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Abstract. Agent-based models (ABM) and their simulations have been
used to study complex systems with interacting entities and to model
multi-agent systems. Simulations are used to explore the dynamic con-
sequences of these models. In many cases, the behaviours that are of
interest are emergent ones that arise as a result of interactions between
agents rather than the actions of any individual agent. In this paper, we
propose a formalism for describing emergent behaviours at any level of
abstraction based on the idea that event types can be defined that char-
acterise sets of behavioural ‘motifs’. This provides the basis for a method
for studying the associations between multi-level behaviours in simula-
tions. There are two categories of hypotheses that we seek to address
with respect to an ABM and its simulations:

– Hypotheses concerned with associations between emergent behaviours
defined at various levels of abstraction.

– Hypotheses concerned with the links between parameter sensitivity /
initial conditions and emergent behaviours e.g. the ABM is sensitive
to a parameter x because x predisposes the system or part of the
system to exhibit a particular (emergent) behaviour.

1 Introduction

Agent-based modelling (ABM) and simulation is a widely used tech-
nique for studying studying complex systems. Each agent in the simu-
lation represents an instance of an entity that is being modelled, while
different agent types in the ABM can be seen as representing different
‘species’ of entities. Agent types have specifications which determine the
behaviour of an agent given its own state and/or the state of its en-
vironment, where an agent’s environment can consist of other agents,
objects (e.g. coordination artifacts), and/or continuous media. Complex
systems are those in which entities interact in a non-trivial fashion so that
behaviours at different levels of abstraction can influence one another.
The usual reductionist cause-effect model therefore can not be applied,
since ‘causality’ can be at different levels. This has been formalised in
information-theoretic interpretations of complexity and emergence e.g.
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[12], [2], [14], where dynamics at lower resolutions have high predictive
efficiency so as to make higher resolution states statistically redundant.
In many cases, ABM and their simulations are used to investigate the
behaviours that emerge at the whole system or global level given the set
of rules defined at the agent level in the agent types. By observing that
a particular system level behaviour emerges, we can say that the set of
rules in the ABM are sufficient to generate the emergent behaviour. Sen-
sitivity of the ABM to certain parameters can also be investigated with
multiple simulations, where non-linear differences between simulations
with different parameters reveal sensitivity.
However, hypotheses about the mechanisms underlying a particular sys-
tem behaviour are often expressed in natural language and validated
through visualising the simulation and observing the interactions. We
seek to formalise this process so that such hypotheses can be formally
expressed and validated computationally rather than by human obser-
vation.
At the same time, Systems Sciences e.g. Systems Biology seek to integrate
several levels of abstraction in a single model. While there are formalisms
for specifying hierarchically organised systems e.g. P-Systems [9], hierar-
chical petri nets [5], there has been little work on using such formalisms
to represent spontaneously arising hierarchies (those which are emer-
gent). This requires a more general theory, which we provide here using
our formalism. By being able to formally describe behaviours at different
levels of abstraction e.g. different resolutions, we can then detect these
behaviours in simulation and validate hypotheses about the relationships
between these multi-level behaviours (with system-level behaviours being
at the highest level of abstraction). The methdology we propose treats
each simulation as an individual in the population of simulations that
can be generated by an ABM and uses sammping across simulations to
determine associations between behaviours at different levels. Further-
more, such associations can give us insight into other properties of an
ABM such as sensitivity to particular parameters.
The paper will be organised as follws:

– Section 2 describes our conception of models and simulations.
– Section 3 briefly introduces the theory of emergence on which our

work is based, referring to recent work in complexity science to for-
malise emergent properties.

– Section 4 introduces the complex event formalism for describing
multi-level behaviours in multi-agent simulations and proposes a
methodology for determining associations between behaviours at dif-
ferent levels of abstraction based on this formalism.

– Section 5 summarises and concludes the paper.

