twenty four year period, from February 1980 to July 2004, 

covering just over 6000 trading days. The price values were plotted from a 

spreadsheet and visually inspected for anomalous values before being used 

as input for the GP system. 
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4.2 Experiment Aims and Objectives 
 

The primary objective of the experimental work was to demonstrate the 

effectiveness (or otherwise) of this system and of the general concept - GP 

optimisation of TI based trading rules - in making profitable forecasts of asset 

price movements. In order to meet this objective it was necessary to address 

the following key issues: 

 

High fitness values attained by evolved trading rules on the in-sample training 

data do not by themselves constitute proof of the predictive ability these rules. 

Several of the authors mentioned in the literature review apparently fail to 

appreciate this fact. The fitness data on its own only serves to demonstrate 

that the evolutionary algorithm is functioning in terms of creating individuals 

with increasingly high measured fitness. 

 

It is necessary to demonstrate that the GP algorithm is learning rules which 

have some predictive power beyond the training period, as opposed to just 

learning the behaviour of the training data. With most machine learning 

techniques there is an issue of over-fitting learned rules to a particular set of 

training data. The ability of learned rules to generalise to unseen data is 

dependent on avoiding over-fitting, particularly when the training data is noisy. 

Market price data is inherently noisy - statistical tests show a high degree of 

randomness in stock price time-series data. According to the Efficient Market 

Hypothesis the movement of price values follows a random walk; therefore 

the data contains only noise and no information. 

 

Positive trading returns (making a profit) also do not constitute proof of the 

predictive ability or practical usefulness of evolved trading rules. The 

experiments must demonstrate a significant (consistent) positive excess 

return relative to an appropriate performance baseline. In these experiments 

the baseline is the trading return resulting from the application of a naïve 

trading strategy over the same market period. The two naïve strategies used 

are buy-and-hold (for a single asset this means holding a fixed long position 
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for the duration of the period; the profit or loss depends solely on the 

difference in price at the beginning and end of the period) and the repeat rule 

(predict that the market will move in the same direction today as it did 

yesterday and trade accordingly). The comparison of trading performance 

relative to the two naïve trading strategies is important because: 

 

a) Even rules which trade completely randomly will be expected to make 

a profit, on average in a market with a long term upward trend (if 

trading long positions only). 

b)  A high fitness evolved trading rule may be operating in exactly the 

same way as the simple rule, at least most of the time. It can be hard to 

analyse the behaviour of GP-tree trading rules; the phenomena of bloat 

in GP means that a very large complex tree may be functionally 

identical to a naive trading rule. Such a rule may be very profitable 

some of the time but this hardly justifies the use of GP. It does not 

demonstrate the usefulness of GP for this application, nor does it 

demonstrate the predictive power of complex TI rules. 

 

4.3 Procedure 

 
The experimental work was separated into three stages: The first set of 

experiments uses static evolution to optimise trading rules with fixed 

sequences of training and evaluation data. This stage was used to test the 

effect of varying the control parameters of the GP algorithm in order to 

optimise the performance of the system. In addition the following experimental 

procedures were carried out: 

 
Analysing the functional behaviour of GP trading rules 

In order to analyse the performance of the GP system it is useful to be able to 

determine how individual evolved trading rules function, in terms of how the 

various TI inputs affect the output BUY/SELL/HOLD recommendation. It can 

be hard to assess the behaviour of individual trading rules solely from 

examination of the structure of GP trees. Therefore the system program 
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includes a function which quantifies this behaviour in terms of weighting 

values assigned to each TI in the input set. These weights are computed by 

running through all possible combinations of the (ternary) input values and 

recording the correlation between each TI and the GP function output. In this 

way it is possible to test whether the optimal-fitness trading rules output by 

repeated training runs on the same set of data work in a consistently similar 

way; or alternately, to analyse how trading rules optimised for various periods 

of the market differ in behaviour. 

 

Measures to limit over-fitting 
There were two methods suggested in the literature review for limiting the 

tendency of the GP system to over-fit the evolved trading rules to the training 

data, and so improving the performance in out-of-sample trading. The first 

was to introduce a complexity penalising term in the fitness function (Becker 

and Seshadri, 2003) so that simpler rules are evolved (this could be said to fit 

with the principle of Occam’s Razor, that simple solutions are generally 

better). In these experiments a different approach is taken to achieve the 

same aim. Instead of altering the fitness function, the system imposes an 

absolute limit on the allowed size (the total number of nodes) of the GP trees. 

