University College London

FTSE 100 Price Prediction with a multi-factor model

using Genetic Programming

BSc Intelligent Systems Project 2005/2006

By Harjinder Bagria

Supervisor: Chris Clack

This report is submitted as part requirement for the BSc Computer Science degree in the
Department of Computer Science at University College London. It is substantially the result of my
own work except where explicitly indicated in the text. This report may be freely copied and

distributed provided the source is explicitly acknowledged.

Abstract

This report presents a Genetic Program (GP) based system that searches for the most
profitable financial rules for making buy and sell decisions in the FTSE 100 stock index.
These rules are generated from combinations of frequently used fundamental and
technical indicators. The main purpose of this project is to support investors in making
more informed decisions on future investments. The design includes an investment
simulator that evaluates every rule (a GP chromosome), returning a Sharpe Ratio, which
represents the fitness of a rule. The trading performance of the system was tested in
experiments using historical price data from many stocks in the FTSE 100 stock index.
The results have shown that the GP-system can generate rules that return significant

profit in excess of the FTSE 100 index when applied to the stock market.

1. Project INtroduCtion.ttt e e, 5

| B o [T A O o} [To1 5 7 6
IR @) 1 F: 0103 a 1000010 012 o/ 6
2. Background. 7
2.1 Stock AnalysisS TeChNIQUES. . .ovvntiit et e e 7
2.1.1 Fundamental AnalysSiS.oovuuueiiiiiiiie ittt e 7
2.1.2 Technical ANAlYSIS. . .ovvuuutiiiiit it ettt et e s 7
2.1.3 Trading StratE@IeS. . oov ettt ettt ettt ettt ettt e et e e 9
2.2 Genetic Programming.ovvuuuuiiiitiiie ettt ettt e et eeennns 9
2.2.1 Genetic AlGOTItRIMS. ..ottt 9
2.2.2 GP INtrOdUCHION. ..ottt e e e e ettt e e 10
2.2.3 Production of Initial Programs..........coovviiiiiiiiiii i 11
PR R € 1<) =15 (ol ©) 015 21510) 4 - P 12
2.2.5 Other Techniques for Generating Non-Linear Factor Models.................... 14

R)T € 1 16
3.1 Definition of Problem. .. .coouuuuiiiii it 16
3.2 The Design Of Data......covviuuuiiiiiiiii et e et 17
3.3 Overall System DIagraml........uviiiiiiit i e 19
3.4 GP SYSteM DeSI@M. .ttt ittt 20
R O W S 0 A roy=) 117215 (o) o WP 20
342 TeIMUNALS. ..ottt e e 21
T R B 05 Vo7 5 T) L=, 21
3.4.4 ChromoSOmeE CreatiON.........uvuunnnuteeteiieeee et ettt et eaieeeeeeaannns 21
3.4.5 FItnesS FUNCHON.uuueeitttt it e ettt 22
I 1<) (<115 T) o N 22

R A & (e 0)= 23
I T 017 15 (o) o F 23

R I =) o) 4o 16 11 o715 () o FARU 23
3.4.10 RePIACEIMENL. . o.uuuttett et ettt ettt et ettt 24
3.4.11 Program Termination.ooouuuueieeeieeee ettt et eiieee e e eennneenns 24
3.5 Investment Simulator DESIGN.oviviiiit et 25
3.5.1 Investment Simulator Design Structure..........oovvvviiiiiiiiiiiiieeeiiinnnnnes 25
3.5.2 Investment Simulator SUMMAIY......cooviiiiiiiiii e 26
3.5.3 Investment Simulator Algorithmcoviiiiiiii e, 27
3.5.4 Sharpe RaAtIO. ..uuuuviiiitiii e 30
3.6 DeSi@n LIMItatiOnNS. ..ottt ettt ettt ettt e et e et e et e e eeeennns 32

4. IMPLlemMENEATIONottt e 33

Z D 6515 40 ¢ 10 Toq5 T) o N 33
4.2 Development TOOIS.uiiiii e e 33

Z R I O F: TSI D P T4 v 1 o DO 34
4.3.1 Class EXPlanation........covvvuuueiiietiiiee et ittt e e e 35

4.4 GENEIC PrOgraml.ottt e e 35
4.4.1 GPWOTIA ClaSS. ...ttt e e et e e 35
4.4.2 GP Implementation.ovvvenieiitet ettt e 36
4.4.3 GP ParamiEterS. .. v vttt e 38

4.5 Investment Simulator Implementation.........oovvviiiiiiiiiiiii i 38
4.5.1 Investment Simulator Algorithm Representation..............ccoovvvvvvviiiinnnn. 38

4.5.2 Sharpe Ratio Code. ...uuviieiiiiiiii e et 43

4.6 Reuters Spreadsheet.uueviiii i 43
4.6.1 Spreadsheet Calculations.ovvvuiriiiit i 47

N 517 1 0 1] 5§ 0N 52
4.7.1 Verification TeStS. . .uuueeitttiii et 52
4.7.2 RODUSENESS TeSES. ..ottt et e ettt e e et e e e e 52
4.7.3 Test SChedUIC.ovvii e 53

5. EXPeriment. ... e 54
5.1 EXPeriment DeSi@I.uuueeiiiti it 54
5.2 Training Period RESULLS.ovviiit i e 54
5.3 Genetic Program Results.oooiuriiiiiiiiiiii s 56
5.4 Portfolio Performance using Fittest Chromosome..........oovvvvvvviiiiiiinnnnnnennnn. 57

6. Summary & ConcluSiOn............coooiiiiiiii it 58
6.1 SumMmAry of the Project....couueeeiii it 58
6.2 Critical Evaluation and ConcluSiON.........cc.vvvviiiiiiiiiie et i e eeaiaaees, 58
6.3 FULUIE WOTK. ..ot e e et 60
RO I OIICES. .. vttt s 61

Appendix A — User Manual
Appendix B — System Manual
Appendix C — Test Results
Appendix D — Stocks used in sample
Appendix E — Code Listings
Appendix F — Project Plan
Appendix G — Interim Report

1. Project Introduction

This project aims to assist people in making more informed decisions on future
investments. I am focusing on the FTSE 100 equities (stocks). Investment Banks and
individuals all around the world invest in these equities every day. In order to assist
people, I am going to use historical Technical and Fundamental information of the FTSE
100 equities to forecast future price movements. In order to obtain all this information I
am using Reuters3000Xtra to obtain data, and importing the data using PowerPlusPro to

create spreadsheets for the stocks.

Technical analysis is a method of evaluating equities by analysing various statistics
generated by market activity, past prices and volume. Technical analysis involves looking
at stock charts for indicators and various patterns that will be used to determine a stock’s
future price performance. Fundamental Analysis involves evaluating a stock by
measuring its intrinsic value. This involves studying everything from the economy to

specific industries, financial conditions and the management of stocks.

The main aim of the project is to create a system to find a Non Linear Factor Model
(NLFM) with good investment performance. A NLFM is a combination of financial
indicators and arithmetic functions. Reading in historical data will allow the system to
decide what is the best NLFM to use to obtain the greatest return on investment, in future
transactions. Due to the search space of NLFMs being enormous, | believe the most
optimal solution would be to use an evolutionary computation technique, to generate
NLFMs based on the theory of Darwinism. Producing a genetic program in Java would
allow me to do this. There have been previous projects that have used genetic
programming in order to manipulate technical analytical rules. However, I have not found
a reference to a study that has used a Genetic Programming System in order to search for
a NLFM using both technical and fundamental rules. I believe that the more information
used for an equity will allow a greater amount of accuracy when assessing its potential

for profitability.

1.1 Project Objectives

The objectives of the project were:

1. To program PowerPlusPro spreadsheets in order to capture stock data.

2. To design and implement an investment simulator that uses a non-linear multi-factor
equation (chromosome) to determine buy and sell decisions for a long/short equities
hedge fund (based on FTSE 100 stocks).

3. To modify and extend an existing Genetic Program System, which calls the
investment simulator to determine the fitness of each chromosome.

4. To run experiments to determine the efficacy of the Genetic Program and Investment
Simulator system. The experiments should monitor:

1) The behaviour of the system during “training”.
11) The behaviour during the out-of-sample test.

5. To undertake a brief critical evaluation of the system and experimental results

1.2 Chapter Summary

In this report the following chapters will cover:

Background: This chapter gives a comprehensive description of the stock analysis
techniques used and details what a genetic program is.

Design: This section explains thoroughly the design of the investment simulator and the
genetic program. The design of the historical data used in the project is also included.
Implementation: This chapter characterises how the design was implemented.
Therefore, the implementation of the data, investment simulator and the GP system is
included.

Experiment: This documentation outlines how the two experiments were set-up and the
results of these experiments.

Summary & Conclusion: This chapter provides a summary of the objectives achieved in
the project. A critical evaluation and conclusion of the project along with further work

that could be done to improve it, is outlined.

2. Background

This chapter gives a comprehensive description of the stock analysis techniques used in

the project and details what a genetic program is.

2.1 Stock Analysis Techniques
2.1.1 Fundamental Analysis

Fundamental analysis concentrates on the forces of supply and demand, which directly
cause stock prices to fluctuate [1]. This approach examines all of the factors that directly
affect the price of stocks, and are used to determine the intrinsic value of stocks. The
intrinsic value is known as the value of the stock based on the underlying perception of
the value. If the intrinsic value is under the current price then the stock should be sold. If
the intrinsic value is above the current price then the stock is forecasted for a future price
increase and should be bought. This theory of the intrinsic value can also apply to the
market as whole. Fundamental analysts have to always know the reason for a stock’s
price movement. The various fundamentals being studied on this project include Earnings

Per Share and the Return on Equity, amongst others.

2.1.2 Technical Analysis

Technical analysis is the study of market action, primarily through the use of charts, for
the purpose of forecasting future price trends. The main sources of information used for
technical analysis are the stock price and trading volume. Technical analysis is a very
important form of stock analysis and many analysts only use this to forecast future stock

price movements.

John J. Murphy suggested the three main premises on which the technical approach is
based on is [2]:

1. Market action discounts everything.

2. Prices move in trends.

3. History repeats itself.

The first statement that “Market action discounts everything” is known as the most
significant rule in technical analysis. The technical analyst believes that anything that can
affect the price, such as fundamentals, politics and so on, is reflected in the price of the
market. Hence, the technician is claiming that the only attribute beneficial to study is the
price action itself. Analysts accept that there are reasons for stock prices going up and
down, however, they do not believe this knowledge is necessary in forecasting future

prices.

The second statement that “Prices move in trends” is based on the belief that “a trend in
motion is more likely to continue than to reverse”[2]. This means that if a stock’s price
has been steadily increasing then it is more likely to continue in this trend than to begin
decreasing. The third statement that “History repeats itself” is suggesting that human
psychology does not change. It is loosely stating that the future is simply a repetition of

the past.

One very important theory in technical analysis is the idea of “mean reversion”. This
theory suggests that prices and returns eventually move back towards the mean or

average.

