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Abstract Stock selection for hedge fund portfolios is a chal-
lenging problem for Genetic Programming (GP) because the
markets (the environment in which the GP solution must sur-
vive) are dynamic, unpredictable and unforgiving. How can
GP be improved so that solutions are produced that arero-
bustto non-trivial changes in the environment? We explore
two new approaches. The first approach uses subsets of ex-
treme environments during training and the second approach
uses a voting committee of GP individuals with differing
phenotypic behaviour.
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1 Introduction

In May 1994, following an increase in US short-term inter-
est rates, tumbling bond prices, and a knock-on effect on in-
ternational currencies, the financial speculator George Soros
lost $650,000,000 in just two days (Lowenstein, 2002). On
17th August 1998, Russia defaulted on its debts; three days
later the financial markets across the world collapsed and in
just one day, the hedge fund Long Term Capital Manage-
ment lost $553,000,000 (Lowenstein, 2002).

The financial markets are highly dynamic, unpredictable
and unforgiving. If GP is used to evolve a solution to a fi-
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nancial trading or investment problem it must be robust to
these time-varying disturbances in the markets.

It follows from the above examples that by “robust” we
do not mean insensitivity of the fitness of an individual to
perturbations resulting from the genetic operators (genotypic
robustness (Soule, 2003; Soule et al, 2002)); although this
form of “robustness” favours broad plateaus to sharp peaks
in the search space, it does not give much indication about
how the best-of-run individual will perform when the fit-
ness function itself changes (i.e. the surface of the search
space fluctuates). Relevant, though insufficient, other previ-
ous definitions of robustness include the insensitivity of the
fitness of an individual to small fluctuations in an individ-
ual’s parameters (sometimes known as phenotypic robust-
ness or generalizability (Branke, 1998; Tsutsui and Ghosh,
1997)) and the insensitivity to a noisy fitness function (Fitz-
patrick and Grefenstette, 1988; Hammel and Bäck, 1994;
Miller and Goldberg, 1996). The problem with these latter
two definitions is that all known work in the area assumes
that the fluctuations or noise are drawn from a known and
time-invariant distribution (typically uniform or Gaussian),
and are small. By contrast, the financial markets undergo
large, abrupt and time-varying changes.

Aragón et al (Aragón and Esquivel, 2004) model a dy-
namic environment as a sequence of fitness functions, each
defined by changes to the previous. The model uses occa-
sional macro-mutation for radical genotoype shake-up (“re-
crudescence”), and assumes that all possible changes to the
current fitness function are enumerable (and finite, and, in
practice, few). It assumes that we can evolve continuously
and wait several generations before adaptation to the new
fitness function is achieved. Unfortunately, in the real world
we cannot wait for the evolutionary system to learn from the
new environment!

Our two approaches are substantially different to the prior
work in this area.
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1. The first approach is based on the assumption that exam-
ples exist of greatly differing extreme environments. If
that assumption holds, then we propose to present these
examples to the genetic population during training in or-
der to select individuals that perform well in a variety
of extreme training environments. We call this approach
“Multiple Scenarios Training”.

2. The second approach is based on the use of a “commit-
tee” structure whereby a small (odd) number of trained
GP individuals offer solutions as votes, and the major-
ity vote wins. If the individuals exhibit widely differing
phenotypic behaviour, yet all have good fitness on the
training data, we hope that this committee structure will
be robust to large changes in the environment. We call
this approach “Committee Voting”.

The obvious research question these two approaches en-
tails is, as a result of multiple-scenario exposure or commit-
tee based decision making, whether trained individuals are
more likely to be robust to large disturbances in the environ-
ment?1 There are three ways we plan to measure this kind
of robustness in the context of our finance application:

1. when exposed to an out-of-sample volatile validation data-
set, a more robust solution will have a lower standard
deviation of returns, while the returns themselves do not
decrease; or

2. when exposed to an out-of-sample volatile validation data-
set, a more robust solution will have higher returns while
the standard deviation does not increase; or

3. when exposed to an out-of-sample volatile validation data-
set, the mean return per unit of risk of a more robust so-
lution will not significantly reduce from that measured
during training.

