
- 1 -

University College London

Dynamic Optimisation of Technical Trading Rules Using
Genetic Programming

MSc Intelligent Systems Project 2003/2004

Tom Graham

Project Supervisor: Chris Clack

This report is submitted as part requirement for the MSc Intelligent systems

degree in the Department of Computer Science at University College London.

It is substantially the result of my own work except where explicitly indicated in

the text. This report may be freely copied and distributed provided the source

is explicitly acknowledged.

- 2 -

Abstract

This Report presents the design of a GP-based system for learning technical

trading rules for financial markets. These rules are generated from

combinations of commonly used technical indicators. The design includes a

novel dynamically adaptive learning algorithm for continuously evaluating and

updating the GP candidate solution population according to new market data.

The trading performance of the system was tested in a series of experiments

using historical price data from individual stocks and from the Dow Jones

Industrial Average. Results show that the GP-generated trading rules were

unable to consistently produce excess trading profits, relative to a simple buy-

and-hold strategy, using either the standard ‘static’ GP learning algorithm or

the new dynamic method.

- 3 -

1. INTRODUCTION...4
2. BACKGROUND ...6

2.1 TECHNICAL ANALYSIS..6
2.1.1 Theoretical basis for technical analysis..6
2.1.2 Technical Analysis and the Efficient Market Theory ...6

2.2 EVOLUTIONARY COMPUTING ..7
2.2.1 Genetic Algorithms (GA)..8
2.2.2 Genetic Programming (GP) ...11

2.3 APPLICATION OF GP TO TECHNICAL ANALYSIS ..14
2.3.1 Literature review ...14
2.3.2 Summary ..19

2.4 DYNAMIC LEARNING TECHNIQUES ..20
2.4.1 Dynamic application of evolutionary computing...20
2.4.2 Other methods ...22

3 SYSTEM DESIGN AND IMPLEMENTATION..24
3.1 PROBLEM DEFINITION ..24
3.2 DEVELOPMENT TOOLS ...25
3.3 IMPLEMENTATION DETAILS ...25

3.3.1 GP tree structure representation of trading rules..25
3.3.2 Technical Indicator set ...27
3.3.3 Implementation of the GP structure for candidate solutions ...28
3.3.4 Trading Strategy..30
3.3.5 Imposition of transaction costs..32
3.3.6 Fitness Measurement..32
3.3.7 Dynamic Evolution Implementation Method...33

3.4 SYSTEM TESTING ..36
4 EXPERIMENTAL DESIGN..39

4.1 EXPERIMENTAL INPUT DATA...39
4.2 EXPERIMENT AIMS AND OBJECTIVES ...40
4.3 PROCEDURE ...41

5 RESULTS AND DISCUSSION ...43
5.1 STATIC EVOLUTION RESULTS..43

5.1.1 Out-of-sample trading performance ...45
5.1.2 Effects of control parameters...46
5.1.3 Correlation of in-sample and out-of-sample performance ...47
5.1.4 Weighting of TI in evolved trading rules..49

5.2 STATIC EVOLUTION WITH PERIODIC RETRAINING ...51
5.2.1 Periodic Retraining Results ...51
5.2.2 Measuring time variation in the performance of static evolved rules56

5.3 DYNAMIC EVOLUTION RESULTS ...57
6 CONCLUSIONS ..60

- 4 -

1. Introduction

Technical analysis is a technique widely used by investment managers and

financial market traders for predicting future movements of asset prices.

There is already a large body of work which investigates the use of Genetic

Programming (GP) methods to learn profitable trading rules from

combinations of technical indicator functions. Two main points emerge from

the available literature. Firstly, the usefulness of technical trading rules

generated in this way has not been proven: The ability of these rules to

produce a trading profit that is significantly in excess of a relevant benchmark

has not been demonstrated conclusively when used in simulated trading with

out-of-sample data. Secondly, those authors who do claim significant excess

trading returns note that this effect disappears as the input data gets further

away in time from the data used to train the GP system. This suggests that

market conditions change over time in such a way as to reduce the predictive

power of GP-generated trading rules.

This work investigates the ability of GP-generated technical trading rules to

produce profitable returns from simulated trading for individual stocks and for

the Dow-Jones Industrial Average. The design of the GP-based system for

rule optimisation and trading takes into account the implementation details

from previous similar experiments, as described in the available literature,

together with the author’s own adaptations. Details of the system design are

given later in this report together with a discussion of design choices and of

issues arising from the implementation.

In initial experiments the GP system was trained using a fixed sequence of

historical asset price data and the evolved trading rules were evaluated in

simulated trading on subsequent ranges of data. Particular focus is given to

out-of-sample trading performance of the GP-generated technical trading

rules relative to simple ‘naïve’ trading rules. Various methods for limiting the

effect of over-fitting of the GP-evolved rules to the training data were tested,

with the aim of maximising out-of-sample performance. This work includes an

- 5 -

investigation of the functional behaviour of the trading rules resulting from

training of the GP system on particular sequences of price data.

Further experiments were carried out with a system that uses periodic

retraining to generate a sequence of optimised trading rules, and then with a

system which implements a novel dynamic learning GP algorithm designed to

continuously train and adapt to new data. Both of these methods were used to

address the issue of the degradation of performance of individual optimised

trading rules over time. One aim of these experiments was to investigate the

nature of the changes in market behaviour which affect trading rule

performance: The question of whether these changes are incremental, or

whether they occur in discrete steps, was addressed by analysis of the

changes in the structure and fitness of evolved trading rules over time. The

dynamic GP algorithm was specifically designed to overcome problems

relating to population convergence which have been seen to impair the

performance of evolutionary techniques in applications which require

dynamically adaptive learning.

This report begins with an introduction to the theory and practice of technical

analysis and a description of evolutionary computation techniques, with a

particular focus on Genetic Programming. This is followed by a review of

previous work on the application of Genetic Programming to the field of asset

price forecasting and trading, and an analysis of techniques for implementing

dynamically adaptive learning systems. Details of the design and

implementation of the GP system are included next, together with a

discussion of various design choices and also a description of the

dynamically-adaptive GP algorithm. The next section gives a statement of the

goals of the experimental work and describes the experimental procedures for

achieving these, followed by the presentation and analysis of experimental

results. Concluding remarks and suggestions for further work make up the

final section.

- 6 -

2. Background

2.1 Technical Analysis

Technical Analysis uses the historical price data of traded assets in order to

identify patterns or trends in the price movement. These are used to predict

probable future trends, and thus indicate whether to buy or sell the asset.

Particular classes of pattern are identified using Technical Indicators (TI).

These indicators can be qualitative - looking for recognisable shapes in a plot

of time series data - or quantitative. Many TI are derived from moving average

calculations, or from sequences of local minima and maxima. A simple

example of the latter is the Price Channel Breakout (PCB) indicator. In this

case the current price is compared to the local minimum and maximum values

within a given time widow. If the price goes outside this range the trend is

predicted to carry on in the same direction.

2.1.1 Theoretical basis for technical analysis
This approach is based on the belief that asset price time series exhibit

certain regularities. These regularities are explained in terms of psychological

factors affecting the group behaviour of investors in the market. An example

of this behaviour is used to justify the use of the PCB technical indicator: If the

price of an asset has dropped from a previous peak, investors will think they

have lost out by failing to sell at this peak value. When the price next reaches

the same value they will be inclined to sell, inducing another price drop. This

will happen repeatedly until the ‘resistance line’ is broken at which point the

price is expected to continue on an upward trend.

2.1.2 Technical Analysis and the Efficient Market Theory
This supposition is contradicted by the Efficient Market Hypothesis (EMH),

which states that all information about an asset’s value - including historical

price information - is reflected in the current price (see Malkial, 1999).

According to this theory, any regularity in price movement will be detected by

- 7 -

‘the market’. This information will affect trading in such a way as to destroy the

regularity. Market prices follow a random walk and so are essentially

unpredictable in nature.

A weaker formulation of the EMH states that, although all markets may not be

perfectly efficient at all times, inefficiencies can not be exploited to make a

trading profit - any profits made will be negated by transaction costs.

Because Technical analysis depends on inefficiency in the market, any

evidence that this technique works can be seen as evidence against the EMH.

The debate about the validity of the EMH and the effectiveness of Technical

Analysis has not been resolved at present; the work of Alexander (1961) and

Fama (1970) finds no evidence for the effectiveness of TI in making profitable

trading decisions, concluding that Technical Analysis is a pointless practice.

However, there is some work that contradicts these findings (Levich &

Thomas, 1993), and many investment professionals trading in stocks,

commodities and currencies use Technical Analysis methods.

2.2 Evolutionary Computing

The field of Evolutionary Computation is concerned with using computer

programs to emulate the mechanisms of natural selection for the purpose of

optimisation, adaptation or search. All evolutionary algorithms involve the

representation of set of possible solutions to a given problem as a population

of individuals. The performance, or fitness, of each candidate solution is

tested and the best individuals are permitted to survive and produce ‘children’

based upon themselves. This is analogous to Darwinian selection, which is

seen to create complex and highly adapted organisms - optimised solutions to

the problem of survival and reproduction in the natural environment. Particular

evolutionary algorithms differ in the way candidate solutions are represented

and how they are reproduced.

- 8 -

One advantage of Evolutionary Computing techniques is that they can be

used on non-numerical problem domains. Many other optimisation methods

such as hill climbing algorithms and artificial neural networks rely on a

numerically differentiable solution space. Evolutionary algorithms are an

efficient way of searching for optimum solutions due to the effect of ‘parallel

search’: Many candidate solutions are evaluated simultaneously, and high

fitness individuals are recombined to create new solutions, so a wide region of

the search space can be explored efficiently.

2.2.1 Genetic Algorithms (GA)
A widely used Evolutionary Computing technique is the Genetic Algorithm

(GA), originally developed by Holland (1975). A Genetic Algorithm operates

on a population of individuals represented by character strings. These are

evaluated according to a fitness function appropriate to the problem in hand.