One of the technical factors I have assessed for each company is Moving Average
Convergence Divergence (MACD). MACD is a trend-following momentum indicator
that shows the relationship between two moving averages of prices. The most common
form of MACD is calculated by subtracting the 26-day Exponential Moving Average
(EMA) from the 12-day Exponential Moving Average. The Exponential Moving Average
applies weighting factors for the stock price. The weighting for each day decreases by a
factor, or percentage, on the one before it. Therefore a 12-day EMA will take into
account the price movement of the previous 12 days, with the previous day having the
highest weighting on the average. The weighting then decreasing by a factor on the 2™

previous day and so on.

2.1.3 Trading Strategies

The two main ways of investing in stocks is:

* Buying Long: This involves buying a stock at a particular price and making profit if
the stock price increases and making a loss if the stock price decreases.

= Selling Short: This involves investors selling an equity that they do not own. If the
price of the stock decreases then the investors can buy the stock at a lower price than
that they sold at. However, if the stock value increases, the investors are liable to
incur a loss, because they will have to buy the stock at a higher price than the price

they sold at. In essence, it is the opposite of buying long.

2.2 Genetic Programming

2.2.1 Genetic Algorithms

Genetic Algorithms are heuristic search algorithms that are based on the idea of natural

selection [3]. Genetic Algorithms are designed to carry out processes in the form of

Charles Darwin’s theory of survival of the fittest. The following describes the algorithms

carried out:

1. A random population is generated P(0). Each member of the population is a string
representing a possible solution and is a point in the search space.

Begin Loop:

2. Generate and save the fitness of f(p) for each chromosome p in the population P(x).

3. Outline selection probabilities for each chromosome p in P(x), in general Fitness
Proportionate selection is used. This involves a fitter chromosome having
proportionally a higher probability of being selected, than a chromosome of lower
fitness.

4. Produce P(x+1) by selecting chromosomes, using probabilities defined earlier, in
order to produce chromosomes for the next generation, using genetic operations, such
as crossover and mutation. They are explained in Section 2.2.4.

5. Continue loop until satisfactory solution obtained.

2.2.2 Genetic Programming (GP) Introduction

Genetic Programming is an extension of the original Genetic Algorithm. Genetic
Programming uses tree representations for manipulating populations as opposed to

strings.

Genetic programming is a method that genetically produces a population of trees
representing simple computer programs to solve a problem. A genetic program step by
step transforms a population of computer programs (also known as “chromosomes”) into

a new generation of computer programs by applying genetic operations.

The main stages in a genetic program are:

1. Random Initialisation

2. Fitness Function
3. Selection

4. Recombination
5. Replacement

A genetic program starts with an initial population of small programs that consist of
functions and terminals that are appropriate to the problem. Usually, the programs are
different from each other in terms of shape and size where they contain a different
amount of functions and terminals and arrangement. Each individual small program in
the population is executed by the fitness function. Each little program is given a fitness
score which is stored somewhere. The fitness score is a way of comparing each program

in terms of how well they perform the task they are required to do.

In the beginning the production of the initial random population is a very random
exploration of the search space of the problem. The initial random population is known as
generation 0. In general the individual programs in generation 0 have a poor fitness.
Although, obviously, some programs have a better fitness than others do. This difference
in fitness between the individual programs is exploited by genetic programming, where

genetic programming applies Darwinian selection (“Survival of the Fittest”) and genetic

operations to produce a new population of individual programs from the current

population.

The genetic operations that are used are selection, recombination (crossover), mutation
and replacement, and then the alteration of the population. Selection is used first;
individual programs are probabilistically selected from the population based on fitness. In
general, when using a probabilistic selection process, better individuals are favoured over
inferior individuals. However, this does not mean the best individual is necessarily
selected and the worst individual is ignored. In addition to selection, elitism is often used

to ensure that the fittest individual(s) survive(s) into the next generation.

I will describe all of these genetic operations in more detail later on. After they are
performed on the current population, the population of offspring replaces the current
population. This iterative process is performed over many generations and the
programmer can specify the maximum repetitions there will be. The genetic
programming run terminates when a satisfying solution is obtained or the maximum
number of repetitions is reached. The best chromosome (individual program) ever

encountered during the run is typically designated as the result of the run.

A fundamental factor of genetic programming is that every program in the initial random
population is a syntactically valid and executable program. This is to ensure that when
genetic operations are performed during the run, offspring is created that is syntactically

valid and executable.

2.2.3 The Production of the Initial Programs

Genetic Programming starts with a large amount of randomly generated computer
programs. The randomly created programs have different sizes and shapes. These

programs can be expressed as trees, as Figure 2.2.3 depicts.

* +

AN

i (B

L5d

A+B * C-D A+B

Figure 2.2.3 expresses programs as trees. Both have different sizes.

2.2.4 Genetic Operations
2.2.4.1 Mutation Operation

A mutation operation is performed on a single program that has been selected
probabilistically from the population based on fitness. A point in the program, which is
known as the mutation point, is selected randomly and the subtree at this point is deleted,
being replaced by a new subtree. This new subtree is created using the same process that
is used to generate the initial population (completely random subtree). The probability of
mutation is 1% during each generation of the run. An example of a mutation operation is

shown below:

(A+B)* (C-D) becomes (A*(B+C)) *(C-D)

12

2.2.4.2 Crossover Operation

The crossover operation is also known as sexual recombination. Two programs are
chosen probabilistically depending on their fitness, from the population. During the
crossover operation it is very possible that two programs are selected which contain a
different size and shape. Each program is known as a parent in crossover. Similar to
mutation, a crossover point is randomly chosen, but here, a crossover point is randomly
chosen in the first program, and a crossover point is chosen in the second program. In

crossover, the subtree at each of the two parents is switched to create two new offspring.

*

N
2 74

These two parent programs, above, crossover, to become:

* *

N

> ge L

13

2.2.4.3 Reproduction Operation

This operation simply copies an individual program that has been selected

probabilistically based on fitness into the next generation of the population.

2.2.5 Other Techniques for generating Non-Linear Factor Models

This project has used Genetic Programming to generate non-linear factor models.
However, there are other options that could have been used to generate non-linear factor
models. Here, I will explain the other options and why a Genetic Programming System

was employed in order to develop a workable solution.

The three main search methods that can be used in order to determine non-linear

relationships between factors are:

» Calculus-based methods: These methods work by finding local maxima from looking
for the gradient from all directions leading from the current search point [4]. This
method has many drawbacks. The main drawback is that this method concentrates on
finding the local optima, but does not concentrate on the global anatomy of the search
space and as a result often misses the global optima. This method is in essence very
exploitative in its local environment.

» FEnumerative approaches: A subset of enumerative approaches is dynamic
programming. Examples include breadth-first and depth-first searches. All parts of
the search space are acknowledged in order to find the optimum solution. This kind of
approach is regarded as a very exploratory search as all points in the search space are
visited in order to find a solution. It is very inefficient and breaks down for even
modestly sized search spaces [4].

» Random algorithms: Certain random algorithms exist that support a very exploitative
search through a search space. An example of a random algorithm is a Genetic

Algorithm.

I have chosen Genetic Programming, which is an extension of Genetic Algorithms,
because the selection, recombination (crossover) and mutation methods allow a very

efficient balance between exploration and exploitation. The selection process accelerates

the search towards the fittest chromosomes, providing a form of exploitation. The
mutation operator modifies certain chromosomes randomly in order to introduce extra
diversity into the population. The mutation operator is the exploration operator due to the
extra diversity that may have been lost during the selection phase. Recombination
changes the context of information that is already present and provides a different form of

exploration.

3. Design

This chapter explains in-depth the design of the investment simulator and the genetic

program. The design of the historical data used in the project is also included.

3.1 Definition of Problem

The main target of this project is to produce a Genetic Programming System that searches
for a nearly optimal non-linear formula that implements a multi-factor investment model.
The fittest formula in the population will be used to make trading decisions when

managing a real portfolio.

In order to find this formula the system undergoes training; in the Training Period. An
investment simulator is incorporated into the system to model how a real portfolio
manager would perform in real-life. I am using real fundamental and technical data for 80
UK equities from the FTSE 100 index. Based on each company’s fundamental and

technical values, investment decisions will be made for each company.

In order to differentiate between good formulae and bad formulae, a form of evaluation
will be incorporated into this system. After the investment simulator has been used for a
particular formula, a Sharpe Ratio is acquired for that formula. The Sharpe Ratio is a
measure of risk-adjusted return on investment, which will be explained in Section 3.5.4.
The formula with the highest Sharpe Ratio is the fittest chromosome in the population.
The Genetic Programming System will run for 50 generations and the fitter chromosomes
from one generation will have a greater chance of surviving into the next generation
population. After 50 generations the formula with the greatest Sharpe Ratio, which is the

fittest chromosome, will be collected from the system.

The system design should primarily aim to achieve the best possible formula, but also

needs to address issues of performance.

3.2 The Design of Data

A very important part of my system is to define how I am going to collect and manage
the historical data for my system. The data must be split into:

* in-sample training data (The Training Period), to generate the fittest chromosome.

= out-of-sample test data, to validate the fittest chromosome on data it hasn’t seen

before.

The time period used for the Training Period is:

02 January 2004 - 30 January 2004

This eliminates all weekends and bank holidays between this period as the London Stock
Exchange is closed for trading at these times. Therefore this period constitutes 21 days of
trading. The time period between 02 February 2004 — 10 February 2006 will be used to

test the fitness of the chromosome acquired from the Training Period.

As this project is on the FTSE 100 stock index, data for a large amount of stocks is
required. I have decided on collecting data on 80 of the stocks from the FTSE 100. In
general the FTSE 100 stock exchange tends to have around 100 stocks. However, due to
the FTSE 100 reshuffle (occurs quarterly) which means certain stocks leave and others
join the stock index, it is not feasible for me to include all stocks. Also, certain stocks are
members of the FTSE 100 but have not been floating on the stock exchange for more
than two years. Therefore, not enough data is available for these stocks. I have defined

the stocks that I am going to use for the experiment, in the appendix.

For each stock a certain amount of fundamental and technical data is required as
discussed earlier in Section 2.1. The 9 factor models (terminals) I have decided to use in

my experiment are:

1. Moving Average Convergence Divergence (MACD) — See Section 2.1.2 for an
explanation.

2. Price — The closing price of a stock on a given day.

3. Book Value Per Share (BVPS) — A measure to determine the level of safety
associated with each individual share after all debts are paid. In essence it represents
the amount of money that the holder of a share would receive if the stock was
liquidated.

4. Volume — The number of shares traded in a stock on a given day.

5. Earnings Per Share (EPS) — The portion of a company’s profit allocated to each
outstanding share of common stock.

6. Return On Equity (ROE) — Indicates how much profit a company generates with
the money shareholders have invested in it.

7. One Month Price Momentum — The rate of acceleration of a stock’s price over the
previous month.

8. One Year Price Momentum — The rate of acceleration of a stock’s price over the
previous year.

9. Dividend — Indicates the portion of a company’s earnings that are distributed to its

shareholders.

Each one of these factor models will be a terminal in the GP System (refer to Section

3.4.2).

There is likely to be a degree of complexity in obtaining the data. I have access to Reuters
3000Xtra, which uses PowerPlusPro a spreadsheet application. This application will
allow the collection of all the necessary data for the stocks. However, there is going to be

a need to program a spreadsheet in order to collect the data.