2 Related Work

2.1 Robustness

Robustness for a biological system is a property to allow
a system to maintain its functionality despite internal and
external perturbations (Kitamo, 2001; Wagner, 2005).

Robustness is a very broad theme and it is impossible to
capture all its aspects by means of a single definition. Ro-
bustness is an ubiquitously observed property of biological
systems. It is considered to be a fundamental feature of com-
plex evolvable systems (Kitamo, 2001).

The definition of robustness in evolutionary systems varies
from author to author, but in broad terms, it can divided into
two categories:

1 An alternative approach is to look for anadaptivesolution, i.e. one that detects
changes in the environment and responds by modifying its internal structure and the
way that it operates. However, a similar question arises: inan unforgiving environ-
ment, would it havetimeto adapt and survive without prior exposure to extreme envi-
ronments?

1. Robust to internal changes (genotypic robustness)
Robustness as the resistance to changes from variation
operators such as crossover and mutation. Soule (Soule,
2003; Soule et al, 2002) observes that the most outstand-
ing evidence of pressure towards this type of robustness
is the phenomenon of code growth (or bloat) in GP. Code
bloat is a rapid increase in code size that does not re-
sult in fitness improvements. It is proposed that GP trees
grow this extra code (“introns”) as a means of protecting
the useful code within good solutions. By adding introns
the useful code is less likely to be affected by crossover
or other similar operators. The robustness in this sense
can be drawn parallel to gene redundancy in biosystems
and to the existence of “neutral networks”2 which en-
able a population to maintain a dominant phenotype re-
quired for adaptation despite random genotype changes
during the evolution (Huynen et al, 1996).

2. Robust to external changes (phenotypic robustness)
(a) Robustness as the generalisation ability of the pro-

grams evolved using GP (Bersano-Begey and Daida,
1997; Kuscu, 1998, 2000; Moore and Garcia, 1997;
Panait and Luke, 2003). The concept of generali-
sation is originated from connectionist or symbolic
learning research and it is defined as the desired suc-
cessful performance of the solution when it is ap-
plied to an environment similar to the one it was
evolved for. In the context of evolutionary systems,
the ability to generalise is defined as “the predic-
tive accuracy of the learner in mapping unseen input
cases to outputs with a satisfactory degree of correc-
tion” (Kushchu, 2002). In this respect, robustness is
in line with though opposite to the definition of over-
fitting. Overfitting happens when the computational
effort spent on obtaining a more precise fit of the
sample results in an increased error on other data.

(b) Robustness as the ability to cope with non-constant
noise (Jordaan et al, 2004; Nissen and Propach, 1998).
Practical optimisation problems often require the eval-
uation of solutions through experimentation, stochas-
tic simulation, sampling, or even interaction with the
user. Thus, most practical problems involve noise.
Jordanne et al. (Jordaan et al, 2004) investigated this
particular aspect of robustness when noise is added
to the deterministic objective function values.

(c) Robustness as the sensitivity of performance quality
in the presence of external environmental perturba-
tions. For example, Hermann (Herrmann, 1999) de-
fines robust solutions as the one that has the best
worst-case performance.
This aspect of robustness is the most consistent with
phenotypic robustness in nature. Although a biolog-
ical system exhibits robustness in terms of genes,

2 Connected networks of RNA sequences with identical structure.
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structures etc, from an evolution point of view, ul-
timately robustness of only one feature matters: fit-
ness is the ability to survive and reproduce (which in
evolutionary systems means the performance quality
of a solution).

(d) Robustness as the ability for self-repair when subject
to severe phenotypic damage (Miller, 2004; Bowers,
2005). This behaviour is reminiscent of autonomous
regeneration of the pond organism hydra, which can
reform itself when its cells are dissociated and then
re-aggregated in a centrifuge (Gierer et al, 1972).