2 Models, simulations, agents and agent types
as functions

Central to our approach is the idea that an agent-based model (ABM) is
a function which, given a set of arguments (e.g. parameter values, initial
agent positions and states), returns a simulation. Simulation parameters
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Fig. 1. An agent-based model (ABM) generates a population of simulations, SimTotal.
Different parametisations/initial conditions etc. of the ABM can be regarded as differ-
ent models X, Y..., each of which generate a population of simulations SimX , SimY ... ∈
SimTotal, which are subsets of the population of simulations generated by the ABM.

can be treated as constraints that define subtypes of the ABM (i.e. more
specific models). These ideas are illustrated in Figure 1.
We define an agent-based model as a function which takes the arguments:
Agents, a set of agents and Config, a configuration defining the initial
conditions (e.g. where each agent is situated, global and local variables
etc.), and returns the simulation:

ABM Agents Config = Sim

where Agents and Config are themselves defined as functions, each
agent (instance) a0, ..., an in Agents is a function, and each member
of Config is a function c0, ..., cn that determines the initial state of an
agent and its position with respect to the other agents. Environmental
objects, shared data spaces, global and local variables etc. are all mem-
bers of Agents in this formalisation.
ABMs can also be parametised so that given a set of parameters P , there
are a set of simulations that satisfy the model i.e. there is a function
Model for which:

Model ABM P (Sim)

returns true if the simulation belongs to the set of simulations that can
be generated by ABM × P and false otherwise.
The ABM is made up of a set of functions called agent types A0, ..., An

that determine which agents (instances) can be generated by the model
so that each Ai returns an agent when given a ci:

A c = a
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An agent type is a function defining the behaviour of an agent given
its own state Qa and the state of its environment or neighbourhood
Qe (which might istelf be made up of other agents’ states). Usually,
this is expressed as a set of rules or constraints. At a particular level
of abstraction, an agent’s behaviour can be viewed as an atomic state
transition or event. We call these events simple events (se):

A Q O = se,

where

Q = Qa ×Qe,

and O is a function defining the level of abstraction at which the event
is observed.

3 Emergence and emergent properties

The term ‘emergence’ is often used in complex systems discourse to re-
fer to phenomena where a property or behaviour arises at some higher
level of abstraction from the actions and interactions between lower level
entities. However, defining the term has proved difficult, since complex
systems are investigated from different perspectives and those working in
different disciplines do not always agree on what counts as emergence [3].
However, we can distinguish two main categories of emergence theories:

– Information theoretic interpretations (see [13] for a review), which
formalise the fact that subsets of a system’s states can be statisti-
cally significantly related to one another due to the system’s internal
dynamics. For example, if a certain set of states is present in a time
series, we may be able to predict the occurrence of some other set of
states in the future.

– Definitions from the study of multi-agent systems and simulations
(e.g. [1], [4], [6]), which tend to characterise emergence in terms of the
specified/unspecified aspects of the system. Unspecified properties
and behaviours arise from interaction between agents rather than as
a consequence of a single agent’s actions; these are termed emergent.

The latter of these requires that as well as being at a higher level of
abstraction, emergent properties are also those that are in some way
‘greater than the sum of their parts’. This has been formalised in lan-
guage / grammar-based emergence definitions e.g. [4], [6] by requiring
that the ‘whole’ language can not be generated by the same grammar
that generates the ‘parts’ language. For example, Kubik defines a ‘whole’
language (L(

⋃
i
Pi)) and a ‘sum of parts’ language (L(Pi)), where Pi is

the set of rules. Emergence corresponds to the case where an array is
in L(

⋃
i
Pi) (the whole language) but not in L(Pi) (the sum of parts

language):

L(
⋃

i

Pi) ⊃ superposition(L(Pi)) (1)
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Whereas L(Pi) is derived by putting all the parts together and deriv-
ing configurations for every part separately and then putting results to-
gether, while L(

⋃
i
Pi) is obtained by putting all parts together and then

deriving configurations.

It is also worth clarifying the term ‘level of abstraction’, which is de-
rived largely from information-theoretic view that different dynamics
can emerge from observing a system at different scopes and resolution
(as defined in [11]).

The scope of a representation of the system is the ‘set of components
within the boundary between the associated system and its environment’
[11] 4 (at a given resolution). The scope S of a temporally extended
system can be considered to be made up of its temporal scope Sτ , which
defines the set of moments of time over which the system is represented
and a spatial scope Sx, which defines the set of components whose states
are being considered.

Resolution is the number of states that can be distinguished: i.e., given
the same scope, a higher-resolution (finer) representation will be able to
distinguish a greater number of possible states. Again, there is both a
spatial aspect Rx and a temporal aspect Rτ which together define the
overall resolution R.