3.3 Overall System Diagram
This diagram provides an abstract representation on the design of my system.

Reuters 3000Xira

J

PowerPlusPro
Spreadsheet

CSVFiles

in-sample “Training Period™
Data

Return Fittest
Chromosome

YAN

J

Dbvestment
Simulator

Out-of-sample
Test Data

Sharpe Ratio

AN

1. I will produce a Reuters Spreadsheet with stock data. From this I will produce a CSV
file for each stock in sample.

2. I will produce an investment simulator to operate on this stock data.

3. A GP will generate chromosomes (Non Linear Factor Models) to be used by the
investment simulator. The investment simulator will return the Sharpe Ratio for each.
This part is known as the Training Period.

4. The fittest chromosome will be returned from the Training Period and tested on out-

of-sample data. A Sharpe Ratio will be generated for this chromosome.

3.4 GP System Design

The diagram below describes how I have decided to design my GP system in order to

develop a workable solution:

Initialise

full, grow
GP Tree

A
ATA A Stock Data

N,

Replacement Fitness Function Simul

Sharpe
Ratio

,—\ Fiiness

_ - s

m Select
]

3.4.1 Representation

In my GP system a single GP chromosome is a tree that represents a non-linear equation
combining factors. An example of a factor is “Price” (the closing price for a stock on a

given day). Factors are represented as terminals in my program.

A single GP chromosome takes the factors for a single stock, uses the tree to combine
them in a non-linear way, and produces a number that tells the portfolio manager whether
this stock’s price is likely to increase (Buy long) or the opposite (Sell short). A single GP
chromosome (tree) does not need to use all the factors.

An example of a non-linear equation:

(F1+ F2)x F3
FAEXPFS

()-F6

20

Functions used are +, -, *, /, EXP. The linear equation produces the following tree

structure (a chromosome):

Fo

F1 F2

3.4.2 Terminals

The terminals to be used in the system are the 9 factor models that have been stated in
section 3.2. All these terminal values will be obtained for each stock in the sample. They
will be obtained using Reuters 3000Xtra. There is no requirement for all terminals to be
used in a chromosome. One terminal on its own is sufficient to constitute a chromosome.
Also, a terminal can be repeated more than once in a chromosome. Each terminal points

to a value. This is because each stock has a terminal value for each day of trading.

3.4.3 Functions

These are arithmetic operations that are used to compute the terminals. The arithmetic

operations that I will be using in my system are: +, *, -, / and EXP.

3.4.4 Chromosome Creation

The genetic program begins with the creation of an initial population. The initial
population consists of simple programs represented as expression trees comprising

functions and terminals. The creation of the initial population is a random production of

21

chromosomes from the search space. It is the basis of future chromosomes, as all
chromosomes are adapted from these ones. In general most chromosomes in generation 0
will have a poor fitness. The GP System will use a population of 50 chromosomes. Each
one of these 50 chromosomes will be executed in generation 0, and all 50 chromosomes

will be executed each generation thereafter.

Each chromosome in the program is given a value by running the investment simulator.
The investment simulator will return a Sharpe Ratio, which is the value given to the

chromosome.

3.4.5 Fitness Function

As stated before when a chromosome has passed through the investment simulator, it is
given a value, which is known as the Sharpe Ratio. The Sharpe Ratio calculation is
explained in section 3.5.4. The higher the Sharpe Ratio the fitter the chromosome. Then
the Sharpe Ratio is returned to the fitness function. The chromosome with the highest
Sharpe Ratio will be returned at the end, as this is the fittest chromosome generated. As
each generation is executed, chromosomes are likely to become fitter. Therefore, the
fittest chromosome is more likely to come from a later generation. However, the fittest

chromosome can be derived from any generation.

3.4.6 Selection

The selection method that is going to be used is Fitness Proportionate Selection. This
means that the fitter a chromosome the higher the probability that a chromosome has of
being selected for a genetic operation, such as crossover or mutation. Fitness
Proportionate Selection allows for chromosomes that have a low fitness to be selected,

but ensures that the fitter chromosomes are selected on a more frequent basis.

22

3.4.7 Crossover

As explained earlier crossover is a genetic operation. Crossover is applied to
chromosomes in the population. The crossover operation is performed in the same way as
explained in the background section. Two chromosomes are selected. A subtree from
each chromosome is selected and swapped over. As each subtree contains terminals and
functions; terminals and functions from each chromosome is swapped. For example:
Chromosome 1 = (Price * (MACD-Volume));

Chromosome 2 = EPS — BVPS;

Performing crossover on these two chromosomes could produce:

Chromosome 1 = Price * BVPS;

Chromosome 2 = EPS — (MACD-Volume);

This is just a simple example, and in the system the crossover will be of a greater

complexity, where more terminals and functions are likely to be exchanged.

3.4.8 Mutation

This is similar to crossover except it is an asexual operation. When a chromosome has
been selected a subtree will be chosen within the chromosome. This subtree will be
replaced with a new random subtree, therefore producing a new chromosome that will be
replaced back into the population. Mutation must be performed in a way that the original
structure of the chromosome is preserved and only the subtree that is replaced changes
the chromosome in any possible way. The replacement subtree can be a combination of

any of the terminals and functions from the search space.

3.4.9 Reproduction

Reproduction involves a chromosome being put back into the population for the next
generation. For example:

Chromosome 1 = Volume;

If reproduction is performed on this chromosome then it will simply be replaced back

into the next generation.

23

3.4.10 Replacement

After the genetic operations have been performed on the current population, the old
chromosomes are replaced with the new chromosomes. There are 50 chromosomes in a
population. Therefore the 50 chromosomes in generation 0 will be replaced by a new set
of chromosomes after the genetic operations have been performed. These new 50
chromosomes will provide the new population for generation 1. The replacement function
may also incorporate elitism. This involves the fittest chromosome(s) from a generation

being replaced into the next generation.

3.4.11 Program Termination

I am running this system for 50 generations. This ensures that after this amount of
generations, there will be a chromosome acquired that is the fittest chromosome in the
population. The chromosome received is the fittest chromosome from any generation. I
have decided to specify the number of generations in order to ensure that I receive a
chromosome within a certain time frame. An alternative would be to stop when a
chromosome reaches a certain level of fitness. However, it is not known how long this

could take, and computer resources are limited.

24

3.5 Investment Simulator Design
3.5.1 Investment Simulator Design Structure

The diagram below depicts the Investment Simulator design structure and how it

incorporates with the GP System fitness function.

GP System is run

CSV Data files for each

Population
stock !

1s created

Sharpe Ratio retuwmed
to Fitness Function

Fitness Function

For each chromosome in

population, Fitness Function
passes chromosome to
- invesiment simulator
ercn Chromosome is
CSV Parser .
executed
Stock data used .
by chromosome Chromosome executed
) ' for each day of trading
v for each stock
All chromosome values
stored in array

Stock Price datais v

read in ' Investment Simulator | Prices mitialised ’ Au]l:lt'li;es *;‘“‘ each s‘::k f:_l‘
. eac. Y 0. tradmg siored 1n
1s run array

Chromosome Values

Previous day Portfolio Value used in algorithm

used in current day’s

algorithm

’ Investment Algorithin
For Each Day . ‘
’ ‘7 15 1Un Stock Prices used in

algorithm

Return On Investment
and Porifolio Value returned

ROI and Portfolio values Chromosome Sharpe Ratio
siored in separate arrays ’ calculated at end of irading

Sharpe Ratio
Retwned

Sharpe Ratio

25

3.5.2 Investment Simulator Summary

Before explaining the design of the Investment Simulator algorithm in detail, | am going

to provide a summary of what it essentially does, when a chromosome is sent to it:

1. The algorithm will run for the duration of 21 days of trading.

2. The algorithm will be executed for 80 stocks from the FTSE 100 stock index.

3. The portfolio value at the start is £100,000.

Every Day (Repeat for 21 days):

At the start of the day:

4.

80 chromosome values will be extracted (one value for each stock and values

are different every day).

5. These 80 values are sorted in descending order; the highest value is the
maximum and the lowest value is the minimum. Based on these 80 values buy
and sell decisions are made.

6. Counter = Number of stocks with values in top quartile + Number of stocks
with values in bottom quartile (Top quartile and bottom quartile of the 80
values)

7. The cost of each stock to buy long or sell short is the purchase amount.
Purchase Amount = Portfolio Value (at close previous day)/Counter.

8. Those stocks with chromosome values in the top quartile are bought long.

9. Those stocks with chromosome values in the bottom quartile are sold short.

At the end of the day:

10. All stock positions closed at the end of the day and profit/loss calculated for

each stock.

11. New Portfolio Value returned, except on day 0 = 100,000.

12. Return On Investment (ROI) = Portfolio Value (today) — Portfolio Value

(yesterday). ROI = 0 on the first day of trading (known as day 0). ROI stored

in array.

After 21 days:

13. Using the Return on Investment for every day (use array), the Sharpe Ratio is

calculated and returned.

26

3.5.3 Investment Simulator Algorithm

Generating Chromosomes:

When the GP System runs, an initial population is created. A chromosome is selected
from the population. A chromosome is a multi-factor expression that calculates a value
for a given stock on a given day (for example Price + Volume);
ChromosomeValues[stock][day] stores those values. “Stock™ depicts the FTSE 100
company the chromosome value has been calculated for. “Stock™ has a size of 80, as
there are 80 companies used in this sample. “Day” depicts the day the stock value has
been calculated for, and has a size of 21 (21 days used in the sample). Hence,
ChromosomeValues[0][4] is the calculated chromosome value for Anglo American
(stock 0 in the sample) on day 4 of trading, for a particular multi-factor expression. This

array is initialised while the chromosome is being executed.

Price Array:
Due to the number of stocks and days of trading, reading stock files while running the
investment simulator will slow down the whole system. Therefore, a two-dimensional
price array is calculated in the same way as the ChromosomeValues array. The price
array is used to store each stock’s price for each day of trading:

Price[stock][day]
Hence, while the investment algorithm is running, when a stock’s price is required for a

day, it is retrieved from the array as opposed to reading from that stock’s CSV file.

The Investment Algorithm:
The explanation of the Investment Simulator as outlined in Section 3.5.2 is provided in
more detail by the following pseudocode:

PortfolioValue = £100,000(for Day 0)
For Every Day:
Read ChromosomeValues[0-79][currentDay]
Store today’s 80 values in a new single array: StoreArray[80]
Put these 80 values in descending order
StoreArray[0] = max
StoreArray[79] = min

27

Counter = (number of StoreArray values > (min+(0.75*(max-min)))) + (number
of StoreArray values < (min+(0.25 *(max-min))))
For Every Stock:
if stock’s chromosome value > (min+(0.75*(max-min))) then BUY
StockValue (PurchaseAmount) = Yesterday’s PortfolioValue/Counter;
Retrieve this stock’s closing price for yesterday and today, from
PriceArray.
StockValue = ((todayPrice — yestPrice)/yestPrice)*StockValue
Return StockValue
ELSE
if stock’s chromosome value < (min+(0.25 *(max-min))) then SELL Short
StockValue (PurchaseAmount) = Yesterday’s PortfolioValue/Counter;
Retrieve this stock’s closing price for yesterday and today, from
PriceArray.
StockValue = ((yestPrice — todayPrice)/yestPrice)*StockValue
Return StockValue
Today’s PortfolioValue = sum of all company StockValues (all 80, stocks not
bought/sold will have a value of 0)
PortfolioValue stored in array (day 0 = 100,000 always)
ReturnOnlnvestment = Today’s PortfolioValue — Yesterday’s PortfolioValue
ReturnOnlnvestment stored in array.
Fitness of chromosome is calculated (Sharpe Ratio) and returned.