This limit applies to the individuals generated in the initial population, and 

those produced by crossover. An alternate method was to alter the 

comparison function that is used in both the rank and tournament selection 

algorithms so that two individuals with equal fitness are ranked according to 

tree size: This induces an element of selection pressure toward simpler rules. 

Kapishnikov (2002) uses the technique of increasing transaction costs during 

training of the GP system in order to reduce over-fitting. This method is also 

tested here. 

 

The second stage of experiments is to test the effect of periodic retraining of 

the GP-evolved rules on overall trading performance. The Third stage 

evaluates the performance of the dynamic evolution algorithm relative to the 

previous results for periodic retraining. 

  



- 43 - 

5 Results and Discussion 
 

5.1 Static Evolution Results 
 

Static evolution experiments were run on the IBM and Delta Airlines stock 

price data and the Dow Jones Industrial Average (DJIA) data. It can be seen 

from the plots of all three datasets that there is a qualitative change in the 

trends in price movements between the first 4000-4500 days and the 

remainder. The early period exhibits a relatively low volatility with a clear long-

term upward trend while the later period shows high volatility and flat or 

declining trends (see figures 4, 5 & 6). It was decided to run static evolution 

testing separately on both periods for all three datasets, further subdividing 

each period into equal training and evaluation ranges, as shown on the 

graphs. 

 

 As there is a large relative increase in value over the first period, for all three 

datasets, the trading strategy for the GP-evolved rules was modified to allow 

the reinvestment of accumulated profits rather than executing fixed-sized 

trades. Also, the limit on the number of days that an in-market position can be 

held was removed. Otherwise it would be very hard for any technical trading 

rule to beat the return of the buy-and hold strategy in this period. The 

standard trading strategy was used in period 2 and all subsequent 

experiments. The strategy of continually reinvesting profits is inherently more 

risky, in accordance with the increased potential return, and so the results for 

periods 1 and 2 should not be compared directly. Furthermore, to choose a 

different trading strategy appropriate to each period is to make use of prior 

knowledge about how the market will behave - this would also invalidate such 

comparisons. However, the purpose of these experiments is to compare the 

evolved trading rules to the naïve strategies within the same trading period: 

Later experiments which do compare returns over the entire range of data use 

a fixed strategy for these reasons (a potential area of further research would 

be to try co-evolving trading strategies with the trading rules). 
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Figure 4: Dow Jones Industrial average Feb 1980 - April 2004. The plot shows 
the two static-evolution testing periods with consecutive, equal length training 
and evaluation ranges 
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Figure 5: International Business Machines  stock price Feb 1980 - April 2004 
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Figure 6: Delta Airlines stock price Feb 1980 - April 2004 

 

5.1.1 Out-of-sample trading performance 
Tables 2, 3 and 4 show the trading performance of the maximum-fitness 

evolved trading rules over a number of runs of the GP program. The results 

show that in period 1 the average return from the GP-evolved rules does not 

exceed the buy-and-hold return in out-of-sample trading (i.e. the evaluation 

range). There is a relatively large variation in these returns over the series of 

program runs. 

 

In period 2 the average out-of-sample return for the evolved trading rules is 

positive, whereas the other strategies make a loss over the same period. 

However the excess average return, relative to buy-and-hold, is less that the 

standard deviation on this value; so this positive excess return is not 

statistically significant. The large variation in evaluation fitness values is what 

one would expect for a random trading strategy in this period, given the high 

volatility in price movements. Also the very high fitness values achieved in the 

second training period, relative to the buy-and-hold strategy and to the out-of-

sample returns, indicate that the GP system is simply learning the particular 

sequence of price movement in the training data. 
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GP Run  
Range 

(2000 day) 1 2 3 4 5 6 7 8 9 10 
Training 0.250 0.233 0.267 0.264 0.232 0.263 0.238 0.267 0.261 0.252 

Evaluation 0.057 0.029 0.042 0.035 0.040 0.033 0.043 0.036 0.037 0.071 
 
 

Range 
(2000 day) 

 
Average 

return 

 
Standard 
Deviation 

Buy & Hold 
return 

Repeat Rule 
return 

Training 0.253 0.014 0.114 0.217 
Evaluation 0.042 0.013 0.042 0.036 

 

Table 2: Delta Airlines period 1 trading fitness. 