2.2 Structured Training Sets for Robustness

The way in which training data is presented to the popula-
tion is central to our work yet has received little prior atten-
tion. The techniques that have been proposed are twofold:
the use of random noise in the training data; and the use of
randomly generated environments (fitness cases). However,
the experimental methodology of the prior work is not en-
tirely helpful in giving confidence that robust solutions have
actually been evolved.

Ito et al and Reynolds (Ito et al, 1996; Reynolds, 1992)
use noise and modify initial conditions in order to promote
robustness of the programs produced by GP — robustness
both to changes in the initial conditions and to changes in
the environmental stimuli. The use of noise can be helpful in
reducing the brittleness of programs and increasing the like-
lihood of robustness (Reynolds, 1992). In Ito et al. (Ito et al,
1996) both changing initial coordinates and the direction of
the robot, together with the introduction of noisy sensors and
actuators, are tried to produce robust programs for robot be-
haviour. Separate training and testing sets are used but there
is no discussion of how training and test cases should be
chosen. Furthermore, training and testing comparisons are
done on a generation basis and the measure of robustness in
testing on a different environment after the training (i.e., af-
ter evolution has stopped) is not reported. The results of the
experiments do not make it clear whether a robust behaviour
has been reached and if so, how it is reached.

Haynes and Wainwright (Haynes et al, 1995) use GP to
evolve an agent that can survive in a hostile environment.
Rather than using a fixed environment for a particular run, a
new environment is generated randomly at the end of each
generation. In this way, it is hoped that the agent can han-
dle “any” environment. Since the agent does not seem to be
tested in a new environment after the evolution has stopped,
the nature and the degree of robustness to new environments
(that might have been obtained by variable training environ-
ment during the evolution) remains unexplained.

A good example of experiments attempting to reduce the
brittleness of individuals generated by GP is presented in
(Moore and Garcia, 1997). The system in this paper evolves

optimised manœuvres for a pursuer/evader problem. The re-
sults of this study suggest that use of a fixed set of training
cases may result in brittle solutions due to the fact that such
fixed fitness case may not be representative of possible situ-
ations that the agent may encounter. It is shown that use of
randomly generated fitness cases at the end of each genera-
tion can reduce the brittleness of the solution when the solu-
tion is tested against a set of large representative situations
after the evolution. However, a proper selection method for
training and testing cases is not provided.

Rosca (Rosca, 1996) addresses issues of size and gen-
erality in GP; however, the degree of overlapping between
training instances and the testing instances does not seem to
be explicitly controlled. In such a case, an objective and di-
rect comparison using a common basis between training and
testing may be difficult.

2.3 Committees

The use of a committee or “voting pool” is well known in the
area of machine-learning (ML) classifier systems. In partic-
ular, a multiple-classifier system (MCS) (Kittler and Roli,
2001) would utilise a number of different classifiers that
run simultaneously and their results combined in a second
stage or master classifier. The master prediction algorithm
can either be another classification algorithm or a voting
committee. The MCS may utilise classifiers that each pro-
vide a confidence estimate together with their classification
— the committee may then choose a subset of results to be
used for voting (Stefano et al, 2003) (Ranawana and Palade,
2006).

Where possible, complementary classifiers are chosen,
whose errors are partially or fully uncorrelated. However,
this is not always possible and so a second approach is to
search for combinations of classifiers whose performance
lies outside the ROC (Egan, 1975) of the constituent clas-
sifiers. There is no guarantee of improvement with the MCS
approach, but (Buxton et al, 2001) have demonstrated im-
pressive results using a GP to identify an optimal second-
stage classifier. Similarly, Herbster has developed success-
ful master prediction algorithms that can optimally combine
sub-prediction algorithms (Herbster and Warmuth, 1998)
(Herbster, 2001; Herbster and Warmuth, 2001).