Pairs of individuals, selected at random but biased according to fitness, are

recombined to create members of a new population. Starting from an initial

population of randomly generated candidate solutions, successive

generations are produced until some termination criterion is reached: This

may be the convergence of the average and maximum fitness values, or

simply a limit on the number of generations.

String representation
Genetic Algorithms represent candidate solutions as strings - finite sequences

of characters from a given alphabet (typically binary or integer numeric). The

method of mapping a candidate solution to a GA string depends on the

problem domain: The string may represent, for example, an ordered

sequence of operations, or a set of independent parameters. However, a

particular location in the string sequence always represents the same part or

parameter of the solution.

Crossover and mutation operations

The string representation used in GA is analogous to the structure of

biological genetic material - DNA. In the same way, the method of creating

new GA strings mimics the recombination mechanisms of DNA.

- 9 -

Crossover is the operation of exchanging information, or ‘genetic material’,

between two individuals. It works by swapping the values at corresponding

locations between pairs of strings. There are various methods for

implementing crossover suited to different applications. The simplest method

is single point crossover: a point is selected at random to divide each string

into two sections, one of which is swapped over. Alternatively, a greater

number of crossover points may be used so that more than one contiguous

sub-sequence is exchanged between ‘parent’ strings. Another method,

uniform crossover, acts on individual locations - swapping each according to a

fixed probability.

The mechanism of crossover is believed to be the source of GA’s power as an

optimising search method. This assumes that an optimal solution will be

composed of individually optimal ‘genes’, where a gene can be thought of as

a set of one or more position-value pairs from an individual string. A useful

gene set will be passed on to an offspring only if all of its members remain

together after crossover. The larger the set, the less likely it is to survive

reproduction intact. The action of fitness selective bias in reproduction means

that beneficial genes will tend to propagate through the population over time.

Because of this, the diversity of different gene sets decreases and population

members become more similar - on average - over successive generations.

As the population converges in this way, it becomes more likely that the

information being exchanged in crossover will be the same in both individuals.

This increases the probability that genes will be reproduced intact; crossover

any part of two identical strings and they will still be the same. The result is

that the GA algorithm is able to combine progressively larger sets of optimal

genes with successive generations - this is the Building Block Hypothesis of

Genetic Algorithms (Goldberg, 1989).

Mutation is simply the action of randomly changing the value of individual

locations or sub-strings within a GA sequence. Although crossover is the main

factor in the evolutionary behaviour in GA, mutation is important because it is

the only way of introducing new genetic material into the overall population.

- 10 -

Fitness based selection

As stated previously, individuals are selected for reproduction randomly, but

with the probability of selection weighted according the measured fitness of

the candidate solution. There are three commonly used methods to implement

fitness based selection:

Fitness Proportional Selection (FPS)

The sum total of the fitness values of all population members is calculated

and a random number is selected between zero and this value. Running

through all population members, the fitness values are summed a second

time. When the sum exceeds the randomly generated number, the current

population member is returned. If the total fitness sum is thought of as the

circumference of a circle, then each individual is represented by a sector

of the circle equal to its fitness value. If a pointer is placed at a random

position on the wheel, the probability of it falling within any individual

sector is proportional to the fitness of that individual. This is why FPS is

also known as ‘Roulette Wheel Selection’. A disadvantage of this method

is that a fitness proportional selection weighting may not always be

suitable. It may be desirable to disproportionately bias selection in favour

of individuals whose fitness is only marginally greater than average, or to

have only a small bias towards individuals who have very high relative

measured fitness. Another problem with this method is that it does not

work with negative fitness values.

Rank Selection

This method works like FPS, only the fraction of the ‘roulette wheel’

assigned to each individual is dependent on rank position rather than

absolute fitness. The degree of bias can be controlled by using the rank

position value raised by a chosen polynomial factor. This is a

comparatively slow method because the population must be sorted

according to fitness.

- 11 -

Tournament Selection

A group of Individuals are selected from the population at random. The

fittest member of this group is returned. The degree of selection bias is

related to the size of the group or tournament - the greater the size, the

greater the relative weight of fitter individuals: With a tournament size of

two, the fittest member of the population is twice as likely to be selected as

the median. This method is the most computationally efficient as only the

individuals selected for the tournament need to be inspected.

2.2.2 Genetic Programming (GP)

GP is an extension of GA, originated by Koza (1992). GP uses a similar

evolutionary procedure for search and optimisation based on selective

recombination from a population of candidate solutions. It differs from GA in

the representation of the candidate solutions.

Tree structure representation
The tree structure is a hierarchical graphical model consisting of a set of

interconnected nodes (see figure 1). Each node can have several connections

to nodes at a lower level, but only a single ‘parent’ connection.

The name Genetic Programming refers to the fact that the tree structure is

usually used to represent a function in the style of a computer program syntax

tree. The branch nodes represent functions - they take values passed by their

immediate descendents as input arguments and return an output to their

parent. The terminal ‘leaf’ nodes represent input arguments or variables. In

this way the branching hierarchy denotes the nesting, or evaluation ordering

of functions. The tree structure can be used in other ways according to how a

particular problem domain is best represented. For example Li & Tsang

(1999) use the GP structure as a decision tree.

In contrast to Genetic Algorithms, the tree representation of GP is able to

generate candidate solutions of variable size and complexity - crossover and

mutation operations can alter the size of individual trees. Another important

- 12 -

difference is that, unlike GA, there is no specific mapping of individual parts of

the tree to a part of a candidate solution. The GP function parse tree returns a

single output value from a given set of input variables.

Operators and terminals
The GP tree structure is constructed from two sets of node types - functions

and terminals. The branch nodes - those which have at least one connection

to a child node - are taken from the function set. This set typically consists of

simple logical (AND, OR, etc), conditional (IF-THEN-ELSE) arithmetic (+, -, *,

/), or comparison (<, >, =) operators. The choice of function set is a design

decision which depends on the problem domain and on the data types that

GP function should take as input and return as output. The terminal set

consists of all the data input variables which are to be evaluated by the GP

function.

Function and terminal sets must be chosen such that they are capable of

expressing a solution to the problem. This means that the designer should

have knowledge about the problem domain - including some idea of the likely

form of solutions.

GP Crossover and mutation
Genetic Programming implements crossover and mutation operations

equivalent to those used in GA. To carry out crossover on a pair of GP trees,

a single node is selected at random from each - these form the crossover

points. The sub-trees originating at these nodes are swapped over, creating

two new GP trees (shown in figure 2). If the two sub-trees contain a different

number of nodes then the resulting offspring trees will be of different sizes to

the parents. Crossover is easy to implement in code by swapping over

pointers between parent and child nodes at the selected points.

Mutation works in a similar way - a new randomly generated sub-tree is

inserted at a randomly selected node and the displaced section is discarded.

Because crossover can exchange sub-trees between different locations,

unlike in GA, there is less need for mutation in creating and maintaining

- 13 -

diversity in the population of candidate solutions. Therefore the mutation

operator is sometimes left out of GP algorithms if the population is made large

enough to ensure sufficient initial diversity of available building blocks

(Mitchell, 1998).

Figure 1: GP parse-tree representation of two functions taking four separate

input parameters

.

Figure 2: Result GP of crossover.

AND

OR

NOT

IF

Input 1

OR

Input 2 Input 3 Input 4

NOT

Input 1 AND

Input 2

Input 3

Input 4

NOT

Parent 1 Parent 2

Subtree 1
1

Subtree 2
1

return value return value

AND

OR

NOT

IF

Input 1

OR

Input 2

Input 3 Input 4

NOT

Input 1 AND Input 2

Input 3

Input 4

NOT

Child 1 Child 2

- 14 -

2.3 Application of GP to technical analysis

Research indicates that the application of individual TI to asset price

forecasting does not result in significant improvements in investment returns

(see Fama, 1970; Dempster and Jones, 2000). It is common practice for

traders in financial markets to combine individual TI into trading rules. The

problem of learning profitable trading rules can be seen as a search for

optimal combinations from a finite set of base mathematical functions. This

problem domain would seem to be well suited to the GP representation of

candidate solutions. There already exists a significant body of work which

addresses the application of GP in this way (see following section).

2.3.1 Literature review
The following summary and analysis of relevant literature serves two

purposes: Firstly, the implementation details of previous GP trading systems

are assessed and compared. This information is used to assist in the design

of the GP system used in the current project. Secondly, the results reported

for each method are analysed in order to ascertain whether there is valid

evidence of profitable trading performance for any of the systems. The last

paper included in the literature review does not relate specifically to the

application of evolutionary computing methods to market forecasting or

trading - rather it is concerned with the general effectiveness of evolutionary

algorithms in dynamic optimisation applications.

Using Genetic Algorithms to find technical trading rules,
Franklin Allen and Risto Karjalainen (1999)
The authors used genetic programming to learn technical trading rules for the

S&P 500 index. The GP system creates trading rules using a set of simple

input functions (minimum, maximum and average) computed from the

historical index price data. The functions take a numerical value input which

specifies the time window over which to evaluate the function. They output a

- 15 -

numerical value. The terminal node set consists of these functions plus the

current price value and some numerical constants.

The function set for this GP system uses a combination of logical operators

(AND, OR, etc), arithmetic operators (+, -, *, /), comparison operators (<, >, =)

and numerical and Boolean constants. Because the non-terminal nodes

operate on a mixture of Boolean and numerical data types the crossover and

mutation functions have to implement a method of type checking to ensure

that sub-trees of nodes are only substituted with those which return the same

data type.

The report includes particularly detailed statistical analysis of the results. The

authors conclude with the following assertion:

 “After transaction costs, the [GP-evolved] do not earn consistent

excess returns over a simple buy and hold strategy”.