 

GP Run  
Range 

(600 day) 1 2 3 4 5 6 7 8 9 10 
Training 1.055 1.000 1.176 1.728 1.171 1.452 0.990 1.380 1.263 1.062 

Evaluation 0.216 0.113 -0.06 0.046 -0.06 -0.10 -0.04 0.066 -0.01 -0.04 
 

Range 
(600 day) 

 
Average 

return 

 
Standard 
Deviation 

Buy & Hold 
return 

Repeat Rule 
return 

Training 1.228 0.235 0.034 0.102 
Evaluation 0.013 0.097 -0.073 -0.293 

 

Table 3: Delta Airlines period 2 trading fitness. 

 
IBM DJIA  

Range 
 Ave. Dev. B & H return Ave Dev. B & H return 

Training 1 0.520 0.141 0.239 0.965 0.102 0.058 

Evaluation 1 0.083 0.020 0.096 0.093 0.025 0.085 

Training 2 0.381 0.119 0.052 1.53 0.262 0.024 

Evaluation 2 -0.014 0.032 -0.036 -0.032 0.039 -0.012 

 

Table 4: Fitness data for IBM and DJIA evolved trading rules. 

 

5.1.2 Effects of control parameters 
The evolutionary performance of the GP algorithm was fairly insensitive to the 

GP control parameters: Varying the crossover and mutation probabilities, 

number of generations etc had little noticeable effect on the average 
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maximum fitness values attained for the training data. Table 5 shows the set 

of control parameters, the ranges tested and the values chosen for use in 

subsequent experiments. 

 
Parameter Min Max Used 

Crossover rate 50 100 100 

Mutation rate 0 100 25 

Tournament size 3 10 3 

Population size 100 400 200 

Generation count 10 80 40 

Elite size 0 20 8 

Tree size limit (node count) 10 50 30 

Table 5: GP control parameter testing ranges. 

 

Changing the parameters of the trading system made little difference to out-

of-sample average returns, except where increasing the transaction cost to 

the maximum of 0.5% strongly reduced these. 

 

Testing of the various methods for limiting over-fitting as described in section 

4.3 (limiting the size of GP trees, biasing selection towards smaller trees, and 

varying transaction costs during training) showed these to be ineffective. 

There was no correlation between the size of evolved GP trees and average 

fitness. This may be because any measure to reduce the average size of the 

tree structure will be more likely to affect introns, rather than functional 

material, and so will have little effect on the functional complexity of the 

trading rules. 

 

5.1.3 Correlation of in-sample and out-of-sample performance 

Although the trading performance of the evolved GP rules on the training data 

is not in itself a good measure of the ability of the system to make profitable 

forecasts, it is useful to measure the correlation between the in-sample and 

out-of-sample trading performance of individual candidate solutions. 

 

Evolved rules did not consistently generate excess out-of-sample trading 

returns in the previous experiments. However, a positive correlation between 
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in-sample and out-of sample returns would suggest that this may be 

achievable by some improvement of the GP system: In this case it would be 

worthwhile investigating ways to achieve higher training fitness, as this should 

lead to greater excess returns on out-of-sample trading, either by optimising 

the parameters of the evolutionary algorithm (although this has already been 

tried), or by using a different TI input set. Conversely, a negative correlation 

would indicate over-fitting and measures could be taken to reduce this effect. 

 

Experimental results show no significant correlation between in-sample and 

out of sample trading profits. Figures 7 and 8 show the training and evaluation 

fitness values for the trading rules output from a number of GP runs (the rules 

having the maximum attained training fitness from the evolutionary 

population).  
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Figure 7: Correlation of training fitness to out-of sample trading fitness for 

evolved GP rules. (IBM data; period 1) 
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Figure 8: Correlation of training fitness to out-of sample trading fitness for 

evolved GP rules. (Delta Airlines data; period 1) 

 

5.1.4 Weighting of TI in evolved trading rules 
Figures 9 and 10 show the relative weightings of the various TI in the 

maximum-fitness evolved trading rules, over a series of program runs, for the 

DJIA and Delta Airlines data respectively. 