Initialisation:

The system will ignore all transaction costs (and dividends). Therefore, as an
optimisation, the Investment Simulator will close out all long (stocks owned) and short
(stocks owing) positions at the end of each day. At the start of day 0, the value of the
Portfolio i1s £100,000. At the start of each day the Portfolio has a cash value only

(because all stock positions were closed at the end of the previous day).

PortfolioValue[day] is an array that records the value of the portfolio at the end of each
day, after all stock positions have been closed (i.e. long positions sold and short positions

bought). Day 0 = 100,000, effectively no stocks are bought or sold on this day.

Buying (Long) and Selling (Short) strategy:

At the start of each day, the chromosome values for that day are inspected. The
investment strategy is to buy shares for all stocks whose
ChromosomeValues[stock][today] is in the top quartile (i.e. the top 25% of all

chromosome values for that day), and to sell shares for all stocks whose

28

ChromosomeValues[stock][today] is in the bottom quartile (i.e. the bottom 25% of all
chromosome values for that day) - since positions are closed out at the end of every day,

this will always be selling "short" (i.e. selling shares that are not currently owned).

Calculating Profit:

The funds available for buying stocks at the start of each day are given by the
PortfolioValue of the end of the previous day (i.e. PortfolioValue[day-1]). This amount is
divided by the number of stocks to be purchased (the "buy" stocks), and an equal cash
amount is available to purchase shares in each of these buy stocks. Thus, if the number of
buy stocks is called BuyCounter, then the cash amount available to purchase each buy
stock is:

PortfolioValue[day-1]/BuyCounter

Shares are bought at the start of the day (at yesterday's price) and sold at the end of the
day (at today's price) when all positions are closed. The profit (or loss) made during the
day on each buy stock is calculated as the amount invested multiplied by the percentage
change in the price of that stock:

((PortfolioValue[day-1]/BuyCounter)*((Price[x][day]-Price[x][day-1])/Price[x][day-1]))

Since all sales are "short", sold at the start of the day (at yesterday's price) and then
bought back at the end of the day (at today's price), the profit calculation can be
simplified by treating them as "buy" stocks and then negating the change in price when
the position is closed at the end of the day. However, in order to guard against the
Portfolio Value becoming negative due to short selling, we wish to limit the amount of
shares sold short and also hold back some cash in reserve. This is achieved very simply
by using Counter (the total number of stocks in both the top and bottom quartile - i.e. the
total number of buy long stocks and sell short stocks). This is used instead of BuyCounter
(the number of buy stocks only) in the above equation. This equation is used to buy
stocks and sell short stocks:

Profit for a single buy stock x = ((PortfolioValue[day-1]/Counter)*((Prices[x][day] -
Prices[x][day-1]) / Prices[x][day-1]))

29

Profit for a single sell short stock x = ((PortfolioValue[day-1]/Counter)*((Prices[x][day-
1] - Prices[x][day]) / Prices[x][day-1]))

Portfolio Value and Return On Investment Calculations:
The new PortfolioValue at the end of a day (PortfolioValue[day]) is:

PortfolioValue[day-1] + (profit/loss for all buy stocks) + (profit/loss for all sell short stocks)

ReturnOnlnvestment[day] is an array that records changes in the portfolio value from day
to day:
ReturnOnlInvestment[day] = PortfolioValue[day] - PortfolioValue[day-1]

An exception is that ReturnOnlInvestment[0] = 0. The Return on Investment array is used

to calculate the Sharpe Ratio after the 21 days have executed.

3.5.4 Sharpe Ratio

ROI - RFR
o

SharpeRatio =

Figure 3.5.4 Sharpe Ratio Formula

The Sharpe Ratio is a measure of risk-adjusted performance of an investment asset [5].
The ROI (Return On Investment) in the investment simulator measures the change in
value of the portfolio over a day. The ROI is measured every day. To measure the Sharpe
Ratio the mean ROI is required. Therefore, a mean ROI for all trading is calculated.
However as stated earlier, for day 0 the ROI is 0, and this day is not included in the
calculation of the mean. A sum of the ROI’s from day 1 to day 21 is returned. This value
is then divided by the sample (because day 0 is ignored, therefore only 20 days used in
sample) to return the mean.

ROI - (ROI1]+ ROI[22]O+ ...+ ROI[20])

30

The standard deviation refers to the standard deviation of the ROI. To calculate the
standard deviation, the variance is computed first. For every day in the sample the mean
is subtracted from the ROI. This value is then multiplied by itself (the power of 2) to
return a variance value for a particular day. Again the ROI for day 0 is ignored (only day

1 to day 21 used).
Variance[day] = (ROI[day]- ROI)*

The sum of all variances is returned to give the variance of the sample. This variance

value is then square rooted to give the standard deviation.

Variance = Variance[l] + Variance[2] +...+ Variance[20]

o =+Variance

RFR is the Risk Free Rate. This is the rate of return someone would expect when putting
his or her money in a bank instead of investing. The value used for RFR is 4% per annum
0.04/365 per day.
RFR = 0.04/365

To return the Sharpe Ratio for a chromosome the final calculation is computed (Figure
3.5.4). The R.F.R is subtracted from the mean ROI. This value is then divided by the
standard deviation to deliver the Sharpe Ratio. The Sharpe Ratio is returned into the
fitness function. The higher the Sharpe ratio the fitter the chromosome. Once the Sharpe
Ratio is returned the next chromosome is executed. 50 chromosomes are executed per

generation.

31

3.6 Design Limitations

There are obviously many limitations to the design of this system. The investment

simulator is based on actual trading techniques employed by professionals but in the

process of modelling these professional trading techniques it is very improbable that the

system will be as accurate as real trading systems. The following limitations were

imposed:

l.

There were only 80 companies from the FTSE 100 stock index used in the sample.
Whereas the FTSE 100 contains around 100 of the largest companies in the London
Stock Exchange. This was mainly because companies move in and out of the FTSE
100 during the FTSE100 reshuffle, which occurs four times a year (quarterly).

I only included end of day closing prices for each stock. In the London Stock
Exchange stock prices are changing every second when the stock market is open for
trading. However, to employ historical prices for each company for every second of
trading over the past few years was not feasible. Therefore, even though,
professionals buy long and sell short on stocks in less than a second of trading, my
system only allows this option once a day per stock.

I have also ignored transaction costs. For every transaction made there is a broker fee.
The size of this charge depends on the stockbroker.

Professionals who work in investment banks or other financial firms believe in
diversifying their portfolios. Therefore, they prefer to have stocks from many
different sectors. This ensures that if one sector such as oil performs very badly then
there will be other sectors that will consolidate the portfolio. In my portfolio I have
not allowed for this. I believe that this slightly limits the results that can be achieved
in the system.

I am also only using 21 days of data for training, which constitutes a month of
trading. This is due to a limit in computer resources. The computational cost of the

Training Period is very high.

32

4. Implementation

This chapter characterises how the design was implemented. Therefore, the

implementation of the data, investment simulator and the GP system is included.

4.1 Introduction

The GP System I am using is written in Java. It is based on jgprog, version 1.4, by Robert
Baruch (2000). However, the program has been heavily modified in order to provide the
correct implementation. 1 have customised the tree representation and the fitness
function. I have produced an Investment Simulator (IS), which has been incorporated in
the fitness function. The IS has also been combined with a CSV parser in order to read in
stock data.

In this chapter I will discuss how the system is implemented, the structure of the classes

and the testing of the system.

4.2 Development Tools

The Genetic Programming System was written in the Java programming language along
with the IS that was incorporated with the GP System. I chose Java because a GP System
was already available which I could extend. The encapsulation provided by the class
mechanism would help organise the merging of the IS with the GP System. I have two
years of experience of coding in Java. Other options that were available to me, 1 have
little or no experience in the use of. I used Reuters 3000Xtra in order to acquire data on
the stocks used in the Investment Simulator. The data was obtained in spreadsheet format

and the spreadsheet used was PowerPlusPro.

33

4.3 Class Diagram

.. Chromosome
Individual
Chromosoms [choemosemes Function[] functions

Popl Jation Aot fitnees Fm‘u:t‘n:ml] functionSet

int sequence int[] depth

Individual[] indrviduals Sl
= o hro .
float[] fitnessRank getcChmmr?lg:;nrie() BranchTypingCross
create()
grovi) - int raaxDenth
Individual mt maxDepth
int getSize) Tall) ndividual[] cross
Individual Individual Object Clone()
f:gndimﬁo dupChromosoms Chiorosome() doCross boolean isPossible
5011 Individual Function selectNode ()
float execute_float() delChrormosore ()
float FitnessProportionate fullNode()
Selectio;
execute_float () Ie d: 'dnal o growNode()
ndividual selec
getFitness () full)
setFitness () 'grow() i

GPWorld string toString)

; : redepthi)
float[] storebray] EPX Function int rraTerinals()
Dol clovmaremsVabs ™ oat[] ep Class returnType int nuraFunctions()
foxt I priceit Ay float[] createEPS() gt ity function getNode()

create() Individual individual it getChald()
floal computeFitness() setIndividual() int zetNode()
Selndividual) int getAtity() int getTermuinal)
o e int getFunction()
getChromosome Vakes() BuvStock Class getRetumType() Tt zotSize0)
float [J[] getPrice)) 1 int zetDepth()
float computeRawFitness int buyCounter setRetumType() mnt getDep
int getParentNode:
Output(File[] stocks float execute_float() e &
Wain() = int get&nty()
File[] initialiseStocks() A\
int buyCountex() |
World |
Population population |
float totalFitness |
tionMethod
ionhlehtod Add
Crosshethod aosshfethod Strin 2 ge 1N ame 0
float cro float execute_float()
float reproductionProb Class getChildType()
create()
float getTotalFitness()
population getPopulation])
nextGeneration()
rd:vidnal geiEestlndividual]
indiridnal gt Merstdiridnl)
run()

The diagram above is a class diagram of the whole system, depicting the main classes.

34

4.3.1 Class Explanation

1. The World class is an abstract class that defines all the main running characteristics of
the Genetic Program System.

2. The GPWorld class extends the World class. The main purpose of the GPWorld class
is to return fitness values. Therefore, the GPWorld class has the investment simulator
implemented inside it. The GPWorld class is the main class that creates the
population.

3. EPS is a terminal in the system. This class is created to retrieve all EPS data. All
terminals have a separate class that retrieves data. The GPWorld class calls the
terminal classes to retrieve data while running the investment simulator.

4. Add is one of the functions in the system. All arithmetic operations have a class that
extends the function class.

5. Function is an abstract class that represents all functions.

6. The Population class depicts the population of individuals in the system.

7. The Individual class represents a GP Individual containing a GP Chromosome. This
class is used to perform the crossover operation on chromosomes.