Zhang and Joung (Zhang and Joung, 2000) have pre-
sented a mechanism for determining the constituents of a
committee for GP classification problems. Ensemble sys-
tems are “learning algorithms that construct a set of classi-
fiers and then classify new data points by taking a weighted
vote of their predictions” (Dietterich, 2000). Dietterich(Di-
etterich, 2000) provides an informative review of these sys-
tems; see also (Brown et al, 2005; Liu et al, 2000; Imamura
et al, 2003).
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Whilst the concept of a committee structure with ma-
jority voting has been established for many years in the re-
search area of ML classifiers, it is rarely reported in the im-
plementation of optimisers. Soule (Soule, 1999, 2000) is an
exception; he has investigated the evolution of co-operating
teams that vote on solutions, but the proposed technique is
complex and it is not clear whether this work could be ex-
tended to problems in financial time-series analysis. See also
Zhu (Zhu and Chipman, 2006).

Several researchers have specifically investigated the ad-
vantages of robustness and the minimisation of solution risk
that accrue from using a committee of solutions instead of
a single model in a changing environment. The advantages
that have been previously reported are:

1. Firstly, since the final decision is a combination of a
number of problem solvers, one obtains a more consis-
tent estimate of the output. The performance of the sys-
tem is more robust as the outcome does not depend on
the accuracy of one single model anymore, but on the
outcome of several models (Imamura et al, 2003) (Soule,
1999).

2. Secondly, the spread or variance of the different out-
comes can be used to derive a measure of confidence,
called model disagreement indicator. A small difference
in behaviour gives the users more certainty about the de-
cision (Zhang and Joung, 2000).

3. Another advantage of a committee is that it enables re-
dundancy. If the committee consists of models that be-
have differently on different environmental inputs, there
will be at least one model available for a particular type
of environment (Dietterich, 2000; Brown et al, 2005).

3 Description of the algorithm

3.1 Multiple Scenarios Approach

We are concerned with not only the performance or fitness of
the GP evolved solutions but also the performance volatility
of the GP evolved solutions across a range of environment
dynamics. For example, in a scenario where market prices
are rising (“bull market”), a scenario where market prices
are falling (“bear market”), and a scenario where market
prices are fluctuating with large amplitude (“volatile mar-
ket”).

We therefore consider the training data to be a set of fit-
ness cases — a vector of environments — representing a
possible range of different environments and then adjust the
fitness with its perceived volatility to obtain an whole pic-
ture of an individual’s performance . LetS be the training
environments vector andsn be thenth possible type of envi-
ronment, which we call a “scenario”; thenS= {s1 . . . ,sn}.
We also hold a separate out-of-sample validation vectorV.

We consider three ways in which the GP population should
be exposed to these scenarios:

1. “Standard GP” (SGP): use the entire vectorS, treated as
a single unit, throughout all generations;

2. “Multiple-scenario Evaluation in the Last Generation”
(MELG): use a variant of the three-dataset methodology
(Panait and Luke, 2003; Gagné et al, 2006), where the
entire vectorS(treated as a single unit) is used forn−1
generations, and in the final generation individuals are
tested against a subset of environments{si} drawn from
S. The “best-of-run” individual used in the validation on
setV is that which has, in the final generation, the high-
est Volatility-Adjusted Fitness (see below);

3. “Multiple-scenario Evolution” (MEVO): in each gener-
ation, use a subset of environments{si} drawn fromS,
and ascribe to each individual a Volatility-Adjusted Fit-
ness (see below). Evolution proceeds as normal on the
basis of this adjusted fitness measure. The “best-of-run”
individual from the final generation is used in the out-of-
sample validation on setV.

Volatility-Adjusted Fitness

We have previously introducedS as the training envi-
ronments vector andsn as thenth possible scenario; hence
S= {s1 . . . ,sn}. Now letM = {m1 . . .mp};mj ∈ Sbe a sub-
set ofS that is used for fitness evaluation.