 

For the DJIA trading rules, generated from repeated static evolution runs on 

the same set of training data, the weighting given to the various TI appears to 

be quite random. One would expect certain TI to perform better than others on 

certain ranges of data, and these would receive consistently higher weighting 

in the optimised trading rules. This does not seem to be the case in the 

trading rules evolved from period 2 of the DJIA data (figure 9). 
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Figure 9: Relative weighting of TI in fittest trading rules over a series of 

evolutionary runs. (DJIA data; period 2) 

 

The results from section 5.1.1 show that for Delta Airlines the repeat rule 

trading strategy outperforms buy-and-hold in both of the training periods. This 

is a noteworthy result in itself: such a strategy would have to be very effective 

in predicting the direction of daily price movements as it trades frequently and 

thus incurs high transaction costs. Figure 10 shows that GP-evolved trading 

rules trained on the same data consistently give a high weighting to the 1-day 

price change indicator. This means that these rules are acting according to 

the naïve repeat rule strategy - “predict that the price will move in the same 

direction tomorrow as it did today” - most of the time.  

 

This result demonstrates that GP system is able to learn to use individual TI 

where they are known to perform well, and does so repeatedly. However, the 

random weightings of other TI for both sets of results indicate that they do not 

have any consistent predictive ability. Another point to note is that figure 9 

shows that the TI are just as likely to have negative weightings as positive 

(meaning that there is a negative correlation between the TI value and the 

output of the trading rule). This seems to contradict the idea that the TI rules 
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are good indicators of what price trends are going to do: If the PBC rule 

described in section 2.1.1 is really correct how come the GP system evolves 

rules which predict the market will go in the opposite direction to the PCB 

indicator? 
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Figure 10: Relative weighting of TI. (Delta Airlines data; period 2) 

 

5.2 Static Evolution with Periodic Retraining 
 
In these experiments simulated trading was run over a range of data covering 

both periods 1 and 2 from previously. This range was divided into a set of 

consecutive equal-length periods. GP training was run on each period 

separately, producing a sequence of optimised trading rules - one for each 

period. The fitness values obtained for each period resulted from the 

application of the rules trained on the one immediately preceding it. 

 

5.2.1 Periodic Retraining Results 
Figures 11, 12 and 13 show the performance of GP-evolved technical trading 

rules relative to buy-and-hold and repeat rule strategies over consecutive 400 

day periods for Delta Airlines, IBM and the DJIA respectively. The fitness 
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values for the evolved rules for each period are averaged over a number of 

training runs, as in section 5.1.1. The figures also show the returns from the 

strategies averaged over all periods (day 601 to 5800), excluding the first 

period for which there is no GP-evolved rule for comparison. It should be 

noted that the average buy-and-hold return calculated in this way is not the 

same as the return which would result from continuously holding the asset 

over the entire time range, due to the effect of compounded capital growth. 
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Figure 11: Relative performance of evolved trading rules to buy & hold and 

repeat strategies trading Delta Airlines stock with 400 day consecutive training 

and evaluation periods. 

 

Fitness 

Evaluation period 
(days) 

Return over entire range 
 
Repeat Rule: 0.046 
Buy & Hold: 0.024 
Evolved Rules: 0.017 
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Figure 12: Relative performance of evolved trading rules to buy & hold and 

repeat strategies trading IBM stock with 400 day consecutive training and 

evaluation periods. 

 

 

Return over entire range 
 
Repeat Rule: 0.0046 
Buy & Hold: 0.109 
Evolved Rules: 0.023 
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Figure 13: Relative performance of evolved trading rules to buy & hold and 

repeat strategies trading the DJIA with 400 day consecutive training and 

evaluation periods. 

 

It can be seen that the sequence of evolved trading rules produce negative 

excess returns in comparison to buy-and-hold for all three datasets when 

taken over the entire trading range. The results show that, as noted before, 

the repeat rule strategy only performs well in trading with the Delta Airlines 

stock. 

 

There are individual periods when the evolved rules are seen to outperform 

buy-and-hold. However, as mentioned, the single-period return values for the 

GP-evolved rules are averages only, and the buy-and-hold values are 

generally well within the measured standard deviation of these averages. The 

one occasion where the evolved rules produce statistically significant positive 

excess returns is in the latest trading period for the DJIA (see figure 13). A 

possible explanation for this result comes from the fact that, as can be seen in 

figure 4, the DJIA index data for this period (days 5400-5800) exhibit high 

Return over entire range 
 
Repeat Rule: -0.0090 
Buy & Hold: 0.056 
Evolved Rules: 0.0017 

Fitness 

Evaluation period 
(days) 
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volatility. There are two particularly sharp drops in the index value that occur 

in this range. Examination of the TI weighing in the technical trading rules 

used in this period shows a consistently high weighting for the 50-day moving 

average indicator. Application of this individual TI rule would cause the system 

to sell the index prior to these drops and this alone would account for the 

excess returns observed in this period. In this one occasion a single TI which 

is found to be effective in one training period also produces profits in the 

following evaluation period. In itself this result hardly constitutes a validation of 

Technical Analysis techniques.  