Optimization of Technical Rules on the Basis of Intelligent Hybrid
Systems,

A. Kapishnikov (2002)
The GP system described here uses a set of existing commonly used

mathematical Technical Indicator functions - including Moving Average

Convergence-Divergence (MACD) and K-Stochastic - for the terminal node

inputs. Boolean function nodes (AND, OR, XOR etc) are used to combine the

input TI values into a single output function. The method of constructing

trading rules from combinations of known TI is an alternative to that used by

Allen and Karjalainen which evolves rules from a set of simple mathematical

functions.

One unique aspect of this work is that technical indicators are combined with

artificial neural network inputs in the terminal set for the GP trading system.

Apart from the use of neural networks there are two other noteworthy features

of the system design and experimental methodology:

- 16 -

The logical operators in the function set use three-way Boolean values, BUY/

SELL/HOLD, to match the output of individual TI, instead of TRUE/FALSE,

which is a neat way of avoiding having to evolve separate GP rules for buy

and sell indicators.

During training, transaction costs (the costs incurred from executing

transactions in simulated trading) are set to a higher rate to minimize the

influence of noise in the data and hence avoid over-fitting. In this way

evolutionary selection may be biased towards rules which correctly predict

large price movements but trade at a lower frequency and hence incur lower

overall transaction costs.

Results showed that trading rules based on optimised combinations of

Technical Indictors outperformed individual TI but did not significantly

outperform benchmark buy-and-hold strategies on out of sample data when

taking transaction costs into account. The performance of evolved trading

rules on out-of-sample data was found to be higher the closer in time it was to

the training data. This leads the author to suggest that implementation of

adaptive learning may improve the results of the system.

Improving Technical Analysis Predictions: An Application of Genetic
Programming,
Jin Li and Edward Tsang (1999)

This paper describes another system which evolves Genetic Programming

based trading rules using technical analysis. Trading rules are created by

combining a set of existing TI rules in the manner of Kapishnikov, rather than

building combinations of simple functions with variable parameters as in Allen

& Karjalainen.

The unique aspect of this work is in the GP representation of the trading rules.

In all other cases seen, the GP tree structure represents a LISP-style function,

where terminal nodes represent input variables and non-terminal nodes are

operators (logical or arithmetic) which take values passed by their child nodes

as inputs. Here, the GP structure represents a decision tree, where (non-

- 17 -

terminal) branch nodes evaluate a particular condition (e.g. “Is today’s price

higher than the 10-day maximum”) and ‘leaf nodes’ are simply BUY, SELL or

HOLD decisions. This results in trading rules in the form of IF(…) THEN(…)

ELSE(…) statements.

This method is less flexible than the LISP style tree as it would not support the

function set described in Allen & Karjalainen which uses a mixed set of

numerical and logical operators and inputs. The decision tree method has

exactly the same expressive power as a system using only logical operators

with logical-valued TI inputs. Given that they have the same set of TI available

as input you can represent the same conditional technical trading rule by

either method using a similar number of nodes. This means that the two

methods are functionally equivalent.

The authors report that the evolved trading rules can generate large profits.

These claims may not be valid, because the simulated trading does not

include any transaction cost factor which would be expected to reduce trading

profits in real-life situations. Also the performance of the trading rules is not

compared to that of a buy-and-hold strategy over the same time period.

Therefore the results are not conclusive.

GP-evolved Technical Trading Rules Can Outperform Buy and Hold,
Lee A. Becker and Mukund Seshadri (2003)

This paper presents experiments using GP-evolved technical trading rules,

based on known TI functions, for forecasting the S&P 500 index. The one

interesting methodology change from previous work is in the use of a fitness

function which penalises complex trading rules. The purpose of this was to

avoid over-fitting of the evolved trading rules in order to improve out-of-

sample trading returns.

The authors report that without the complexity penalising factor the maximum-

fitness evolved trading rules produced negative excess returns, relative to a

baseline buy-and-hold strategy, in the out-of-sample evaluation period. When

using the C-P factor there was a reduction in the evolved fitness values and

- 18 -

an increase in the average return for the out-of-sample period. This average

value exceeds the buy-and-hold return for the same period - hence the title of

the paper. However, the published data shows that the margin of difference is

well within the Standard Deviation of returns over the range of GP runs, so the

reported positive excess return does not appear to be statistically significant.

A Real-Time Adaptive Trading System Using Genetic Programming,

M. A. H. Dempster and C.M. Jones (2001)
In this paper the authors assert two important points regarding Technical

Analysis based trading systems. The first is that the use of individual technical

indicators is not effective for making profitable trading decisions. Therefore it

is common practice to use technical trading rules which consist of

combinations of a range of indicators. The second point is that in the real

world, particular trading rules are only used for a finite period of time: as

market conditions change a trading rule which was previously found to be

profitable will become loss making. Traders must therefore find new trading

rules over time in order to continue to make excess returns on the market.

In the experiment described, the GP evolved strategies were prompted to re-

optimise when trading losses were encountered. It is not entirely clear how

the re-optimisation takes place but it seems to be by retraining the GP from

scratch with the latest quarter’s market data. The results show that static

evolved strategies perform worse the further in time the system runs from the

period of the training data; this suggests re-optimisation would be beneficial.

However, in further experiments where periods of loss trigger re-optimisation,

overall performance actually deteriorates. The explanation offered for this is

that in retraining the strategies are over-fitted to the latest period of data only

and is in effect “chasing losses”.

The authors’ assertion that statically evolved trading rules are “significantly

profitable” is somewhat dubious as they assume that any positive return from

trading two currencies on the Foreign Exchange (FX) market is significant.

They do not account for the fact that long term trends in exchange rates may

- 19 -

make a simple buy-and-hold strategy profitable over the time period from

which they take both their training and validation data.

The paper is particularly relevant to this project because the system

implements GP based adaptive selection of technical trading rules, although

the system retrains from scratch rather than implementing a true dynamic (i.e.

continuously adaptive) optimisation method. The poor experimental

performance of this method suggests that this is a suitable area for further

investigation.

An appendix gives mathematical descriptions of a number of Technical

Indicators, including Simple Moving Average Crossover (SMAC), Adaptive

Moving Averages (AMA), Price Channel Breakout (PCB), K-Stochastic,

Relative Strength Index (RSI), and the Commodity Channel Index. Several of

the TI functions used in the system program for this project are based on

these definitions.

Diversity Does Not Necessarily Imply Adaptability,
Marcus Andrews and Andrew Tuson (2003)

Evolutionary techniques are by nature well suited to dynamic optimisation

problems as they mimic natural processes which are inherently dynamic. A

diverse population is desirable for dynamic optimisation problems as it allows

continuous exploration of a search space.

This paper compares the performance of Evolutionary Algorithms (in this case

a GA) to a standard hill-climbing algorithm on a simple test dynamic problem.

The results show that the performance of the GA is generally superior. The

authors also investigated the effect of population size on performance of the

GA. They state that population size has “a complex effect on performance

when adapting to changing problems”.

2.3.2 Summary
None of the work presented in the preceding section gives a clear

demonstration of the ability of GP evolved technical trading rules to

- 20 -

consistently generate significant positive excess returns in realistically

simulated trading. Several of the authors do make such claims but careful

analysis of the published data shows that their results do not back these up

conclusively. The report which contains the most rigorous statistical analysis

of experimental results (Allen and Karjalainen, 1999) reports no significant

excess returns.

2.4 Dynamic learning techniques

The work of Dempster and Jones (2000) and Kapishnikov (2002), described

above, indicates that technical trading rules which are optimal (in the sense of

generating trading profits) in one particular period will subsequently lose

efficacy over time. These results suggest that it may be beneficial to

implement some form of dynamic learning in the system which generates

trading rules. Such a system should be able to adapt the rules it produces

over time in order to maintain optimal trading performance.

2.4.1 Dynamic application of evolutionary computing

Previous work (e.g. Andrews and Tuson, 2003) suggests that learning

systems based on evolutionary computing methods can perform poorly on

dynamic optimisation problems. The term ‘dynamic optimisation’ refers to a

problem where the optimum solution is not always the same, or where the

problem domain evolves in some way over time. The poor performance of

evolutionary systems in these situations is attributed to population

convergence: because high fitness members are favoured in reproductive

selection, they and their offspring tend to dominate the population over

successive generations of breeding. This results in a population which is

eventually filled with copies of the fittest members - leading to a lack of

genetic diversity. The result of this is that when there is a change in context or

environment it is difficult or impossible for new solutions to be created from

the available genetic stock.

- 21 -

Andrews and Tuson suggest that greater population diversity does not

necessarily lead to improved adaptability in evolutionary systems. However,

they equate diversity solely with population size, which is incorrect. It is

reasonable to say that a large random population will initially be more diverse

than a small one as it contains a greater number of candidate solutions.

However, experiments with static population evolution show that convergence

occurs no matter what the initial population size. This is a natural result of

selection pressure which is a fundamental part of any GA or GP algorithm. A

large population of identical (or nearly identical) genotypes is no more diverse

than a small one.

Population convergence is perhaps less of an issue for GP than GA because

in the former it is possible to create distinct new structures from two identical

parents under crossover (by moving sub-trees between different locations),

whereas in the latter this is not the case. Convergence can still be a problem

in that it may cause individual operator or terminal node types to be eliminated

entirely from the population, in which case the mutation operation becomes

important.

Another potential advantage of GP over GA in dynamic applications is the

possible existence of ‘introns’ in GP population members. The term ‘intron’

comes from biology and it refers to the existence of non-functional genetic

code in chromosomes. It has been observed that a significant proportion of

the genetic material in, for example, the human genome is never expressed -

i.e. particular genes are not used biologically. Introns are also observed in

evolved GP populations in the form of sub-trees of operators and terminals

that have no effect on the evaluation behaviour of individual parse-tree

functions. The proportion of intron material in GP trees is often observed to

increase with successive evolved generations, a phenomenon known as ‘GP

bloat’. The explanation for this is that a good candidate solution which

contains a high proportion of introns and a low proportion of active genetic

material is less likely to lose beneficial active material under crossover, and

hence is more likely to produce high fitness children. The effective fitness of

individuals thus depends not only on how it is scored by the fitness function,

- 22 -

but also on its ability to pass on useful characteristics to subsequent

generations. Introns benefit reproductive fitness and therefore tend to

propagate through the population over time even though, by definition, they

have no direct effect on the evaluated fitness of individual candidate solutions.