Let Ii be an individual in the population, andf
mj
Ii

be the
fitness of individualIi when evaluated on scenariomj . Then
FIi is the “fitness vector” ofIi when evaluated on a subset of
scenarios, given byFIi = { f m1

Ii
, . . . , f

mp
Ii

}.
We use standard deviation to calculate the volatility of

the fitness (performance) of the individual across this range
of scenarios:

σIi =

√

√

√

√

1
p

p

∑
j=1

( f
mj
Ii

−FIi )
2 (1)

where:FIi = mean ofFIi , given by 1
p ∑p

j=1 f
mj
Ii

The “Volatility-Adjusted Fitness” (VaF) of an individual
is now defined as the mean fitness divided by volatility:

VaFIi =
FIi

σIi
(2)

MELG

For MELG we use a variation of the three-dataset method-
ology as outlined in (Panait and Luke, 2003; Gagné et al,
2006). In our version of this methodology, thetraining setis
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used to evaluate the fitnesses of individuals inn−1 gener-
ations; elitism ensures that the best-of-generation individ-
uals survive to the last generation, and the individuals in
the last (nth) generation are tested against a differentin-
sample volatility set; a best-of-run individual is selected and
its quality is assessed using yet another differentout-of
-sample validation set.

Note that a possible drawback of this methodology is
that, where data samples are limited, either the training set
or the out-of-sample validation set must be smaller than it
would be in a two-dataset methodology. However, in our
variation of the methodology thein-sample volatility setis a
vector of subsets of the initialtraining set. We also choose to
set the fitness vector to beFIi = { f m0

Ii
, f m1

Ii
, . . . , f

mp
Ii

}, where
f m0
Ii

is the fitness of the individual previously calculated in

then−1th generation — thus, the fitness vector contains in-
formation about fitness on the whole training set treated as a
single unit, as well as fitness on each of the scenarios.

Our methodology permits a more direct comparison with
SGP, since we know that both SGP and MELG have been
given identical training data — what is different is the way
in which that data is presented to the population.

MEVO

The MEVO algorithm differs from MELG in that it uses
a two-dataset method: thein-sample volatility setused in
MELG is used not only in the final generation, but in ev-
ery generation. The second dataset is therefore the out-of-
sample validation setV.

Thus, evolutionary selection is based on the volatility ad-
justed fitness VaFIi , which is calculated from
FIi = { f m1

In , . . . , f mn
In } (see above).FIi can be thought of as an

“intermediate” fitness vector for each individual, andVaFIi
is the “real” fitness of an individual. Note that MEVO isnot
exposed to the entire training set (f m0

In
); we only expose it to

the extreme scenarios. This might be thought to put MEVO
at a disadvantage because it does not have access to as much
information as MELG or SGP, but in early trials we discov-
ered that using the entire training set as another scenario led
to poor results.

3.2 Committee Voting Approach

Our stock-picking problem is an optimiser, not a classifier
— we evolve a factor model (an equation) that provides a
real-number estimate of attractiveness of a stock, with no
hard threshold to indicate whether to buy or sell. That equa-
tion is then used by an investment simulator to make dy-
namic buy/sell decisions based on an assessment of the op-
timum tactics given the relative attractiveness of all available
stocks.

We are concerned with not only the performance or fit-
ness of the GP evolved solutions but also the performance
volatility of the GP evolved solutions across a range of en-
vironment dynamics. For example, where market prices are
rising (“bull market”), where market prices are falling (“bear
market”), and where market prices are fluctuating with large
amplitude (“volatile market”).

We therefore identify individuals with widely differing
behaviour — one that performs well in a bull market, and
one that performs well in a bear market, etc. We assume that
these individuals are the result of entirely separate GP evolu-
tions using different training data. These individuals arethen
used at a committee stage in a majority voting algorithm.

The committee is implemented as part of our investment
simulator. The simulator is used both during GP evolution
(it is called by the fitness function) and during validation,
but the committee is only used during validation.

4 Hedge Fund Simulation

To test the two new algorithms, we simulate a long/short
market-neutral hedge fund of Malaysian equities. We choose
the Malaysian market because it (in common with other emerg-
ing markets) is particularly volatile. The GP system evolves
a non-linear equation that uses market data to determine
whether a single stock should be selected to buy, or to sell.