 

Figure 14 shows the results from periodic retraining on the Delta Airlines data 

using a 600 day training/evaluation period. Extending the amount of training 

data in this way may be expected to increase the ability of the GP system to 

evolve profitable trading rules at the expense being able to adapt quickly to 

changing market conditions. Either way, the evolved rules still do not 

outperform either naïve strategy.  
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Figure 14: Trading results for Delta Airlines with 600 day training and 

evaluation periods 
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5.2.2 Measuring time variation in the performance of static evolved rules 
Figure 15 shows the period-by-period fitness values of static-evolved trading 

rules - trained on each of the first three periods - over (almost) the full range 

of data for the DJIA. The purpose of this test was to see how the performance 

of individual trading rules changes over time. This was supposed to reveal the 

way in which market conditions evolve - whether they change incrementally or 

in discrete steps. The fitness data does not reveal any useful information in 

this regard. Fitness values show neither a decreasing trend nor a sudden 

change in any period but change randomly over time. The raw price data 

(figures 4, 5 & 6) appear to show a discrete change in behaviour at around 

4800 days, as mentioned before. This change is not reflected in the fitness 

data in figure 15. It can be seen that the trading rule evolved in the third 

period (1001-1400 days) makes a loss in the next period (1401-1800 days) 

and is most profitable over 4600-5000 days. 
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Figure 15: Out-of sample fitness for trading rules evolved in the first three 

400-day periods (DJIA data). 

 

Fitness 
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5.3 Dynamic Evolution Results 
 

The static evolution algorithm was run over the same range of data as used 

for the periodic retraining experiments (day 601 - 5800). Table 6 shows the 

period-by-period trading fitness for the system using the dynamic algorithm. 

Average fitness values are calculated for each period from a number of runs 

of the program, along with the corresponding standard deviation. The fitness 

values for the repeat rule and buy-and-hold strategies are show for 

comparison, along with the results from the previous experiments using static 

evolution with periodic retraining. 

 

It can be seen that the system does not outperform either naïve strategy on 

average over the entire time range. This is not surprising, given the results 

from the previous experiments which all indicate that GP evolved technical 

trading rules are unable to generate excess profitable returns. The dynamic 

algorithm did produce better returns than periodic retraining, over the whole 

trading range. There is also a smaller variance in the returns for dynamic 

evolution, hence a superior risk adjusted return. 

 

  Dynamic Profit Stat evol rule profit 
Range 

start day 
repeat 

rule 
buy and 

hold Ave. Std. Dev. Ave. Std. Dev 
600 0.272 0.128 0.266 0.053 0.186 0.072 

1000 0.322 0.046 0.105 0.049 0.204 0.045 
1400 0.079 0.087 0.110 0.032 0.059 0.061 
1800 0.048 -0.014 -0.027 0.040 0.045 0.063 
2200 0.073 0.181 0.093 0.022 0.075 0.028 
2600 0.098 -0.030 0.088 0.039 -0.007 0.022 
3000 -0.092 -0.039 -0.111 0.050 -0.065 0.107 
3400 0.075 0.049 0.114 0.078 0.028 0.072 
3800 0.023 0.056 0.024 0.021 0.032 0.049 
4200 0.112 0.217 -0.061 0.084 -0.040 0.054 
4600 0.045 -0.050 0.024 0.026 0.046 0.085 
5000 -0.182 -0.049 -0.035 0.029 -0.073 0.052 
5400 -0.279 -0.272 -0.286 0.055 -0.273 0.116 