8. The Chromosome class represents a Non-Linear Factor Model (GP Chromosome).

4.4 Genetic Program

4.4.1 GPWorld Class

The GPWorld class is an extension of the World class that defines all the main
characteristics of the program. Firstly within the GPWorld class 1 have defined all 9
terminals. In this class the number of generations and the number of chromosomes per
generation is set. When the program is run the population of 50 chromosomes is created
and a chromosome is randomly selected. This chromosome is computed by returning a
value for each day of trading for each stock and storing in an array (ChromosomeValues
array). A price array is created in the same way. These two arrays are used in the
investment simulator in order to return a Sharpe Ratio for that chromosome. As stated
before, the Sharpe Ratio represents the fitness of a chromosome. Therefore, once a

Sharpe Ratio has been returned for a chromosome it is returned to the fitness function.

35

Then the next chromosome is computed. This is repeated for all 50 chromosomes in the
generation. Then the next generation is computed. This is repeated until all 50
generations are completed. Each fitness that is calculated is stored in an array that has
been created in the Population class. The array is known as fitnessRank and stores all the
float fitness values. This array is sorted in the population class, and at the end of a
generation the best chromosome is returned. I have modified the World class in order for
it to display the best chromosome for every generation at the end of the running of the
program. Also the best chromosome from all of the generations is displayed as the fittest

chromosome at the end.

4.4.2 GP Implementation

Genetic Program Functions Modifications
Initialise Population The initialisation of the population was created in
“jgprog” and left without modification.

Fitness Function The fitness function was modified and extended.
Selection The selection method was created by “jgprog”.
Crossover The crossover method was created by “jgprog”.

Replacement This was created in “jgprog”.
Terminals I implemented all terminals.
Functions All functions were already implemented in
“jgprog™.

Initialise Population: This area was not modified. The population was created in
“jgprog” using the ramp half-and-half method. This is a combination of the “full” and
“grow” method. When creating chromosomes the “full” method works by selecting only
functions until a node is at a specified depth, at which time only terminals are selected.
Therefore, every branch reaches a maximum depth. The “grow” method works by
randomly selecting functions and terminals until a terminal node is reached. This

terminates the branch.

Fitness Function: [created the fitness function within the GPWorld class. The
Investment Simulator is run on each chromosome and a Sharpe ratio is returned into the
fitness function. When all generations have been executed, the fittest chromosome is

returned. This is executed by storing the fittest chromosome from each generation in an

36

array. After the final generation the array is sorted in descending order with the fittest

chromosome at position 0.

Selection: The selection method was created in “jgprog”. The selection method used is
Fitness Proportionate Selection. This form of selection selects chromosomes
proportionally according to their adjusted fitness. The fitter a chromosome the greater the
chance the chromosome has of being selected for a genetic operation. Elitism is not

supported in “jgprog”, therefore, it was not implemented in the system.

Crossover: The crossover method was created in “jgprog”. The crossover method used is
called “BranchTypingCross”. This works by crossing two chromosomes. A random
chromosome is chosen. A node is chosen from this chromosome, with 90% probability it
will be a function and 10% probability it will be a terminal. A random-point is chosen in
the second chromosome is chosen with the same probability distribution, but must be of
the same type as the first chromosome. If a suitable point cannot be found in the second
chromosome then they are not crossed. If a resulting chromosome’s depth is larger than
the maximum crossover depth then that chromosome is simply copied from the original

rather than crossed.

Replacement: The replacement method was created in “jgprog”. The type of
replacement used is called “generational”. The population is evolved every generation.
The system probabilistically reproduces and crosses chromosomes in the population, to

create a new population, which then overwrites the original population.

Terminals: | implemented all the terminals myself. Each factor model in the system was
represented as a terminal. All terminals have been created as variables in the system.
Each variable has a float implementation. Therefore, all execution on terminals should
return float values. I created a class for each terminal. This provided a class for the
Investment Simulator to access when reading in data of a particular factor model

(terminal). I have explained in Section 3.2 the factor models chosen to be terminals.

37

Functions: All functions used were created in “jgprog”. A class has been implemented
for each function that has been used in the system. I am only using five functions in my

system. Section 3.4.3 states the functions used.

4.4.3 GP Parameters

The parameters declared below are the stated parameters in my genetic program.

Selection Method = Fitness Proportionate Selection
Cross Method = Branch Typing Cross

Crossover Probability = 0.9 (90%)

Reproduction Probability = 0.1(10%)

Maximum Crossover Depth =17

Maximum Initialisation Depth = 6

Mutation Probability = 0

When a chromosome is selected it has a 90% probability of crossover with another
chromosome and a 10% probability of being asexually reproduced. This means that the
same chromosome is placed into the next generation. The maximum depth of a
chromosome resulting from crossover is 17. The maximum depth of a chromosome
during population creation is 6 (generation 0). Mutation was not implemented in the

“jgprog” system.

4.5 Investment Simulator Implementation

4.5.1 Investment Algorithm Representation

Investment Simulator Implemented in GPWorld Class:

I created the Investment Simulator algorithm in the main GPWorld class. The GPWorld
class extends the World class (which was created in “jgprog”). Therefore, due to the

hierarchical structure of “jgprog” it was very difficult to put the Investment Simulator

38

(IS) in a different class. This is because it would have meant that each chromosome
would have to be called in a different class to GPWorld (Each chromosome is created in
GPWorld). The GPWorld class extends the World class, in order to provide an
implementation of the fitness function. Essentially the IS is the fitness function. This is
because the IS returns a Sharpe Ratio for each chromosome. The Sharpe Ratio represents
the fitness of a chromosome. Therefore, to simplify the problem the IS is implemented in

the GPWorld class.

Investment Simulator Method Implementation:

The method that implemented the Investment Simulator is known as:
computeRawFitness(Individual ind). The value returned from this method is a float.
This float value returned is the Sharpe Ratio of the chromosome (represented as
Individual) being executed. Two arrays created at the beginning of the method are
ReturnOnInvestment and PortfolioValue. The PortfolioValue[0] is initialised to
100,000 because the value of the portfolio at day 0 is £100,000. Also
ReturnOnlInvestment[0] is initialised to 0 because there is no return on investment on

day 0.

The “getPrice()” method:

The first method called by the Investment Simulator is getPrice(). This is used to return
an array with all the stock prices, for each stock, for each day of trading in the sample.
This method is called every time the investment simulator is computed for a
chromosome. This getPrice() method is purely employed to reduce the computation time
of the IS during runtime. Prices are required in the IS to calculate how much profit is
made on stock purchases. As the stock prices are stored in CSV files, continuously
accessing these files will slow down the IS. Therefore, employing the getPrice() method
to store stock prices in an array, allows the IS to continuously access the array as opposed
to the CSV files, making it more efficient. The array returned from the getPrice() method
is initialised as pricelnitArray[80][21]. This is because there are 80 stocks used in the
sample and 21 days of trading. Therefore, the IS can access any price for any stock in the

sample.

39

The “getChromosomeValues” method:

The second method «called by the Investment Simulator is called
getChromosomeValues() and is computed each time computeRawFitness() (the
Investment Simulator) is called. A two-dimensional array is returned with values
computed for the chromosome that is being executed. As stated in the Design section a
chromosome is a multi-factor expression that calculates a value for a given stock on a
given day. Each terminal has its own class. Each terminal class is used to return an array
of terminal values for each stock. Each stock has 21 terminal values (because 21 days are
used in the sample). Therefore each terminal array is initialised as Terminal[21]. For
example Book Value Per Share is initialised as BVPS[21]. All terminal values are
retrieved from the stock CSV files and stored in their arrays at runtime. When a
chromosome is computed, only the arrays for the terminals (factors) that are used in the
multi-factor expression are returned. The terminal arrays are returned for each stock in
the sample. To make this clearer, assume the chromosome is BVPS + EPS. Stock 0 is
computed first. An array for BVPS and an array for EPS is returned (The EPS array
contains 21 EPS values for stock 0, and the BVPS array likewise). For each of the 21
days the corresponding values for EPS and BVPS are added together. These values are
stored in ChromosomeValues[0][day]. This is repeated for the remaining 79 stocks in

the sample. This gives the array ChromosomeValues|[80][21].

Strategy for buying (long) and selling (short) stocks:

When in the computeRawFitness() (Investment Simulator) method, the values computed

for each chromosome is initialised to a new array in the following way:
storeArray|stock] = ChromosomeValues|stock][today]

For every day of trading this initialisation takes place. 80 stocks are stored in storeArray.

This array is then sorted into descending order with storeArray|[0] holding the stock with

the highest (maximum) chromosome value and storeArray[79] holding the stock with

smallest (minimum) chromosome value. Using this array it can be decided which stocks

should be bought long and sold short.

If a stock’s chromosome value is in the top quartile then buy the stock long on that day.

Stock’s chromosome value > (minimum + (0.75*(maximum — minimum)))

40

If the stock’s chromosome value is in the bottom quartile then sell short.
Stock’s chromosome value < (minimum + (0.25*(maximum — minimum)))
If a stock’s chromosome value is not in the bottom or top quartile it is not bought long or

sold short.

Calculating the amount spent on a stock (purchase amount):

The number of stocks that will be bought long or sold short is calculated before any
transactions are carried out on a particular day. The ChromosomeValues[80][today] is
sent to the BuyStock class. The Counter() method in this class returns an integer
counter, to the computeRawFitness() class. This counter denotes the number of stocks
with a chromosome value in the top quartile plus the number of stocks in the lower
quartile. This is in order to calculate how much will be spent on each stock. The amount
spent on a transaction for a stock is PortfolioValue[day-1]/Counter. Therefore, if the
value of the portfolio yesterday is £120,000 and 20 stock transactions are to be completed
today then 120,000/20 = 6,000. Therefore £6,000 will be spent on each stock. The

amount spent on a stock is called the Purchase Amount.

Buying (long) and Selling (short) stocks:

Once the cost of a stock (purchase amount) has been established, on a particular day,
stock transactions are carried out (stocks are bought long, sold short or no transaction
performed on them). In order to do this, the simulator loops through all (80) stocks in the
array. For stock 0 we check whether its chromosome value is in the top quartile of all
stock chromosome values. If it is in the top quartile the stock is bought long, for the
purchase amount. If the stock’s chromosome value is in the bottom quartile of
chromosome values it is sold short, for the purchase amount. If the stock is in neither the
top or bottom quartile it is not bought long or sold short. This is repeated for the

remaining 79 stocks in the sample.

41

Calculating Stock Profit/Loss:

Whenever a stock is bought long or sold short, today and yesterday’s closing price for
that stock is extracted from the PricelnitArray. Whenever a stock transaction is made
the Purchase Amount is denoted as the current stock value. Therefore, if £6,000 is spent
on each stock (purchase amount), at the start of the day the stock’s value is £6,000. At the
end of the day the stock’s value depends completely on that stock’s price movement (on
that particular day). The stock value calculation for buying a stock long is different to
selling a stock short. The calculation for buying long is:

PriceChange = ((Today’s closing price — Yesterday’s closing price)/Yesterday’s close)
NewStockValue = PurchaseAmount*PriceChange

The calculation for selling short is:

PriceChange = ((Yesterday’s closing price — Today’s closing price)/Yesterday’s close)
NewStockValue = PurchaseAmount*PriceChange

The PriceChange calculation is different when buying long to selling short. This is
because essentially when a stock is sold short, profit is made if its value decreases. When

buying a stock long, profit is made if its value increases.