The presence of redundant material in a GP population may improve its ability

to adapt dynamically, because it may include building blocks of operators and

terminals which will be beneficial to candidate solutions at some future time.

2.4.2 Other methods
A popular method for dynamically adaptive learning is Swarming (Eberhart &

Shi, 2001). This is a population-based method using a fixed-sized set of

candidate solutions. In contrast to evolutionary computing, individual

population members move through the solution space over time. Population

dynamics are governed by a simple set of rules in such a way that the

population is ‘attracted’ to the fittest member at any given time (hence the

name). If the maximum fitness region of the search space moves over time

the motion of individuals around the previous centre should allow this

movement to be tracked. Convergence is avoided by the use of a rule which

prevents individuals from moving within a certain distance of each other.

Unfortunately it is not practical to implement this method using the GP parse-

tree representation of candidate solutions as there is no clear concept of

relative position or movement in solution space for such individuals.

Another candidate method for dynamic learning is that known as Expert

Tracking, described in Herbster and Warmuth (1998), which is a dynamic

adaptation of the fixed Expert Share algorithm. This algorithm uses a

predefined fixed population of candidate solutions or ‘experts’ and learning

occurs in a series of trials. The system predicts the outcome of each trial

according to a weighted sum of the predictions of each individual expert. At

each step the weight assigned to the experts is updated according to their

accuracy in predicting the previous trial. Individuals that consistently give

accurate predictions receive exponentially increasing weighting over time. The

problem with this method is that poorly performing experts can attain

arbitrarily small weightings which will not be recovered at some future time

- 23 -

when they become the best predicting experts: this can be seen as another

form of convergence. The Expert Tracking algorithm alters the weight-

updating formula to place a lower limit on the relative weighting of individual

experts so that small weights can be recovered. This framework could be

used in the setting of predicting future values of asset prices, however the fact

that it uses a fixed set of experts - new candidate solutions cannot be

generated - makes it less than ideal for this particular application.

- 24 -

3 System Design and Implementation

3.1 Problem Definition

The material goal of this project is to produce a system for the GP-based

optimisation of technical trading rules using historical asset price training data.

This system must be able to perform the standard ‘static’ method for evolving

optimised candidate solutions, as described in section 2.2 and in Koza (1992),

and also implement an appropriate dynamically adaptive GP learning

algorithm.

In order both to train the GP system and to evaluate individual trading rules it

is necessary to implement a method of simulated asset trading which

accurately represents how the rules would perform in real life. This will involve

firstly calculating TI values from the input market data, then evaluating the

trading rules based on these values, and then enacting the trading

recommendations and recording resulting profits for each individual candidate

solution.

The design for the system should take into account all useful information

gained from previous work conducted in this field. The works covered in

section 2.3.1 describe various measures to reduce the effect of over-fitting of

the evolved rules to the training data, or to otherwise improve the trading

performance of the GP-generated rules. In order to develop a system which

achieves the best possible performance it is desirable to combine all of the

most promising of these techniques into the design.

The system should be as adaptable as possible, in terms of the control

parameters for the GP algorithm and in other aspects of the design, in order

to allow maximum optimisation of system performance.

- 25 -

3.2 Development Tools

The system program was initially written in the Java programming language

using the Sun Java compiler and virtual machine. The Java language was

chosen because the design required an Object Oriented Programming

language. Also, Java allows easy handling of pointers and automated

garbage collection and there are features particular to this language which

made certain parts of the design easier to implement. Later the program code

was ported to J# (essentially the same language with different class libraries)

in order to run on the Microsoft .NET platform and this was found to deliver a

significant increase in speed performance.

3.3 Implementation details

3.3.1 GP tree structure representation of trading rules
The GP-based technical trading systems describe in section 2.3 can be

divided into two categories, according to the way trading rules are constructed

within the GP tree structure.

The first group, exemplified by Allen and Karjalainen (1999) and Jonsson et al

(1997) uses just simple min/max and moving average functions, the current

price value and numerical constants as the input set. These are combined

using a large operator set including arithmetic, conditional and logical

functions. The second group uses a set of known TI functions, such as PCB

and Relative Strength Index (RSI), which are combined using Boolean

operators.

The advantage of the first method - letting strategies evolve from simple

functions - is that, in a certain sense, it allows a greater degree of optimisation

of the trading rules. The use of arithmetic and comparison operators allows

rules to be created that could not be expressed using only Boolean functions.

Also, having the min/max and average functions take a numerical input that

defines the evaluation time window creates an extra level of optimisation.

- 26 -

Practitioners of technical analysis do adapt moving average based trading

rules in this way to model supposed variations in the period of oscillating price

trends.

Other TI which have more complex mathematical formulations, such as the

RSI, also have parameters which, technically, could be optimised within the

GP in this way. It would be impractical to implement this however, as these TI

are functions of their own previous values: therefore allowing variable

parameters in these cases would necessitate the recalculated of an entire

sequence of TI values for every occurrence of that TI in every GP-tree in the

population at each time step.

To illustrate this point, several TI use Exponential Moving Average (EMA)

calculations of the form:

)1()1()()(!"!+"= TEMAkTpricekTEMA

where T is the current time, k is a parameter between 0 and 1 and EMA(T - 1)

is the previous EMA value.

The disadvantage with the method of Allen and Karjalainen is that it is limited

- in another sense - by the simple input function set that it uses. Although

many commonly used TI rules are derived from moving average calculations

or local minima and maxima of past prices - and could therefore be generated

from this simple function set - there are others which cannot be expressed in

this way. The RSI indicator, for example, cannot be expressed as a

combination of simple moving average and max/min functions.

Another problem is that it can be hard to evaluate how rules evolved in this

way actually function; large, complex GP parse-tree functions can be hard to

comprehend. This is a significant factor in the choice of implementation

method as one of the aims of the experimental work was to investigate how

- 27 -

optimal trading rules function and how rules trained on different time-

sequences of price data differ in their functional performance.

Taking these factors into account, it was decided to implement the second

method - using a set of commonly used existing TI and combining them to

form ‘meta-indicator’ rules. Another reason for this choice was that the

alternate method was implemented by Allen and Karjalainen and, in the most

rigorous experimental analysis of all the works described in section 2.3, it was

found not to be effective.

3.3.2 Technical Indicator set

I have chosen the following set of Technical Indicators, based on the available

financial literature, including Brock et al (1992), and on the TI sets used in

previous experiments (e.g. Kapishnikov, 2002).

Simple Moving Average

If the current price crosses above the average price of the previous n

days, return a BUY indicator; if the price crosses below return SELL.

Price Channel Breakout (PCB)

If the current price exceeds the maximum from the previous n days, BUY;

if it goes below the minimum from this period, SELL; otherwise HOLD.

Simple Moving Average Crossover (SMAC)

If a short term (5-day) moving average value crosses above a long term

(50-day) moving average then BUY; if the short term average crosses

below then SELL.

Moving Average Convergence Divergence (MACD)

The MACD is the difference between a short term and long term price

EMA values (as described in section 3.3.1). If the MACD crosses above its

own EMA value, return a BUY indicator; SELL if it crosses below.

Relative Strength Index (RSI)

- 28 -

K-Stochastic

For a mathematical definition of these two indicators, see the appendix of

Dempster and Jones (2001).

In addition to these indicators which are defined in the financial literature, the

TI set also includes a 1-Day Price Change Indicator which gives a BUY signal

if the price has risen from the previous day’s value and SELL if it has dropped.

This is not a ‘legitimate’ TI as such: However, one of the naïve trading

strategies that is being used to benchmark the performance of the GP-

evolved trading rules simply predicts that the direction of price movement for

the current day will be the same as on the previous day (This will be termed

the ‘Repeat Rule’). Therefore it seemed sensible to make the same rule

available to the GP system.

3.3.3 Implementation of the GP structure for candidate solutions
The tree structure of candidate solutions is represented in the program as a

set of instantiations of a node object class. There is a separate class for each

function node type and for the terminal node, all derived from a base node

class. The tree nodes are doubly linked; each has a pointer to its ‘parent’

node and the non-terminal function nodes have pointers to their ‘children’. The

function nodes are evaluated recursively so that the output value from the

parse-tree is computed simply by evaluating the root node.

Terminal node set
The input node set consists of the following Technical Indicators; each can

return the values 1, 0 and -1, representing BUY, HOLD and SELL

recommendations respectively

1. 5-Day Simple Moving Average

2. 50-Day Simple Moving Average

3. 5-Day PCB

4. 50-Day PCB

5. SMAC

- 29 -

6. MACD

7. RSI

8. K-Stochastic

9. 1-Day Price Change Direction

Optionally, the terminal node set also includes three constant BUY, HOLD

and SELL indicators.

In the implementation of the program, the price statistics on which the

technical indicators are based (e.g. moving averages and various function

values used in the evaluation of the MACD, K-Stochastic and RSI indicators)

are calculated and stored in memory along with the price data itself. In this

way the computation of the actual TI values at each time step only requires

evaluation of simple conditional statements (e.g. IF [variable x(t) < variable

y(t)] THEN Return 1). Furthermore, the representation of the terminal nodes

within the GP tree structures uses pointers to the actual TI values so that

these only have to calculated once at each time step, rather than every time

an individual terminal node is evaluated. These measures allow fast and

efficient evaluation of the trading rule output recommendations - the most time

consuming part of the GP algorithm.