A level of abstraction is then a function of the scope and resolution,
where a higher level of abstraction M has a greater scope and/or a lower
resolution than a lower level of abstraction µ (see equations (2), (3) and
(4)):

RM ≤ Rµ (2)

SM ≥ Sµ (3)

(RM , SM ) 6= (Rµ, Sµ) (4)

To summarise, we stipulate that as well as either having lower resolutions,
greater scopes, or both, emergent behaviours are those that have not been
explicitly specified.

4 Discovering associations between behaviours
at different levels

In the complex event formalism, a behaviour corresponds to an event,
where an event is a state transition defined at some level of abstraction.
A distinction is drawn between the origin of an event (the set of rules
from which it results) and its state transitions. As well as being able
to describe state transitions at different levels of abstraction, it is also
possible to describe the origins of events at different levels i.e. we can
ask for a given event, how many rules were executed to give that event.

This section first introduces the formalism and then describes a method
for identifying, quantifying and then determining associations between
behaviours at different levels.

4 The system’s environment is considered to be outside the scope of representation.
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4.1 Complex events

In the ABM and multi-agent systems context, certain events occur due to
a firing of a state transition rule (these are also known as agent ‘actions’).
We call these simple events SE. The state transitions that result from
simple events can be described at different levels of abstraction i.e. have
different scopes. For example, a simple event (from a single rule) where
the colour and size of an agent both change can be further decomposed
into two simple events - one with the colour state change, the other with
the size state change.
A complex event CE is a set of interrelated events, where relationships
between events can be defined in any dimensions e.g. time, space:

CE :: SE | CE1 ./ CE2 (5)

./ denotes the fact that CE2 satisfies a set of location constraints with
respect to CE1. Conceptually, complex events are a configuration of
simple events where the configuration can be defined in a hyperspace
that includes time, physical space and any other dimensions. Location
constraints define relationships between complex events, which can be
represented as a coloured multi-graph, where the coloured nodes stand
for event types and coloured edges stand for the different relationship
types (sets of location constraints) existing between events. A simula-
tion, therefore, is itself a (usually very big) complex event.
The state transitions of simple events can be described at different levels
of abstraction. For example, a rule that causes state changes in com-
ponents a, b and c can cause simple events (qa, qb, qc) → (q′a, q′b, q

′
c),

(qa, qb) → (q′a, q′b)..., qa → q′a...etc. We call this the scope of the event.
Two simple events e1 and e2 in a system are said to be of the same type
if (a) e1 and e2 result from the same agent rule and (b) the scope of e1

is identical to the scope of e2 i.e. for every component in which a state
change occurs in e1, there is a component of the same type in which the
same type of state change occurs in e2. Two complex events CE1 and
CE2 are said to be of the same type if, for each constituent event e1 in
CE1 there is exactly one event e2 in CE2 satisfying the same location
constraints, and e1 and e2 are events of the same type5. The scope of a
complex event’s state transition (the components in which state transi-
tions occur) should be distinguished from the event scope, which is the
minimal set of simple events of which the complex event is composed,
i.e. the number of rule firings.
To specify a complex event type, we need to specify the types for each
of the constituent events and the location constraints that hold between
them. Depending on the semantic and expressivity requirements of dif-
ferent applications, it is possible to use formal expressions from different
formal systems such as temporal logics to specify the location constraints
(good reviews can be found in [8] and [10]). Complex event types can
differ in specificity, with a fully determined complex event type CETFull

being defined as one whose constituent events are in a fully determined
configuration. A partially determined complex event type CETPart is

5 See [7] for a formal definition of types
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then one with a partially determined configuration and therefore defines
a set of complex events with fully determined configurations.

CETPart = {CETFull} (6)

So a complex event type can be defined as either a simple event type,
two complex event types with a defined relationship, or a set of complex
event types:

CET :: SET | CET1 ./ CET2 | {CET} (7)

The dimensions in which configurations are not fully specified lower the
resolution of the complex event, with weaker constraints (greater ranges
of possible values) implying a lower resolution in that dimension. More
generally, the greater the number of complex event types with fully de-
termined configurations that a complex event type contains, the lower its
resolution. Given our definition of an emergent behaviour as one that (as
well as being defined at a greater scope or lower resolution) is not explic-
itly specified in the ABM, we can say that the set of complex events that
correspond to emergent behaviours are those that are not simple events.
Similarly, the complex event types that represent emergent behaviours
are those that are not simple event types, i.e.:

CETEmergent = CET − SET (8)

Having briefly introduced the formalism and its relation to emergent
behaviours, we now describe how it can be used in the context of multi-
agent simulations to determine correlations between behaviours at dif-
ferent levels.