Calculating the Portfolio Value every day:

The new PortfolioValue[day] is calculate incrementally. When the NewStockValue is
returned for a stock it is added to PortfolioValue[day]. Once the Investment Simulator
has looped through all 80 stocks in the sample, all NewStockValue will have been
summed together and the PortfolioValue[day] is returned for that particular day. On day
0 the PortfolioValue[0] = 100,000, therefore no trading occurs on this day.

Calculating the Return On Investment (ROI):

Unless it is day 0 the new ReturnOnlInvestment|[day] can be calculated.
ReturnOnlInvestment[day] = PortfolioValue[day] — PortfolioValue[day-1].
Whatever the value of the ROI it is stored in ReturnOnInvestment|[day]. Using the
ReturnOnlInvestment array, the Sharpe Ratio is calculated and sent to the fitness
function. When the Investment Simulator finishes execution a new chromosome is

executed, and the process is repeated for this chromosome.

42

4.5.2 Sharpe Ratio Code

As stated before Sharpe Ratio = (mean — RFR)/Standard Deviation:

The pseudocode below is analogous to the code used in the GPWorld class to calculate
the Sharpe Ratio for a chromosome.

Access ReturnOnlnvestment Array
Calculate sum of all ReturnOnlnvestments by traversing through array:
int size = 21;
While (int x=1; x<size; x++){
Sum = Sum + ReturnOnlnvestment/[x];
/
Calculate mean: mean = Sum/(size-1);
Calculate Standard Deviation of ReturnOnlnvestment array
Risk Free Rate = 0.04/365
Return Sharpe Ratio

It must be mentioned that ReturnOnInvestment[0] is not used in the sample because on
day 0 the Return on investment is always 0. The Sharpe Ratio calculation is explained in

greater detail in Section 3.5.4.

4.6 Reuters Spreadsheet

I am receiving all my technical and fundamental data for the FTSE 100 stocks from
Reuters 3000Xtra. Reuters 3000Xtra is a fast provider of a wide range of information for
financial professionals. It delivers an efficient combination of real-time data with
powerful analysis tools. The analysis tool that I have used is PowerPlusPro. This allows
me to import Reuters real-time and historical data for stocks into a Microsoft Excel

spreadsheet.

43

I have produced a spreadsheet containing a sheet for each FTSE 100 stock in the sample.
I have also produced one sheet that contains all the FTSE 100 stocks in the sample

displaying various factor models and calculations for each stock. The latter sheet is

known as the “FTSE100Companies” sheet.

REUTERS:D |DSPLY NAME ASK BID |

/FTSE FTSE 100 INDEX 0.00 0.00] Company Sector Previous Day Price
/AD.FTSE |FTSE 100 Index A unknd#\/A unkndFully retrie SECTOR_INDEX_NAME PRICE_CLOSE

JAALL ANGLO AMERICAN 1827.00[1826.00 AAL.L FTSE All Share Mining Index 1979
/BT.L BT GROUP 211.50 211.25 BT.L FTSE All Share Fixed Line Telecommuniations Index 22275
JHNS.L HANSON 624.50 B624.00 HNS.L FTSE All Share Construction & Materials Index 639
/OML.L OLD MUTUAL 157.25 157.00 OML.L FTSE All Share Life Insurance Index 164.75
/SDRt.L SCHRODERS NV 854.50 853.00 SDRt.L FTSE All Share General Financial Index 895
/ABF.L ASSOC.BR.FOODS 823.50 823.00 ABF.L FTSE All Share Food Producers Index 839
JCBRY.L CADBURY SCHWEPH 561.50 560.50 CBRY.L FTSE All Share Food Producers Index 549.5
/HSBA.L HSBC HOLDINGS 931.50 931.00 HSBA.L FTSE All Share Banks Index 933
/OOM.L 02 196.25 195.75 OOM.L FTSE All Share Fixed Line Telecommuniations Index 197.75
/SGE.L SAGE GROUP 242.50 242.25 SGE.L FTSE All Share Software & Computer Services Index 258
JALL ALLIANCE & LEICS 921.50 921.00 AL.L FTSE All Share Banks Index 994
JCCLL CARNIVAL 3293.00) 3289.00 CCL.L FTSE All Share Travel & Leisure Index 3300
ACLL ICI 330.25 330.00 ICI.L FTSE All Share Chemicals Index 332
/PRTY.L PARTYGAMING 118.25 118.00 PRTY.L FTSE All Share Travel & Leisure Index 134
/SHP.L SHIRE 72450 72400 SHP.L FTSE All Share Pharmaceuticals & Biotechnology Index 744
JANTO.L ANTOFAGASTA 1727.00[1726.00 ANTO.L FTSE All Share Mining Indesx 1869
JCNA.L CENTRICA 23250 232.25 CNA.L FTSE All Share Gas Water & Multiutilities Index 254.75
/HG.L INTERCONT HOTEL 799.50 799.00 HG.L FTSE All Share Travel & Leisure Index 839.5
/PRU.L PRUDENTIAL 528.00 52750 PRU.L FTSE All Share Life Insurance Index 550
JSMIN.L SMITHS GROUP 990.50 989.00 SMIN.L FTSE All Share Aerospace & Defense Index 1046
JAUN.L ALLIANCE UNICHEM 748.00 746.50 AUN.L FTSE All Share Pharmaceuticals & Biotechnology Index 800.5
JCNE.L CAIRN ENERGY 1889.00[1887.00 CNE.L FTSE All Share Qil & Gas Index 1920
AL 3i GROUP 867.00 866.00 IIl.L FTSE All Share Equity Investment Instruments Index 847.5
/PSON.L PEARSON 677.50 B77.00 PSON.L FTSE All Share Media Index 687.5
/SN.L SMITHANEPHEW 542.00 541.00 SN.L FTSE All Share Health Care Equipment & Services Index 5355
JAV.L AVIVA 702.00 701.50 AV.L FTSE All Share Life Insurance Index 705
/CPG.L COMPASS GROUP 219.25 218.75 CPG.L FTSE All Share Support Services Index 2205
AMT.L IMPERIAL TOBACCO| 1752.00] 1751.00 IMT.L FTSE All Share Tobacco Index 1737
JREL,,..... JREGKITEENCKSR | 1a2300l 180p0REL , FTSE Al Share Personal Goods Index At 122

Figure 4.6.1.1 disnplays a pﬂart'of the “FTSEIOOCorﬁﬁé{ilies” sheet.

Book Value Per Share Price/Eamings 52 Week High Price 52 Week Low Price 52 Week High PE 52 Week Low PE
BVPS PE HIGH_52wW/ LOW_52wW PE_HIGH_52wW PE_LOW 52W
16.73387645 16.23533905 1979 1130 16.23533905 9.589970443
0.453585035 9.9 235 196.5 12.87650502 9.044444444
3.772893446 18.46820809 640 4515 2568181818 15.23121387
0.793890917 6.079335793 165.25 15 935 4769372694
15.33104043 899 630
4 663567254 19.68151659 863 728 1997630332 1562608596
1.372021025 225204918 594 466.5 296 21 68032787
7643646727 13.39477 949.5 825 15.46255544 1252619167
1.172161581 41.19791667 209.25 14 59.78571429 26.51162791
0.569704634 2307692308 2595 192.25 2321109123 1684326358
3956724274 11.25707814 9945 8145 11.26274066 8538622129
7415019443 20.23217002 3319 637 24.16394805 1700164672
0605125199 11.38986301 336 231 22 56360734 9.67544484
-0.1012

4.52615854 77.93598097 753 533 78.87875493 66.04655377
65.683598894 9.024420404 1869 1052 14.00913749 6.401927234
0.648920267 5.379089171 26475 2175 21694714 4835373503

4.56554208 34.28964765 8425 634 979968 34 41216362 1390906722
1.760591951 21.73825609 551.5 445 44.99539069 18.29965922
2134267835 19.26335175 1052 813 26.4010989 16.32596585
2961126783 13.93475524 875 720 19.60297767 12.89335564
2698207647 157 635468 2018 1042 268.1983122 4374475231
6.605131492 941670584 869 635477122 3568001751 8.738925243
3234296302 9976229316 694.5 608 60.22522523 8933236575
0773998138 3245454545 558 4515 41 63554892 2024242424

Figure 4.6.1.2 displays another part of the “FTSE100Companies” sheet.

44

REUTERS D
Announcement Date | Adjusted Dividend Value

26/07/2005 4277778
16/02/2005 6.833333]
27/07/2004 4277
17 02/2004 3
22/07/2003 4
18/02/2003 3
230772002 47
1202/ 6.833333]
24/07/2001 4277778
13022001 13.72202
25/07/2000| 4055555,
08/02/2000 1222222
—_ wia 'sssl i
09/02/1993| 12222222
22/0719%| 4.25|
10v02/4998| 12.375
23107/1997 3.875
11./02/4997 11.25
24/07/13%)| 34375

REUTERS D

Trade Date |Volume
0301 /2005 13344445
02/01 /2005[#¥/A ND ‘
30/12/2005 3173428

29205 5519404)
26M12/2005 7544535
27N 272005 [#UA ND

[26/12/2005[# WA ND

231272005 1246420
221 2/2005| 5642407
2112/2005| 19087204

[2011272008 5430225

[39n272008] 12463382
161272005 16624168
151272005 11656791

[1471272005 13897,
131272005 7476362
1212/2005 6775346
DAA2/005] 629889
DR22005] 7467301
07/12/200 5323584
06/12/200 6361584

| D5A12/2005 402270

Figure 4.6.1.3 displays part of spreadsheet for a FTSE 100 stock.

MACD . RGO Simulation Short Averaging Period

Eauity RIC: | n: 1399
RTRL Fully retrieved 5t 00:02:10 Long Averaging Period

EQUITY_PRICE_HISTORY Fully retrieved » 23.00:27

CONSOLIDATION: Dadly, TRADE_DATE:T-20Y<T

TRADE_DATE CLOSE

Reuters Group PLC

Trada Date Cloga SMA EMA, EMa; SMA ()
3-Jan08 430 4189732 4217718 411.8216 7.785429 9950155 8352055
30-Dec-05 4305 41675 4135485 4100473 7370745 9501111 7.952631
29.00c.05 431 4149792 2417 5573 4004111 702556 9146133 7 565305
28-Dac-05 431 M31867 4151131 406604 6782536 B.509109 7.170192
23Dec-05 42225 4107083 4122246 4046523 BB396E6 7.572266 6.835471
220ec05 4225 4092553 2104018 4032445 66938 715728 6651272
21-Dac-05 4205 4083958 4032021 401.7041 GEE6B45 6490047 652477
20-Dec-05 4085 407.0208 4059662 400.2004 £767619 5765744 6.531451
190ec05 20775 4068542 2055055 3895365 7012755 599014 6722878
16-Dec-05 40625 406.3950 4050974 206794 7237774 6218 6911344
15-Dac-05 404 ADS.7INT ADA 5242 3901297 7397070 6.394445 703463
14-Dac-05 4075 4058542 4046195 3376601 7540835 6959371 7.257233
13-Dec-05 40725 4050417 404.0857 3968723 7556428 722283 7.331705
12Dec-05 20825 404125 4035222 3960427 7533728 7479495 7353924
9Dec0s 4825 4020542 40246086 3249062 756322 7494663 7326761
8Dac-05 4015 4016458 4012501 393845 7465181 7.408011 7.287311
7-Dac-05 40725 401.0208 4012046 320.2327 7.351553 7.971963 7.257885
6Dac05 40875 4002033 4001055 3321113 7.181625 7.99419 7079367
50ec05 404 3988542 3% 3519 207002 6997359 7651735 6850661
2-Dac-05 065 3976042 397.326 3596362 £0I0176 7688795 6650392

RTR.L

EARNINGS_H Y

PERIOD_END_DATE

EPS ANNOUNCE DATE EP 0J

REUTERS

[EPS Announcement Date Adjusted EPS
26072005 9
1640272005 52
27/07/2004 04
1740272004 31
20772003 03
16/02/2003 -283
23072002 52
1240272002 33
24072001 191
130272001 379
2507/2000 252
08/02/2000 302
20407/1999] 143
08/02/1999] 57
220711998] 133
IMQIIHI 24
23071997 142
1421997 D4
2‘&7“%! 145

-Figil-r_e 4.6.1.4 displays another péft of a spreadsheet for a FTSE 100 stock.