Function set
The function set consists of logical AND, OR and NOT plus the conditional IF

operator. These are all modified to operate on the ternary BUY/SELL/HOLD

logical values, as suggested by Kapashnikov (2002).

AND

Input 1 Input 2 Output

B B B

B H H

B S H

H B H

H H H

H S H

- 30 -

S B H

S H H

S S S

OR

Input 1 Input 2 Output

B B B

B H B

B S H

H B B

H H H

H S S

S B H

S H S

S S S

NOT

Input Output

B S

H H

S B

Table 1. Operator set truth tables

3.3.4 Trading Strategy

The GP evolved trading rules will output a trading recommendation (BUY

SELL or HOLD), at each time step, according to the current TI values and the

structure of the individual rules. A trading strategy controls how these

recommendations are acted upon in simulated trading of an asset.

The system can trade in either long or short positions. Trading long means a

quantity of the asset is bought and held. A long position is exited when the

total amount of the asset held is sold back into the market. Taking a short

position involves selling a quantity of an asset that is not actually held by the

seller. Short selling is permitted in some markets. The details of how short

IF

Input (IF) Output

B Input(THEN)

H H

S Input(ELSE)

- 31 -

trades are executed are complicated but essentially what happens is that a

quantity of the asset is borrowed from a lending institution and immediately

sold on the open market. Cash is provided to the lender as collateral, equal to

the value of the borrowed assets plus an amount to cover possible trading

losses (this collateral is equivalent to the investment capital used to buy long

positions in the context of the trading strategy). A short trade is exited when

an equal quantity of the asset is bought from the market to cover the original

loan. There is often a limit on how long a short position can be held. The

system is also allowed to take an out-of-market position, meaning no amount

of the asset is currently held or sold short.

The system enters fixed-sized trades according to the trading rule

recommendations. There is a time limit imposed on the holding of both long

and short positions. Also there is a loss-trigger for exiting positions, such that

if the value of an asset held in a long trade drops by a certain fraction from the

original trade then the asset is sold. Alternately, a short position is exited if the

value of the asset increases by the same fraction. In this way, once a position

is entered there are three ways in which it may be exited, either an opposing

trade recommendation is received, or the time limit is exceeded, or the loss

trigger is activated. When a long position is held, a BUY or HOLD

recommendation will cause no change. A SELL recommendation will exit the

long position and immediately enter a short trade. Therefore, an out-of-market

position will only occur when the time limit or loss trigger causes a long or

short position to be exited, and will be held as long as the trade rule returns a

HOLD recommendation.

This trading strategy is designed to reflect that which may be used by a

Hedge Fund. Traditional pooled investment vehicles such as mutual funds are

prohibited by regulations from trading in short positions. Hedge funds are

legally structured in such a way as to avoid these and other regulatory

constraints (see Connor and Woo, 2003). A trading strategy that can trade in

short positions is able to make a profit from periods of negative market price

change, whereas the best a long-only strategy can achieve during a

downward trend is to stay out of the market.

- 32 -

A realistic representation of the trading strategies that are used in real life is

necessary to validate any experimental results. There are some details of the

implementation which only approximate certain aspects of a market trading

system - for example in the way transaction costs are represented, and the

fact that stocks can only be traded in discrete quantities is ignored. These

measures are justified because the aim of the experiments is to compare the

performance of GP-evolved trading rules relative to simple trading strategies,

rather than to measure the absolute returns generated by these rules.

3.3.5 Imposition of transaction costs

Transaction costs are incurred whenever stocks are traded on an open

market and these will affect the total profit or loss achieved by any trading

system. The two main sources of transaction cost are transaction charges -

the costs incurred when a trade is executed (e.g. brokerage fees) - and

slippage - the loss resulting from differences between the price when the

decision is made to enter a trade and the actual transaction price. This system

models transaction costs using a simple percentage deduction from the value

of each trade entered into.

3.3.6 Fitness Measurement
The fitness of individual technical trading rules is measured directly from the

returns generated by simulated trading using those rules. The same fitness

function calculation is used both to score candidate solutions for evolutionary

optimisation, and for the out-of-sample evaluation of their performance.

Trading profit or loss is calculated daily according to the size and direction

(long or short) of the current market position and the daily percentage price

change in the asset value. Trades are always entered into in a fixed unit-size

amount, minus transaction cost. Although returns are allowed to accumulate,

or compound, for as long as a position is held, daily returns are relative to the

initial investment amount. To illustrate this, suppose a long position is bought

in a stock that appreciates at a constant 10% per day. If the transaction cost is

10%, deducted from the initial investment capital, the return for the first day

- 33 -

will be -1% (-10% deduction plus 10% growth on the remaining 90%) then

+9.9% then +10.89% and so on…

The fitness function value is the daily return rate averaged over the evaluation

period of simulated trading.

3.3.7 Dynamic Evolution Implementation Method

An effective dynamically-adaptive learning system based on evolutionary

techniques depends on the preservation of diversity in the available candidate

solutions in order to prevent population convergence. One way to achieve this

aim is to employ active measures for maintaining genetic diversity in the

population of candidate solutions. In order to do this, it is first necessary to

have a way to measure diversity.

Measurement of population diversity

In this GP system, population diversity is indicated by the difference between

the maximum and average fitness from the population. This is only an indirect

measure of genetic diversity but it is easy to implement and relatively fast to

compute. Convergence of the average fitness value to the maximum is used

as an indicator to take action to increase diversity.

Control of population diversity
In the program there are two controls available to maintain or increase

diversity over time. The first is the mutation rate - the frequency with which

population members undergo mutation on their GP and GA structures:

Mutation directly introduces more new genetic material into the population.

The second method is to control the selection pressure - the bias in selection

of members for reproduction towards fitter members. Reducing this bias will

reduce the rate of convergence within the population. This can be

implemented using either the rank selection or tournament selection methods,

as described previously. Both selection methods have been implemented in

my system and can be selected by the user.

- 34 -

By adjusting the parameters controlling selection bias the system attempts

limit convergence so that new trading rules can be generated. This is similar

to the way in which the fixed-share weight update used by Herbster and

Warmuth (1998) adapts the best expert tracking algorithm to limit the growth

and decay of prediction weighting from a group of experts. The purpose of this

work is also to allow dynamic adaptation to a changing problem context.

Dynamic evolution of the population
The standard (i.e. non-dynamic) method for evolving optimum solutions using

GA or GP, which shall be referred to as static evolution, involves using a fixed

set of training data to evaluate the performance of successive generations of

candidate solution populations. The entire population is replaced at each

generation by new members produced by fitness based selection, crossover

and mutation from members of the old generation (except where elitism is

used to carry over a proportion of the fittest members unchanged into the new

generation).

In the case of market trading system the training data consists of asset price

data covering a finite period of time. The fitness of candidate solutions is

measured by running simulated trading over the period of the data and

calculating the profit or return produced at the end of the run. All the work

described in the literature implements this method in some way.

In order to create a dynamically adaptive system a new algorithm has been

devised which measures the fitness of candidate solutions and selectively

reproduces them continuously as successive day’s price data are entered into

the system.

It should be made clear that simulated trading is run for all the individual

population members, using the latest available data, for the purpose of

evaluating and evolving new trading rules. At the same time, simulated trading

is run for the system as a whole, acting on the trading recommendations of

the current designated fittest population member.

- 35 -

The algorithm works as follows:

Initialisation
1. Create an initial population of randomly generated GP trading rules.

Optionally, run static evolution on this population, with a range of

training data preceding the dataset used to run the main dynamic

algorithm, in order to ‘kick start’ the development of optimal trading

rules. Limit the number of generations to prevent convergence.

At each time step
2. Record the current price data; calculate TI values and record the profit

earned for that day by each rule in the population. Evaluate each GP

trading rule according to the TI values and update their market

positions according to the BUY/SELL/HOLD recommendations and the

trading strategy.

3. Evaluate the trading decision and record the daily profit for the system

according to the current fittest trading rule.

At every ith time step (where i is an adaptable parameter)
4. Evaluate the fitness of all individuals over the preceding j days (j,

the fitness range is also a variable). Select a small proportion of

members to reproduce according to fitness.

5. Copy the selected parents, subject the children to crossover and

mutation then retrospectively run simulated trading with them over

the previous trading range - this is done so that the new individuals

can be assigned a fitness value as soon as they have been created.

6. Temporarily remove the elite fittest members from the population.

From the rest, randomly select a number, equal to the number of

children, to replace. Selection in this case is biased according to

inverse fitness - i.e. unprofitable trading rules are dropped from the

population. Replace the elite members and new members into the

population.

7. Record the average and maximum fitness values. Adjust the

mutation rate and selection bias accordingly. Update the current

designated fittest population member.

- 36 -

Implementation of elitism for dynamic population optimisation
Using the methods described above the aim is to maintain enough diversity to

allow the system to adapt to changes in the environment - in this case

changes in market conditions. In doing this the optimisation ability of the

system may be impaired. An effective evolutionary learning system has to find

the best trade-off of ‘exploration versus exploitation’. Maintaining high

diversity helps exploration - searching through the solution space for local

maxima - at the expense of exploitation - optimising and using high fitness

individuals to make trading decisions for the system. This makes the use of

elitism especially important to ensure that a proportion of the fittest individuals

are preserved at all times.

Use of mutation
Individuals in the population can undergo mutation, with a given probability,

only at the point when they are created. It is not desirable to subject

individuals to mutation once they are running trading evaluations on the data.

This is because the fitness of individuals is based on trading performance

measured over the preceding range of days within the fitness evaluation

period. If an individual has undergone a mutation within this period the fitness

results are invalidated. This may lead to the system making trading decisions,

or creating new candidate solutions, based on individuals which performed

well in the past but which have recently been ‘disabled’ by a harmful mutation.