Average 0.046 0.024 0.023 0.044 0.017 0.064 
Table 6: Comparison of dynamic evolution algorithm trading returns to naïve 

rules and static evolution with periodic retraining (Delta Airlines). 
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Figure 16 shows the average and maximum fitness values for the dynamically 

evolving population. These fitness values are retrospective, in the sense that 

they are evaluated at each time step from the preceding range of historical 

data, so they represent the ability of the system to adapt to the latest available 

information. They do not give any direct indication of the forward predictive 

ability of the system - this is shown in table 6. It appears, from comparing 

these values to the raw market data in figure 6, that the fluctuations in fitness 

are closely correlated to the direction of the price trend. Wherever there is a 

particularly sharp drop in the stock price there is a corresponding decrease in 

the average fitness value. The data shows that on several occasions where 

these drops have occurred, at 1700, 4000 and 4800 days, there is an 

increase in the maximum fitness. The effect is not very clear but it is repeated 

in further runs of the program.This may be an indication that the algorithm is 

able to rapidly adapt a small proportion of the individual candidate solutions to 

the latest available data. This is exactly what is required, as the trading 

recommendations of the system as a whole are based on the current fittest 

member. However there are other occasions when the two fitness values 

move together. The effect of large Individual movements in asset price 

appears to dictate changes in fitness rather than any supposed change in 

underlying market conditions. 
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Figure 16: Fitness statistics for the dynamic GP algorithm (Delta Airlines input 

data). 
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6 Conclusions 
 

My work clearly demonstrates that GP-evolved trading rules are not effective 

in predicting future movements in asset price when using Technical Indicator 

information derived solely from historical price data. This conclusion should be 

qualified by saying that the investigation only covered the use of daily trading 

data for individual shares and for one market index; it is possible that the 

technique may be more successful when applied to other classes of assets or 

markets, or if higher frequency ‘tick’ data is used. There has been other work 

done in these areas and, as mentioned in the literature review, the results 

appeared to be mixed, at best. 

 

It is also possible that the system was simply using the wrong set of Technical 

Indicators. Looking on Yahoo Finance and other finance-related websites 

reveals a huge range of TI together with information on how and why they are 

supposed to work. My choice of TI was primarily based on those used in the 

trading systems of other researchers as mentioned in the literature review. In 

fact, in emulating the work of several authors, a wider range of TI was used 

than those others did individually. The experiments also investigated the use 

various subsets of the chosen TI in runs of the GP algorithm - as shown, this 

had little effect on trading results. 

 

This approach to market forecasting may be more successful if different 

sources of information were used as input for the GP learning algorithm. 

These could include data from different markets, for example bond rates, 

commodity prices or FX rates, in order to predict stock market trends or vice 

versa. Potentially any other source of information which is judged to be 

relevant - such as interest rates or data from fundamental analysis - could be 

incorporated. The GP program developed here could easily be adapted to 

take input from different sources. There has been work done in the use of GA 

and GP to generate trading rules based on market indicators other than pure 

Technical Analysis. Bauer (1994) used GA to develop strategies based on 
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bond rates. Yet again, there was no conclusive demonstration of significant 

excess profits on out-of-sample data. 

 

Apart from the obvious application of trying to make money, investigating the 

use of GP with these different sources of learning input would be a useful tool 

for discovering relationships between asset prices and other economic 

factors. Such information may be important in itself for the study of 

economics. More generally, GP can be a useful tool for discovering complex 

relationships between wide classes of variables if approached from the point 

of view of asking: “Can a GP learn to predict variable X, with a significant 

probability, using input data from variable Y”. 

 

In these terms, the results shown here appear to demonstrate that Technical 

Analysis is simply not effective as a methodology for forecasting market 

trends. This implies that no useful information is contained in historical price 

data. As stated in section 2.1, evidence that technical trading rules can be 

profitable is evidence against the Efficient Market Hypothesis; the converse is 

also true. Therefore my results appear to support the EMH. 

 

Regarding the performance of the dynamically adaptive GP algorithm; 

although this was no more successful in predicting the future movement of 

market prices than the method of periodic retraining, the output fitness data 

does indicate that it was adapting the population of candidate solutions over 

time according the variations in fitness statistics. The algorithm appeared to 

be able to adapt to changes in market data in a retrospective sense, although 

evidence for this was inconclusive. The fact that the trading performance was 

poor is not surprising considering that the preceding experiments already 

demonstrated that TI had no useful forecasting ability for the data used. This 

being the case, the best that could be hoped for is that the algorithm could 

maintain a high level of fitness on the latest available historical data. The 

results from the experiments with the dynamic GP algorithm suggest that the 

basic concept is sound, so it may be applied successfully to other problem 

domains and this could be investigated in future work. 