45

Figures 4.6.1.3 and 4.6.1.4 display a part of a sheet for a single FTSE 100 company. 80
sheets were created, as data was required for each company that is going to be used in the
sample. Each individual sheet for each company simply imports a lot of data from the
“FTSE100Companies” sheet. However, all the historical data for each company is
imported from Reuters databases, because the “FTSE100Companies” sheet contains only
some historical data. In order to read data into my GP system I used a CSV parser.
Therefore, each company sheet was required to be in CSV format. As I decided on my
factors in the design stage; a CSV sheet was created for each of the 80 stocks in my
sample. Data was contained for 9 factors from between 02-January-2004 and 10-
February-2006. A part of one of the sheets is displayed in figure 4.6.1.5. Each column
represents a factor in order to simplify the way data was read into the Investment

Simulator.

Date Close MACD EPS Dividend Volume One MonttOne Year |IROE BYPS

10-F eb-06 642 5913394 291 10.22222 48697600 0.037157 0081713 18.76328 2698637
03-F eb-06 637.5 4.173648 291 10.22222 35214904 0.015127 0.073232 18.76328 2.698637
08-F eb-06 621 2.342917 291 10.22222 30116458 -0.01036 0.039331 18.76328 2.698637
07-Feb-06 620.5 1.652158 291 10.22222 27084332 -0.00161 0.045493 1B8.76328 2.698637
06-F eb-06 619 0.797378 29.1 10.22222 45383164 -0.01276 0.036851 18.76328 2.698637
03-Feb-06 614 -0.1525 29.1 10.22222 40708288 -0.00567 0.030201 18.76328 2.698637
02-F eb-06 611 -0.85359 291 10.22222 58021964 0 0.02862 1B.76328 2.698637
01-Feb-06 6145 -1.43056 29.1 10.22222 63828004 0.000814 0.028452 18.76328 2698637
31-Jan-06 601 -250254 291 10.22222 42562198 -0.02117 0032645 18.76328 2698837
30-Jan-06 601 -2.45983 29.1 10.22222 27824740 -0.01958 0.047038 18.76328 2698637
27-Jan-06 6125 -2.36953 29.1 10.22222 42786504 -0.00082 0.056946 18.76328 2698637
26-Jan-06 601 -3.39073 291 10.22222 82777704 -0.01556 0.047038 18.76328 2.698637
25-Jan-06 587.5 -3.47392 291 10.22222 54245832 -0.02651 0.005993 18.76328 2.698637
24-Jan-06 587.5 -2.15502 291 10.22222 60845204 -0.02165 0.013805 1B8.76328 2.698637
23-Jan-06 596 -0.44028 29.1 10.22222 30609184 -0.00667 0.018803 18.76328 2.698637
20-Jan-06 5875 0.8893 291 10.22222 30429450 0.001676 0.018755 1B8.76328 2.698637
19-Jan-06 605 2.420665 29.1 10.22222 42019424 0.007494 0.026293 18.76328 2.698637
18-Jan-06 6015 3.576397 291 10.22222 53202024 0.009228 0022958 18.76328 2698637
17-Jan-06 609 5.355875 29.1 10.22222 48098468 0.020956 0.029586 18.76328 2698637
16-Jan-06 6205 B6.785595 29.1 10.22222 16519211 0036769 0.043734 18.76328 2698637
13-Jan-06 621 7.34083 29.1 10.22222 237937680 0.034138 0.052542 18.76328 2698637
12-Jan-06 628.5 7.891827 29.1 10.22222 26563016 0.042289 0.064352 18.76328 2.698637
11-Jan-06 626.5 7.716673 29.1 10.22222 21458756 0.038111 0.052941 18.76328 2.698637
10-Jan-06 619 7.584506 291 10.22222 35432064 0.03772 0.025684 18.76328 2.698637
09-Jan-06 6268 B.069129 291 10.22222 55198352 0.04754 0.051926 18.76328 2.698637
NE lan NE E27 £ 7 REAQED a0 10 1N 90T ADERTTIE N NATETQ N ARANAE 10 722970 2 RAQRAT

Figure 4.6.1.5 Part of a CSV file for a stock

46

4.6.1 Spreadsheet Calculations

To extract data from Reuters into PowerPlusPro was not a simple process. | was required
to code many different formulas and Reuters’ functions in order to obtain the data I
required. The first thing I needed for each stock in my sample was to retrieve as much
historical price information as possible. In order to do this I used a function known as
DeHistory. The purpose of this function is that it retrieves stock historical data from a
specified table in the Securities 3000 database (A database in Reuters). It functions as

follows:
DeHistory(Code, Table Name, FieldList, Destination Cell, Conditions, DeMode)

The arguments are defined as follows:

Code: This is the RIC Code of the equity used, or the cell that contains this value. The
RIC code is the Reuters Instrument Code. All equities have a RIC code. For The BT
Group this is BT.L.

TableName: Name of the table, data is retrieved from.

FieldList: This is the array of fields to retrieve for this stock. For example closing price.
Destination Cell: Cell reference specifying the top-left corner of the destination cell,
where data will be imported.

Conditions: Any kind of extra information required to retrieve data, depending on the
provider and the kind of request made.

DeMode: This is used to specify the data source, to format the results and to specify

whether data is refreshed automatically.

For example, the code entered for the equity BT Group was (RIC Code “BT.L”):

DeHistory(BT.L, EQUITY PRICE HISTORY, TRADE DATE:CLOSE, BS,
CONSOLIDATION:Daily; TRADE DATE:T-20Y<T, "LAY:HOR IDR:SKIP
SOURCE:EQUITY RET:A5000")

EQUITY PRICE HISTORY: This is the name of the table that the historical price data
was retrieved from. The choice of table is purely on account of the type of data required.

TRADE DATE: This is the date of the closing price.

47

CLOSE: This is the closing price for the equity.

CONSOLIDATION:Daily, TRADE DATE:T-20Y<T: This ensures that the daily closing
price is retrieved for up-to the last 20 years of available data for that equity.

“LAY:HOR”: This denotes the layout parameter for the array orientation. In this case it is
a horizontal orientation.

“IDR:SKIP”: This removes rows containing invalid data. For example “N/A”.
“SOURCE:EQUITY”: This retrieves equity data from the Reuters Securities 3000
database. Each database has many tables.

“RET:A5000”: This returns an array size of up to 5000 rows.

I wanted the closing price to continue being retrieved during my project. Therefore this
required me to be continuously updating the data in Reuters. In order to do this I was
required to make use of a function known as DeUpdate. This function works in exactly
the same way as DeHistory, except that DeMode is used in a completely different way.
DeMode is used to update the current values in the next data engine session. Therefore,

DeUpdate is used to update the DeHistory values.

Once I had retrieved all the historical closing prices for the equities in my sample I was
able to use these values to calculate historical MACD values.

MACD(d) = EMAP12(d) - EMAP26(d)

EMAP12 = Exponential Moving Average for a 12-day Period

EMAP26 = Exponential Moving Average for a 26-day Period

The value d = today’s date.

Close(d) = today’s closing price for this particular company.

EMAP12(d) = ((2/13)*Close(d))+((11/13)*EMAP12(d-1))

EMAP26(d) = ((2/27)*Close(d))+((25/27)*EMAP26(d-1))

48

EMAP12(d-1): This denotes the previous day’s EMAP12 value. In order to retrieve the
first day’s value (first day value in the whole sample, no EMAP12(d-1) value on this day)
in the sheet, [used today’s closing price. Therefore, for the first day in the sample:
EMAP12(d) = ((2/13)*Close(d))+((11/13)*Close(d))

This was also the case for EMAP26(d) for the first day’s value in the sheet, where

Close(d) was used twice.

The rest of my historical data was calculated in exactly the same way as the closing price
was calculated. The data was calculated using DeHistory and DeUpdate. The following

historical data was obtained:

= EPS:
1. Table Name: EARNINGS HISTORY
2. Time Period: Data is retrieved for the previous 10 years
3. Frequency of Data: Quarterly data is retrieved, therefore, 4 EPS values are
retrieved for each equity per year
* Dividend Value
1. Table Name: DIVIDEND HISTORY
2. Time Period: Data is retrieved for the previous 10 years
3. Frequency of Data: Quarterly data is retrieved, therefore, 4 dividend values are
retrieved for each equity per year.
*» Volume of Trades

1. Table Name: INDEX PRICE HISTORY

49

2. Time Period: Data is retrieved for the previous 10 years
3. Frequency of Data: Daily data is retrieved
= Shares Outstanding
1. Table Name: SHARES OUTSTANDING
2. Time Period: Data is retrieved for the previous 10 years
3. Frequency of Data: Variable, purely dependent on the equity. In general 20 values
are retrieved annually
* Revenue, Long Term Debt, Net Attributable, Shareholder’s Equity, Equity Issued
1. Table Name: COMPANY REPORT
2. Time Period: Data is retrieved for the previous 10 years

3. Frequency of Data: One value is retrieved annually

One fact to point out from the above information is that each piece of data has a different
frequency. For example Volume of Trades has daily values whereas EPS has quarterly
values. In order to accommodate for this when producing my CSV files the most recent
value is used. Therefore:

Today’s Date = 23/02/06

Last EPS Announced Value(12/01/06) = 12.9

Today’s EPS Value = 12.9

This process was incorporated for many factors, because some factors such as EPS do
not change daily. They change when there is a new announced value. Not all the factors
described on the previous page have been used in my CSV files. This is because many of

them are used simply for calculations. Shareholder’s Equity, Equity Issued and Net

50

Attributable are used to calculate Book Value per Share and Return On Equity. Long
Term Debt, Revenue and Shares Outstanding were not used. This is simply because of
the infrequency of this data. I believed they would not provide an accurate enough

measure of a stock’s performance due to their infrequency.

Book Value per Share = (Shareholder’s Equity/Equity Issued)

Return On Equity = 100*(Net Attributable/Shareholder’s Equity)

I also employed formulas to calculate the One Month Price Momentum and the One
Year Price Momentum.