3.4 System Testing

In order to ensure that the program is error free the following testing schedule

was used. Every program class was tested independently to verify that it

functioned as specified. The system program includes functions to output all

data from the calculation of TI values and population fitness statistics for

testing and evaluation purposes. Additionally the system can output text files

which record the GP tree structure, fitness, trading frequency and TI weighting

for individual candidate solutions.

- 37 -

Test Schedule
• Verify correct calculation of TI from input data - For simple TI the

correct values can be calculated for comparison to the program output.

More complex TI functions require published data for verification of

output values.

• Test data output to text files - The program records and outputs both

the statistics used to compute the Technical Indicator values (e.g.

moving average values) and the actual TI output (1, 0 or -1).

• Correct initialisation of GP trees - Are the randomly generated trees

structurally correct (and genuinely random)? Does each function node

have the correct number of inputs? There is a facility in the program to

output the structure of individual GP trees for examination.

• Random selection of crossover and mutation points - Ensure the

method devised for selecting nodes at random from a pointer-linked

tree structure works correctly.

• Crossover and mutation functions - Are the node sub-trees exchanged

correctly?

• Correct evaluation of GP parse-tree from TI inputs - Given a set of

input values, does the parse-tree return the correct output value

according to the structure of logical operators?

• Trading mechanism and calculation of daily profit - Ensure that the

system correctly implements the output recommendations according to

the trading strategy.

• Fitness calculation - Does this function correctly?

• Selection and basic evolutionary performance - Verify that the average

and maximum fitness values increase over time (see figure 3).

- 38 -

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Generation

F
it
n
e
s
s

Average Fitness

Max Fitness

Figure 3: Demonstrating the evolutionary performance of the GP system

- 39 -

4 Experimental Design

The purpose of the experiments was to test the ability the GP system detailed

in the previous chapter to generate profitable technical trading rules, and to

compare the effectiveness of the static and dynamic learning methods.

4.1 Experimental Input Data

The experiments used stock market price data for simulated evaluation of

trading strategies, both for the fitness evaluation of trading rules in the

evolutionary stage of experiments, and for the out-of-sample testing of those

rules.

All the stock market historical price data used for these experiments was

obtained from the Yahoo Finance website. This is a respected source of

accurate financial data used by academics and professionals. Yahoo provides

data on all individual company stocks traded on major exchanges. Opening,

closing, range high and low prices and trading volumes are given for each

day. The trading system uses only the adjusted closing price data; this is the

daily closing price adjusted for stock splits and dividend payments which

otherwise distort the price data.

Experiments were conducted using share price data for Delta Airlines

and International Business Machines (IBM) stocks traded on the New York

Stock Exchange. In addition to these individual stocks, the system was tested

using data from the Dow Jones Industrial Average (DJIA). Data for all stocks

covers the same twenty four year period, from February 1980 to July 2004,

covering just over 6000 trading days. The price values were plotted from a

spreadsheet and visually inspected for anomalous values before being used

as input for the GP system.

- 40 -

4.2 Experiment Aims and Objectives

The primary objective of the experimental work was to demonstrate the

effectiveness (or otherwise) of this system and of the general concept - GP

optimisation of TI based trading rules - in making profitable forecasts of asset

price movements. In order to meet this objective it was necessary to address

the following key issues:

High fitness values attained by evolved trading rules on the in-sample training

data do not by themselves constitute proof of the predictive ability these rules.

Several of the authors mentioned in the literature review apparently fail to

appreciate this fact. The fitness data on its own only serves to demonstrate

that the evolutionary algorithm is functioning in terms of creating individuals

with increasingly high measured fitness.

It is necessary to demonstrate that the GP algorithm is learning rules which

have some predictive power beyond the training period, as opposed to just

learning the behaviour of the training data. With most machine learning

techniques there is an issue of over-fitting learned rules to a particular set of

training data. The ability of learned rules to generalise to unseen data is

dependent on avoiding over-fitting, particularly when the training data is noisy.

Market price data is inherently noisy - statistical tests show a high degree of

randomness in stock price time-series data. According to the Efficient Market

Hypothesis the movement of price values follows a random walk; therefore

the data contains only noise and no information.

Positive trading returns (making a profit) also do not constitute proof of the

predictive ability or practical usefulness of evolved trading rules. The

experiments must demonstrate a significant (consistent) positive excess

return relative to an appropriate performance baseline. In these experiments

the baseline is the trading return resulting from the application of a naïve

trading strategy over the same market period. The two naïve strategies used

are buy-and-hold (for a single asset this means holding a fixed long position

- 41 -

for the duration of the period; the profit or loss depends solely on the

difference in price at the beginning and end of the period) and the repeat rule

(predict that the market will move in the same direction today as it did

yesterday and trade accordingly). The comparison of trading performance

relative to the two naïve trading strategies is important because:

a) Even rules which trade completely randomly will be expected to make

a profit, on average in a market with a long term upward trend (if

trading long positions only).

b) A high fitness evolved trading rule may be operating in exactly the

same way as the simple rule, at least most of the time. It can be hard to

analyse the behaviour of GP-tree trading rules; the phenomena of bloat

in GP means that a very large complex tree may be functionally

identical to a naive trading rule. Such a rule may be very profitable

some of the time but this hardly justifies the use of GP. It does not

demonstrate the usefulness of GP for this application, nor does it

demonstrate the predictive power of complex TI rules.

4.3 Procedure

The experimental work was separated into three stages: The first set of

experiments uses static evolution to optimise trading rules with fixed

sequences of training and evaluation data. This stage was used to test the

effect of varying the control parameters of the GP algorithm in order to

optimise the performance of the system. In addition the following experimental

procedures were carried out:

Analysing the functional behaviour of GP trading rules

In order to analyse the performance of the GP system it is useful to be able to

determine how individual evolved trading rules function, in terms of how the

various TI inputs affect the output BUY/SELL/HOLD recommendation. It can

be hard to assess the behaviour of individual trading rules solely from

examination of the structure of GP trees. Therefore the system program

- 42 -

includes a function which quantifies this behaviour in terms of weighting

values assigned to each TI in the input set. These weights are computed by

running through all possible combinations of the (ternary) input values and

recording the correlation between each TI and the GP function output. In this

way it is possible to test whether the optimal-fitness trading rules output by

repeated training runs on the same set of data work in a consistently similar

way; or alternately, to analyse how trading rules optimised for various periods

of the market differ in behaviour.

Measures to limit over-fitting
There were two methods suggested in the literature review for limiting the

tendency of the GP system to over-fit the evolved trading rules to the training

data, and so improving the performance in out-of-sample trading. The first

was to introduce a complexity penalising term in the fitness function (Becker

and Seshadri, 2003) so that simpler rules are evolved (this could be said to fit

with the principle of Occam’s Razor, that simple solutions are generally

better). In these experiments a different approach is taken to achieve the

same aim. Instead of altering the fitness function, the system imposes an

absolute limit on the allowed size (the total number of nodes) of the GP trees.

This limit applies to the individuals generated in the initial population, and

those produced by crossover. An alternate method was to alter the

comparison function that is used in both the rank and tournament selection

algorithms so that two individuals with equal fitness are ranked according to

tree size: This induces an element of selection pressure toward simpler rules.

Kapishnikov (2002) uses the technique of increasing transaction costs during

training of the GP system in order to reduce over-fitting. This method is also

tested here.

The second stage of experiments is to test the effect of periodic retraining of

the GP-evolved rules on overall trading performance. The Third stage

evaluates the performance of the dynamic evolution algorithm relative to the

previous results for periodic retraining.

- 43 -

5 Results and Discussion

5.1 Static Evolution Results

Static evolution experiments were run on the IBM and Delta Airlines stock

price data and the Dow Jones Industrial Average (DJIA) data. It can be seen

from the plots of all three datasets that there is a qualitative change in the

trends in price movements between the first 4000-4500 days and the

remainder. The early period exhibits a relatively low volatility with a clear long-

term upward trend while the later period shows high volatility and flat or

declining trends (see figures 4, 5 & 6). It was decided to run static evolution

testing separately on both periods for all three datasets, further subdividing

each period into equal training and evaluation ranges, as shown on the

graphs.

 As there is a large relative increase in value over the first period, for all three

datasets, the trading strategy for the GP-evolved rules was modified to allow

the reinvestment of accumulated profits rather than executing fixed-sized

trades. Also, the limit on the number of days that an in-market position can be

held was removed. Otherwise it would be very hard for any technical trading

rule to beat the return of the buy-and hold strategy in this period. The

standard trading strategy was used in period 2 and all subsequent

experiments. The strategy of continually reinvesting profits is inherently more

risky, in accordance with the increased potential return, and so the results for

periods 1 and 2 should not be compared directly. Furthermore, to choose a

different trading strategy appropriate to each period is to make use of prior

knowledge about how the market will behave - this would also invalidate such

comparisons. However, the purpose of these experiments is to compare the

evolved trading rules to the naïve strategies within the same trading period:

Later experiments which do compare returns over the entire range of data use

a fixed strategy for these reasons (a potential area of further research would

be to try co-evolving trading strategies with the trading rules).

- 44 -

0

2000

4000

6000

8000

10000

12000

14000

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000

Day

In
d

e
x

 V
a

lu
e

Training Range 1 Evaluation Range 1

Period 2Period 1

Figure 4: Dow Jones Industrial average Feb 1980 - April 2004. The plot shows
the two static-evolution testing periods with consecutive, equal length training
and evaluation ranges

0

20

40

60

80

100

120

140

160

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000

Day

S
h

a
re

 P
ri

c
e

Training Range 1 Evaluation Range 1

Period 2Period 1

Figure 5: International Business Machines stock price Feb 1980 - April 2004

- 45 -

0

10

20

30

40

50

60

70

80

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000

Day

S
h

a
re

 P
ri

c
e

Training Range 1 Evaluation Range 1

Period 2Period 1

Figure 6: Delta Airlines stock price Feb 1980 - April 2004

5.1.1 Out-of-sample trading performance
Tables 2, 3 and 4 show the trading performance of the maximum-fitness

evolved trading rules over a number of runs of the GP program. The results

show that in period 1 the average return from the GP-evolved rules does not

exceed the buy-and-hold return in out-of-sample trading (i.e. the evaluation

range). There is a relatively large variation in these returns over the series of

program runs.