4.2 Correlation studies to determine associations

By determining the degrees to which each complex event type (represent-
ing a behaviour at a particular level of abstraction) is observed in simula-
tion, we can calculate the correlations between the complex event types
and determine associations between behaviours at different levels. This
can be done across all simulations or across classes of simulations that
are themselves classified according to some behaviour exhibited (since
association may itself be determined by another behaviour that is cur-
rently unknown). In other words, we are interested in what makes one
simulation of a model exhibit a different behaviour to another simula-
tion of the same model. To determine associations across simulations,
the method can be summarised as follows:
1. Specify complex event types CET0, CET1, ..., CETn that correspond

to behaviours at different levels of abstraction.
2. Run x simulations of the agent-based model and determine the oc-

currence levels of each of the complex event types for each simulation
pCET0, pCET1, ..., pCETn. This gives x sets of n scores. The simplest
occurrence level measure pCETi would be counting the number of
times each complex event type occurs through the simulation, but
other measures might be more suitable depending on the model and
its aims.
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Fig. 2. Simulations with particular behavioural differences may also differ in the as-
sociations existing between behaviours at different levels. Double arrows indicate a
positive correlation whereas a line connection indicates a negative correlation. In simu-
lations that exhibit CETA, CETD is positively correlated with both CETC and CETE

whereas in simulations that exhibit CETB , CETC is only positively correlated with
CETE while CETE and CETC are negatively correlated with each other.

3. Calculate the correlations between the pCETi scores across the sim-
ulations i.e. rCET0CET1, rCET0CET2, ...rCETnCETn−1 and determine
significance.

It is also possible that simulations that exhibit different behaviours also
have different correlation patterns. To investigate this possibility, the
same method can be applied but instead of grouping all simulations to-
gether when calculating the r values, we can have different sets of r values
corresponding to the sets of simulations exhibiting different behaviours
(see Figure 2).

We should emphasise here that associations between behaviours at differ-
ent levels across simulations do not always indicate causal relationships;
nor do they translate into ‘laws’. Instead, each simulation should be seen
as a unique individual which may or may not have the same associa-
tions. For example, even if there is a positive correlation between CETA

and CETB across simulations, it does not follow that a given simulation
with a high degree of CETA will exhibit a correspondingly high degree
of CETB (this holds for all correlation relationships e.g. we can not infer
from the fact that high intelligence scores in childhood IQ tests tend to
be associated with higher income that a particular individual with high
intelligence scores will definitely have a higher income).
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5 Summary and conclusions

In this paper we have introduced a method for studying associations
between emergent behaviours at different levels of abstraction in agent-
based simulations. This is based on a population view of agent-based
simulations, where each simulation is treated as an individual but can
also be multiply classified as belonging to more specific models e.g. hav-
ing the same parameter settings, initial conditions, or according to the
features/behaviours it exhibits.
The complex event formalism allows us to specify the emergent be-
haviours that we wish to identify in a simulation so that they can be
detected computationally. This formalism, together with our treatment
of simulations as multiply classifiable indivdiuals, allows us to formulate
and validate two catgeories of hypotheses:

– Hypotheses concerned with associations between emergent behaviours
defined at various levels of abstraction.

– Hypotheses concerned with the links between parameter sensitivity /
initial conditions and emergent behaviours e.g. the ABM is sensitive
to a parameter x because x predisposes the system or part of the
system to exhibit a particular (emergent) behaviour.

We are also able to analyse behaviours in terms of the rules that give
rise to them. A distinction is drawn between:

– Simple events, which represent behaviours arising purely from the
single execution of an agent rule and are hence explicitly specified.

– Complex events, which represent behaviours arising from execution
of more than one agent rule (these can be from the same agent) i.e.
the interactions between rules.

This distinction is based on established definitions of emergence in the
field of multi-agent systems engineering. The decomposition of complex
events gives us a means of determining the rule-based mechanisms under-
lying an emergent behaviour, something that would be of considerable
benefit in the design and engineering of multi-agent systems.
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