One Month Price Momentum = ((Today’s Closing Price-Closing Price a month
ago)/Closing Price a month ago)

One Year Price Momentum = ((Today’s Closing Price-Closing Price a year

ago)/Closing Price a year ago)

There were various other factor models I attempted to generate. However, I was unable to
gain access to the relevant historical data on PowerPlusPro. The factors included:

* Relative Strength Index

= 2 Years Consensus Earnings

* Rate of Reinvestment

51

4.7 System Testing

The testing used assumes the form of verification and validation. The verification is used
to test that the system is correct and the validation is used to test that everything functions

in the way it has been programmed to do so.

4.7 .1 Verification

Verification firstly checks that the program runs without any errors and all the classes
compile correctly. However, other tests are required in order to ensure that the system
does exactly what it is supposed to do. First I am going to perform robustness tests to

check that out of range values are not accepted.

4.7.2 Robustness Tests

Two robustness tests were carried out to ensure that the system only allows certain values
within a range. Any other values must not be accepted. The table below provides
representation of the values that are accepted and the out-of range values that were tested

on the system.

1. Crossover Probability | 0.0>=x =<1.0 x=1.5
2. Reproduction 0.0>=x=<1.0 x=1.5
Probability

52

4.7.3 Test Schedule
The schedule below is there to test the main parts of the system:

l.

Test Investment Simulator: This test is there to test the general functionality of the
Investment Simulator. It is there to ensure that the simulator can take in a set of
values, and return a Sharpe Ratio.

Test Chromosome: This test is there to ensure that a chromosome can be generated
and that all the values computed from this chromosome can be stored in an array.
This is to ensure that for the 21 days of trading and for the 80 stocks, a chromosome’s
values are generated and then stored in a two dimensional array.

Test getPrice() Method: This is to test that for each stock and the 21 days of trading
the prices that are generated can be stored in a two-dimensional array.

Check the fitness: This test is to ensure that the fittest chromosome is always
returned.

Check GP Chromosome: Check that a GP individual cannot be initialised to a depth

of greater than 6. Also its crossover depth cannot be greater than 17.

All tests were completed successfully and the results are shown in the appendix.

53

5. Experiment

This experiment outlines how the two experiments were set-up and the results of these

two experiments.

5.1 Experiment Design

The main purpose of the experiment, as detailed in earlier chapters, is to generate a
financial formula that can be used to make decisions on which stocks in the FTSE 100 to
buy long or sell short. There will be two experiments. The first will be used to generate
the fittest chromosome. The second experiment will be run to test the performance of this
chromosome on separate data. The design of the first experiment (Training Period) will
be as follows:

* The Genetic Program will run for 50 generations

= There will be 50 chromosomes in the population

= 80 equities from the FTSE 100 stock index will be used

= The data is from 02/01/04 until 30/01/04; this constitutes 21 days of trading

The design of the second experiment will be as follows:

= Only the fittest chromosome from the previous experiment will be used

= This chromosome will be tested on the same 80 equities from the FTSE 100 stock
index as in the first experiment

= A different time period will be used however. The data is from 02/02/04 until
10/02/06

= There will be no running of the genetic program, only the Investment Simulator.
This experiment is simply there to measure the performance of the chromosome

on different data. It is not generating new chromosomes.

5.2 Training Period Results

The genetic program was run for 50 generations, and at the end of this training period the
fittest chromosome was displayed along with the fittest chromosomes for each

generation. The Sharpe Ratio, which constitutes the fitness of a chromosome was

54

displayed. The fittest chromosome was found in the 32" generation. This chromosome

was:

EPS x Dividend
Year PriceMomentum — EPS

The tree-structure of the chromosome is as follows:

EPS Dividend |[Year Mom EPS

The Sharpe Ratio of this chromosome was 0.8348981.

55

Fitness

5.3 Genetic Program Results

Fittest chromosome so far

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0\\
S T S S AN S O A R JRPN S S, SN S S PN P S NN S

Generation

Figure 5.3 “Fittest chromosome so far” line graph representation
Figure 5.3 depicts the fitness of the best chromosome obtained so far in the run, at each
generation. The highest point in the diagram is reached at generation 32, where the fittest
chromosome was acquired. In general, as the number of generations increases, the fitness
of chromosomes should increase. In the experiment certain generations achieve relatively
high fitness, however, there is no evidence that the fitness of chromosomes is necessarily
increasing every generation, the way a genetic program should. After generation 32 there
i1s no increase in fitness. The first thing to remember is that a very fit chromosome is
achieved, and that the main objective of this experiment is to acquire this chromosome.
Whether this chromosome is obtained in generation 0 or generation 49 is not really

important.

Figure 5.3 does display the fact that crossover assists the search for fitter chromosomes.

This is because generation 0 contains the best chromosome of the original population.

56

Any changes to this population are because of the Crossover operation. Generation 0’s
best fitness is 0.345, and the fittest chromosome is 0.8348981. In genetic programming, a
strong reason for the fitness always improving as generations increase is elitism. Genetic
programs usually contain elitism. This means that the fittest chromosome from a
generation is always put back into the next generation. However, the implementation that
was used (“ygprog”) did not provide an implementation of this. Fitter chromosomes were
a lot more likely to be selected (in selection) and 90% of these were used in crossover,
this meant that the same chromosome usually did not appear in the next generation
(crossover changes the chromosome, as explained in Section 2.2.4). Even though
crossover is used as a way of evolving a fitter chromosome, this does not necessarily
mean that a fitter chromosome is always evolved. Low fitness children can be produced

as well as high fitness children.

Overall, a very fit chromosome was achieved, and regardless of which generation it was

acquired in, it will be tested on the out-of-sample data.

5.4 Portfolio Performance using Fittest Chromosome

The fittest chromosome achieved; that was tested with out-of-sample data was:

((EPS * Dividend)/(Year Price Momentum — EPS))

The data used was between the time period of 02/02/04 until 10/02/06. The portfolio
value at the beginning of the simulation was £700,000. After completion the portfolio
value was £138,036.22. This gives an annual return of 19% per annum. Over the same
period the FTSE 100 stock index increased at a rate of 14.5% per annum. Therefore, this
chromosome provided a greater rate of return than the FTSE 100 stock index did. In some
ways, this does suggest that this chromosome has the capabilities of using various
instructions and providing a profit on investment. The more important result of this
experiment was the Sharpe Ratio and this was 0.110914335. This value is very different
from the Sharpe Ratio of this chromosome during the Training Period, which was
0.8348981. One reason for this is that the Training Period was very short and this may
not have been enough time to sustain a chromosome that could work under any trading

conditions.

57

6. Summary & Conclusion

This section will allow me to summarise what was achieved, deduce a conclusion and
provide a brief critical evaluation of the project. Ideas of how the project could be

improved in the future are also provided.

6.1 Summary of the project

All of the project objectives were achieved:

1. PowerPlusPro sheets were programmed in order to capture stock data.

2. An investment simulator was designed and implemented that used a non-linear
multi-factor equation (chromosome) to determine buy and sell decisions for a
long/short equities hedge fund (based on FTSE 100 stocks).

3. An existing Genetic Program System was modified and extended, which called
the Investment Simulator to determine the fitness of each chromosome.

4. Experiments were run to determine the efficacy of the Genetic Program and

Investment Simulator system. The experiments were operated to monitor:

1) The behaviour of the system during the Training Period.
11) The behaviour during the out-of-sample test.
5. A brief critical evaluation of the system and experimental results is provided in
Section 6.2.

6.2 Critical Evaluation and Conclusion

The first thing to conclude is that my results certainly are promising and provide
encouraging signs for future work. The Training Period was a very short time period and
to achieve such high Sharpe Ratios was a success. The out-of-sample result was also
encouraging to an extent. The chromosome that was acquired in the Training Period and
subsequently tested on two years of data did return a profit. Therefore beginning with the
belief that factor models can predict stock price movements, then this study certainly

does combine enough real-life trading conditions to advocate future work.

58

However, even though, the Sharpe Ratio for the fittest chromosome was positive in both
experiments, it was contrastingly very different. This firstly suggests that a longer time
period was required for the Training Period. This could also imply that GP-evolved
trading rules are ineffective when used with historical equity data. But the return of 19%
per annum was good, so the problem is more likely to be because the Training Period
length was too short. There is also a possibility that the factors used for this study were

not effective, but others may have provided more favourable results.

As stated in the Background section, the fitness of chromosomes should improve as the
generations increase. Therefore, the fittest chromosome should be achieved in the final or
final few generations. The Training Period experiment ran for 50 generations and the
fittest chromosome was only achieved in the 32" generation. The main reason for this
occurring is because of the absence of elitism from the GP System, where the fittest
chromosome from the previous generation is replaced into the next generation. However,
a very important thing to point out is that a very fit chromosome was achieved, and that
the main objective of this experiment was to acquire this chromosome. Whether this

chromosome was obtained in generation 0 or generation 49 is not really important.

The results provide a significant amount of evidence that the crossover operation
successfully provided a form of exploration. This is because generation 0 contains the
fittest chromosome of the original population. Any changes to the population after
generation 0 is because of the Crossover operation. The fittest chromosome in generation
0 has a fitness of 0.345, and the fittest chromosome obtained during the Training Period

1s 0.8348981.

Overall, the objectives of this project were all achieved (see Sections 1.1 and 6.1). A
formula was obtained that when tested on two years of sample data provided a greater
rate of return than the FTSE 100 stock index did over the same time period. I believe this

project has been a success and certainly provides encouraging signs for future work.

59

6.3 Future Work

The following are suggestions for future work:

A longer time period for the Training Period would certainly provide more
accurate chromosomes that consider a greater amount of information and data.

In this study equities were bought long and sold short similar to a hedge fund,
however, there was no diversification. Diversification is where companies from
different sectors are purchased in order to reduce risk. The idea behind this is that,
if one sector performs very badly then this can be covered by other sectors that
may have performed in a more profitable way. Therefore, in future studies I
would propose the use of diversification.

Another area that must be considered is how stocks are chosen to be bought long
or sold short. A different algorithm could be used to select stocks as opposed to
the one that has been employed in this study. Also an equal amount is invested on
each stock on a particular day. This could be changed to reflect the stocks’
chromosome values, and be proportional to this value.

Elitism should be employed in the genetic program to ensure that the fittest
chromosome is always re-placed into the next generation.

In real life conditions for trading, transaction costs are applied to every
investment made. In order to make the results more accurate these costs certainly
should be applied.

Only 80 equities were used from the FTSE 100 stock index. The FTSE 100 stock
index has around 100 equities. Using more equities may produce more accurate
results. Also using equities from a broader range of stock index such as the FTSE

250 would allow for this.

60

References

1: Michael Beckett, How the Stock Market Works (Kogan Page), 2004

2: John J Murphy, Technical Analysis of the Financial Markets (NYIF), 1999

3: John Koza, Genetic Programming: Vol 3 (Morgan Kauffmann), 1998

4: Wei Yan and Christopher D. Clack, Automatic Generation of Non-linear Factor
Models for Long/Short Hedge Funds: A Genetic Programming Approach,
Unpublished report, UCL Department Computer Science, 2005

5: William F. Sharpe, Investments (Pearson), 1998

61