In period 2 the average out-of-sample return for the evolved trading rules is

positive, whereas the other strategies make a loss over the same period.

However the excess average return, relative to buy-and-hold, is less that the

standard deviation on this value; so this positive excess return is not

statistically significant. The large variation in evaluation fitness values is what

one would expect for a random trading strategy in this period, given the high

volatility in price movements. Also the very high fitness values achieved in the

second training period, relative to the buy-and-hold strategy and to the out-of-

sample returns, indicate that the GP system is simply learning the particular

sequence of price movement in the training data.

- 46 -

GP Run
Range

(2000 day) 1 2 3 4 5 6 7 8 9 10
Training 0.250 0.233 0.267 0.264 0.232 0.263 0.238 0.267 0.261 0.252

Evaluation 0.057 0.029 0.042 0.035 0.040 0.033 0.043 0.036 0.037 0.071

Range
(2000 day)

Average

return

Standard
Deviation

Buy & Hold
return

Repeat Rule
return

Training 0.253 0.014 0.114 0.217
Evaluation 0.042 0.013 0.042 0.036

Table 2: Delta Airlines period 1 trading fitness.

GP Run
Range

(600 day) 1 2 3 4 5 6 7 8 9 10
Training 1.055 1.000 1.176 1.728 1.171 1.452 0.990 1.380 1.263 1.062

Evaluation 0.216 0.113 -0.06 0.046 -0.06 -0.10 -0.04 0.066 -0.01 -0.04

Range
(600 day)

Average

return

Standard
Deviation

Buy & Hold
return

Repeat Rule
return

Training 1.228 0.235 0.034 0.102
Evaluation 0.013 0.097 -0.073 -0.293

Table 3: Delta Airlines period 2 trading fitness.

IBM DJIA

Range
 Ave. Dev. B & H return Ave Dev. B & H return

Training 1 0.520 0.141 0.239 0.965 0.102 0.058

Evaluation 1 0.083 0.020 0.096 0.093 0.025 0.085

Training 2 0.381 0.119 0.052 1.53 0.262 0.024

Evaluation 2 -0.014 0.032 -0.036 -0.032 0.039 -0.012

Table 4: Fitness data for IBM and DJIA evolved trading rules.

5.1.2 Effects of control parameters
The evolutionary performance of the GP algorithm was fairly insensitive to the

GP control parameters: Varying the crossover and mutation probabilities,

number of generations etc had little noticeable effect on the average

- 47 -

maximum fitness values attained for the training data. Table 5 shows the set

of control parameters, the ranges tested and the values chosen for use in

subsequent experiments.

Parameter Min Max Used

Crossover rate 50 100 100

Mutation rate 0 100 25

Tournament size 3 10 3

Population size 100 400 200

Generation count 10 80 40

Elite size 0 20 8

Tree size limit (node count) 10 50 30

Table 5: GP control parameter testing ranges.

Changing the parameters of the trading system made little difference to out-

of-sample average returns, except where increasing the transaction cost to

the maximum of 0.5% strongly reduced these.

Testing of the various methods for limiting over-fitting as described in section

4.3 (limiting the size of GP trees, biasing selection towards smaller trees, and

varying transaction costs during training) showed these to be ineffective.

There was no correlation between the size of evolved GP trees and average

fitness. This may be because any measure to reduce the average size of the

tree structure will be more likely to affect introns, rather than functional

material, and so will have little effect on the functional complexity of the

trading rules.

5.1.3 Correlation of in-sample and out-of-sample performance

Although the trading performance of the evolved GP rules on the training data

is not in itself a good measure of the ability of the system to make profitable

forecasts, it is useful to measure the correlation between the in-sample and

out-of-sample trading performance of individual candidate solutions.

Evolved rules did not consistently generate excess out-of-sample trading

returns in the previous experiments. However, a positive correlation between

- 48 -

in-sample and out-of sample returns would suggest that this may be

achievable by some improvement of the GP system: In this case it would be

worthwhile investigating ways to achieve higher training fitness, as this should

lead to greater excess returns on out-of-sample trading, either by optimising

the parameters of the evolutionary algorithm (although this has already been

tried), or by using a different TI input set. Conversely, a negative correlation

would indicate over-fitting and measures could be taken to reduce this effect.

Experimental results show no significant correlation between in-sample and

out of sample trading profits. Figures 7 and 8 show the training and evaluation

fitness values for the trading rules output from a number of GP runs (the rules

having the maximum attained training fitness from the evolutionary

population).

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8

Training Data Fitness

E
v

a
lu

a
ti

o
n

 D
a

ta
 F

it
n

e
s

s

Buy & hold return

Figure 7: Correlation of training fitness to out-of sample trading fitness for

evolved GP rules. (IBM data; period 1)

- 49 -

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2 0.25 0.3

Training Data Fitness

E
v

a
lu

a
ti

o
n

 D
a

ta
 F

it
n

e
s

s

Buy & hold return

Figure 8: Correlation of training fitness to out-of sample trading fitness for

evolved GP rules. (Delta Airlines data; period 1)

5.1.4 Weighting of TI in evolved trading rules
Figures 9 and 10 show the relative weightings of the various TI in the

maximum-fitness evolved trading rules, over a series of program runs, for the

DJIA and Delta Airlines data respectively.

For the DJIA trading rules, generated from repeated static evolution runs on

the same set of training data, the weighting given to the various TI appears to

be quite random. One would expect certain TI to perform better than others on

certain ranges of data, and these would receive consistently higher weighting

in the optimised trading rules. This does not seem to be the case in the

trading rules evolved from period 2 of the DJIA data (figure 9).

- 50 -

1
2

3
4

5

6

7

8

-4000

-3000

-2000

-1000

0

1000

2000

3000

Weight

GP Run

1-Day Change

5-Day PCB

5-Day Ave

50-Day Ave

SMAC

RSI

K-Stoch

MACD

Figure 9: Relative weighting of TI in fittest trading rules over a series of

evolutionary runs. (DJIA data; period 2)

The results from section 5.1.1 show that for Delta Airlines the repeat rule

trading strategy outperforms buy-and-hold in both of the training periods. This

is a noteworthy result in itself: such a strategy would have to be very effective

in predicting the direction of daily price movements as it trades frequently and

thus incurs high transaction costs. Figure 10 shows that GP-evolved trading

rules trained on the same data consistently give a high weighting to the 1-day

price change indicator. This means that these rules are acting according to

the naïve repeat rule strategy - “predict that the price will move in the same

direction tomorrow as it did today” - most of the time.

This result demonstrates that GP system is able to learn to use individual TI

where they are known to perform well, and does so repeatedly. However, the

random weightings of other TI for both sets of results indicate that they do not

have any consistent predictive ability. Another point to note is that figure 9

shows that the TI are just as likely to have negative weightings as positive

(meaning that there is a negative correlation between the TI value and the

output of the trading rule). This seems to contradict the idea that the TI rules

- 51 -

are good indicators of what price trends are going to do: If the PBC rule

described in section 2.1.1 is really correct how come the GP system evolves

rules which predict the market will go in the opposite direction to the PCB

indicator?

1

2

3

4

5

6

7

8

-2000

-1000

0

1000

2000

3000

4000

5000

Weight

GP Run

1 Day-Change

PCB

5-Day Ave

50-Day Ave

SMAC

RSI

K-Stoch

MACD

Figure 10: Relative weighting of TI. (Delta Airlines data; period 2)

5.2 Static Evolution with Periodic Retraining

In these experiments simulated trading was run over a range of data covering

both periods 1 and 2 from previously. This range was divided into a set of

consecutive equal-length periods. GP training was run on each period

separately, producing a sequence of optimised trading rules - one for each

period. The fitness values obtained for each period resulted from the

application of the rules trained on the one immediately preceding it.

5.2.1 Periodic Retraining Results
Figures 11, 12 and 13 show the performance of GP-evolved technical trading

rules relative to buy-and-hold and repeat rule strategies over consecutive 400

day periods for Delta Airlines, IBM and the DJIA respectively. The fitness

- 52 -

values for the evolved rules for each period are averaged over a number of

training runs, as in section 5.1.1. The figures also show the returns from the

strategies averaged over all periods (day 601 to 5800), excluding the first

period for which there is no GP-evolved rule for comparison. It should be

noted that the average buy-and-hold return calculated in this way is not the

same as the return which would result from continuously holding the asset

over the entire time range, due to the effect of compounded capital growth.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

Repeat Rule

Buy & Hold

Evolved Rule

Figure 11: Relative performance of evolved trading rules to buy & hold and

repeat strategies trading Delta Airlines stock with 400 day consecutive training

and evaluation periods.

Fitness

Evaluation period
(days)

Return over entire range

Repeat Rule: 0.046
Buy & Hold: 0.024
Evolved Rules: 0.017

- 53 -

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

Repeat Rule

Buy and Hold

Evolved Rule

Figure 12: Relative performance of evolved trading rules to buy & hold and

repeat strategies trading IBM stock with 400 day consecutive training and

evaluation periods.

Return over entire range

Repeat Rule: 0.0046
Buy & Hold: 0.109
Evolved Rules: 0.023

Fitness

Evaluation period
(days)

- 54 -

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

Repeat Rule

Buy and Hold

Evolved Rule

Figure 13: Relative performance of evolved trading rules to buy & hold and

repeat strategies trading the DJIA with 400 day consecutive training and

evaluation periods.

It can be seen that the sequence of evolved trading rules produce negative

excess returns in comparison to buy-and-hold for all three datasets when

taken over the entire trading range. The results show that, as noted before,

the repeat rule strategy only performs well in trading with the Delta Airlines

stock.

There are individual periods when the evolved rules are seen to outperform

buy-and-hold. However, as mentioned, the single-period return values for the

GP-evolved rules are averages only, and the buy-and-hold values are

generally well within the measured standard deviation of these averages. The

one occasion where the evolved rules produce statistically significant positive

excess returns is in the latest trading period for the DJIA (see figure 13). A

possible explanation for this result comes from the fact that, as can be seen in

figure 4, the DJIA index data for this period (days 5400-5800) exhibit high

Return over entire range

Repeat Rule: -0.0090
Buy & Hold: 0.056
Evolved Rules: 0.0017

Fitness

Evaluation period
(days)

- 55 -

volatility. There are two particularly sharp drops in the index value that occur

in this range. Examination of the TI weighing in the technical trading rules

used in this period shows a consistently high weighting for the 50-day moving

average indicator. Application of this individual TI rule would cause the system

to sell the index prior to these drops and this alone would account for the

excess returns observed in this period. In this one occasion a single TI which

is found to be effective in one training period also produces profits in the

following evaluation period. In itself this result hardly constitutes a validation of

Technical Analysis techniques.

Figure 14 shows the results from periodic retraining on the Delta Airlines data

using a 600 day training/evaluation period. Extending the amount of training

data in this way may be expected to increase the ability of the GP system to

evolve profitable trading rules at the expense being able to adapt quickly to

changing market conditions. Either way, the evolved rules still do not

outperform either naïve strategy.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

200 800 1400 2000 2600 3200 3800 4400 5000

Repeat Rule

Buy & Hold

Evolved Rule

Figure 14: Trading results for Delta Airlines with 600 day training and

evaluation periods

Return over entire range

Repeat Rule: 0.034
Buy & Hold: 0.042
Evolved Rules: 0.018

Fitness

Evaluation
period (days)

- 56 -

5.2.2 Measuring time variation in the performance of static evolved rules
Figure 15 shows the period-by-period fitness values of static-evolved trading

rules - trained on each of the first three periods - over (almost) the full range

of data for the DJIA. The purpose of this test was to see how the performance

of individual trading rules changes over time. This was supposed to reveal the

way in which market conditions evolve - whether they change incrementally or

in discrete steps. The fitness data does not reveal any useful information in

this regard. Fitness values show neither a decreasing trend nor a sudden

change in any period but change randomly over time. The raw price data

(figures 4, 5 & 6) appear to show a discrete change in behaviour at around

4800 days, as mentioned before. This change is not reflected in the fitness

data in figure 15. It can be seen that the trading rule evolved in the third

period (1001-1400 days) makes a loss in the next period (1401-1800 days)

and is most profitable over 4600-5000 days.

-0.15

-0.1

-0.05

0

0.05

0.1

2
0
0
6
0
0

1
0
0
0

1
4
0
0

1
8
0
0

2
2
0
0

2
6
0
0

3
0
0
0

3
4
0
0

3
8
0
0

4
2
0
0

4
6
0
0

5
0
0
0

5
4
0
0

201-600

601-1000

1001-1400

Figure 15: Out-of sample fitness for trading rules evolved in the first three

400-day periods (DJIA data).

Fitness

- 57 -

5.3 Dynamic Evolution Results

The static evolution algorithm was run over the same range of data as used

for the periodic retraining experiments (day 601 - 5800). Table 6 shows the

period-by-period trading fitness for the system using the dynamic algorithm.

Average fitness values are calculated for each period from a number of runs

of the program, along with the corresponding standard deviation. The fitness

values for the repeat rule and buy-and-hold strategies are show for

comparison, along with the results from the previous experiments using static

evolution with periodic retraining.

It can be seen that the system does not outperform either naïve strategy on

average over the entire time range. This is not surprising, given the results

from the previous experiments which all indicate that GP evolved technical

trading rules are unable to generate excess profitable returns. The dynamic

algorithm did produce better returns than periodic retraining, over the whole

trading range. There is also a smaller variance in the returns for dynamic

evolution, hence a superior risk adjusted return.

 Dynamic Profit Stat evol rule profit
Range

start day
repeat

rule
buy and

hold Ave. Std. Dev. Ave. Std. Dev
600 0.272 0.128 0.266 0.053 0.186 0.072

1000 0.322 0.046 0.105 0.049 0.204 0.045
1400 0.079 0.087 0.110 0.032 0.059 0.061
1800 0.048 -0.014 -0.027 0.040 0.045 0.063
2200 0.073 0.181 0.093 0.022 0.075 0.028
2600 0.098 -0.030 0.088 0.039 -0.007 0.022
3000 -0.092 -0.039 -0.111 0.050 -0.065 0.107
3400 0.075 0.049 0.114 0.078 0.028 0.072
3800 0.023 0.056 0.024 0.021 0.032 0.049
4200 0.112 0.217 -0.061 0.084 -0.040 0.054
4600 0.045 -0.050 0.024 0.026 0.046 0.085
5000 -0.182 -0.049 -0.035 0.029 -0.073 0.052
5400 -0.279 -0.272 -0.286 0.055 -0.273 0.116

Average 0.046 0.024 0.023 0.044 0.017 0.064
Table 6: Comparison of dynamic evolution algorithm trading returns to naïve

rules and static evolution with periodic retraining (Delta Airlines).

- 58 -

Figure 16 shows the average and maximum fitness values for the dynamically

evolving population. These fitness values are retrospective, in the sense that

they are evaluated at each time step from the preceding range of historical

data, so they represent the ability of the system to adapt to the latest available

information. They do not give any direct indication of the forward predictive

ability of the system - this is shown in table 6. It appears, from comparing

these values to the raw market data in figure 6, that the fluctuations in fitness

are closely correlated to the direction of the price trend. Wherever there is a

particularly sharp drop in the stock price there is a corresponding decrease in

the average fitness value. The data shows that on several occasions where

these drops have occurred, at 1700, 4000 and 4800 days, there is an

increase in the maximum fitness. The effect is not very clear but it is repeated

in further runs of the program.This may be an indication that the algorithm is

able to rapidly adapt a small proportion of the individual candidate solutions to

the latest available data. This is exactly what is required, as the trading

recommendations of the system as a whole are based on the current fittest

member. However there are other occasions when the two fitness values

move together. The effect of large Individual movements in asset price

appears to dictate changes in fitness rather than any supposed change in

underlying market conditions.

- 59 -

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

6
0
0

1
0
0
0

1
4
0
0

1
8
0
0

2
2
0
0

2
6
0
0

3
0
0
0

3
4
0
0

3
8
0
0

4
2
0
0

4
6
0
0

5
0
0
0

5
4
0
0

Day

F
it
n
e
s
s

Ave. Fitness

Max. Fitness

Figure 16: Fitness statistics for the dynamic GP algorithm (Delta Airlines input

data).

- 60 -

6 Conclusions

My work clearly demonstrates that GP-evolved trading rules are not effective

in predicting future movements in asset price when using Technical Indicator

information derived solely from historical price data. This conclusion should be

qualified by saying that the investigation only covered the use of daily trading

data for individual shares and for one market index; it is possible that the

technique may be more successful when applied to other classes of assets or

markets, or if higher frequency ‘tick’ data is used. There has been other work

done in these areas and, as mentioned in the literature review, the results

appeared to be mixed, at best.

It is also possible that the system was simply using the wrong set of Technical

Indicators. Looking on Yahoo Finance and other finance-related websites

reveals a huge range of TI together with information on how and why they are

supposed to work. My choice of TI was primarily based on those used in the

trading systems of other researchers as mentioned in the literature review. In

fact, in emulating the work of several authors, a wider range of TI was used

than those others did individually. The experiments also investigated the use

various subsets of the chosen TI in runs of the GP algorithm - as shown, this

had little effect on trading results.

This approach to market forecasting may be more successful if different

sources of information were used as input for the GP learning algorithm.

These could include data from different markets, for example bond rates,

commodity prices or FX rates, in order to predict stock market trends or vice

versa. Potentially any other source of information which is judged to be

relevant - such as interest rates or data from fundamental analysis - could be

incorporated. The GP program developed here could easily be adapted to

take input from different sources. There has been work done in the use of GA

and GP to generate trading rules based on market indicators other than pure

Technical Analysis. Bauer (1994) used GA to develop strategies based on

- 61 -

bond rates. Yet again, there was no conclusive demonstration of significant

excess profits on out-of-sample data.

Apart from the obvious application of trying to make money, investigating the

use of GP with these different sources of learning input would be a useful tool

for discovering relationships between asset prices and other economic

factors. Such information may be important in itself for the study of

economics. More generally, GP can be a useful tool for discovering complex

relationships between wide classes of variables if approached from the point

of view of asking: “Can a GP learn to predict variable X, with a significant

probability, using input data from variable Y”.

In these terms, the results shown here appear to demonstrate that Technical

Analysis is simply not effective as a methodology for forecasting market

trends. This implies that no useful information is contained in historical price

data. As stated in section 2.1, evidence that technical trading rules can be

profitable is evidence against the Efficient Market Hypothesis; the converse is

also true. Therefore my results appear to support the EMH.

Regarding the performance of the dynamically adaptive GP algorithm;

although this was no more successful in predicting the future movement of

market prices than the method of periodic retraining, the output fitness data

does indicate that it was adapting the population of candidate solutions over

time according the variations in fitness statistics. The algorithm appeared to

be able to adapt to changes in market data in a retrospective sense, although

evidence for this was inconclusive. The fact that the trading performance was

poor is not surprising considering that the preceding experiments already

demonstrated that TI had no useful forecasting ability for the data used. This

being the case, the best that could be hoped for is that the algorithm could

maintain a high level of fitness on the latest available historical data. The

results from the experiments with the dynamic GP algorithm suggest that the

basic concept is sound, so it may be applied successfully to other problem

domains and this could be investigated in future work.