4.1 System Overview

Our test system comprises a GP system coupled with an in-
vestment simulator. The coupling between the two is the fit-
ness function — the investment simulator is called each time
the GP system needs to determine the fitness of an individ-
ual, at which point the individual is used to control the sim-
ulation of an hedge fund of Malaysian stocks. The simulator
is applied to training data giving monthly prices and other
factors. Monthly returns on investment are calculated, and
at the end of each simulated year the Sharpe ratio (Sharpe,
1994) is calculated.

Fitness

The fitnessf for an individual is the Sharpe ratio (Sharpe,
1994), given by Equation 3.

Sharpe Ratio=
xi −RFRi

σi
(3)

In Equation 3,xi is the average monthly Return on In-
vestment (ROI) over the sub-periodi, σi is the standard de-
viation of monthly ROIs over the sub-periodi, andRFRi is
the average monthly Risk Free Rate for sub-periodi. We set
RFRi to 0.00̇3 for all i (equivalent to 4% per annum).
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Note that we have chosennot to use a multiple-objective
approach to fitness evaluation. At an early stage we experi-
mented with using two objectives (high ROI and low volatil-
ity) but the system performed poorly. In financial investment
ROI and volatility are very closely linked (they are not prop-
erly independent objectives); the result was that the non-
dominated set was very small and this adversely affected
evolution, causing the system to converge on a local opti-
mum with poorer performance than the solution found using
the Sharpe Ratio as a single objective.

4.2 The Investment Simulator

We simulate a market-neutral long/short hedge fund of
Malaysian equities. The fund focuses on a basket of 33
Malaysian stocks, which it can buy (“go long”) or sell (even
if it doesn’t own any — “go short”). Since all 33 stocks are
quite well correlated, the market-neutral strategy simplyen-
tails buying the profitable stocks and selling (short if neces-
sary) those stocks that are performing poorly.3

The training data is monthly prices (and other techni-
cal and fundamental data) over a period of 71 months. All
trading occurs at the beginning of each month and the re-
sulting stock mix is held for the duration of the month. At
the beginning of each month, the simulator uses the individ-
ual provided by the GP system as a stock selection model
that quantitatively measures the attractiveness of each stock;
this model is a non-linear combination of technical and fun-
damental factors to predict the return expectation for each
stock over a 4-week forward horizon.

For each month, we apply the stock selection model to
the current month data — this is a table per stock with 19
factors (see Table 1) and 7,680 data points. A return predic-
tion is assigned to each stock.

The stocks are grouped into 4 market sectors and within
each sector all stocks are ranked according to the expected
return. The portfolio simulator then makes the following
fund management decisions:

– The long/short portfolio is both dollar neutral and sector
neutral. Thus, at all times, 24 stocks are maintained in
the portfolio with 12 long positions and 12 short posi-
tions equally distributed across all the sectors. Accord-
ing to the ranking, the top 3 stocks in each sector become
the top fractile and the bottom 3 become the bottom frac-
tile. The top fractile of each sector and the bottom frac-
tile of each sector are chosen to hold long positions and
short positions respectively in the portfolio.

– Sectors are equally weighted and each stock is given
equal weight in the portfolio. Thus, each position ac-
counts for approximately 4% of total portfolio value.

3 A contrarianstrategy might do the opposite — sell the high stocks and buy the
low stocks, on the expectation that mean-reversion will occur and the high stocks will
fall while the low stocks will rise.

Table 1 Description of Factors

1. Closing stock price on 1st day of a month
2. Closing stock price on last day of a month
3. 12-month MACD: moving average convergence and diver-

gence
4. capitalisation= (number of shares)× (stock price (c))
5. ROE= (net income)÷ (shareholders’ equity)
6. ROE(this year)− ROE(prev. year)
7. ((total debt)÷ (common equity))× 100
8. (sum of last 12-months of cash dividends)÷ (stock price (c))
9. (last 6 months’ trailing earnings per share - prev. last 6 trail-

ing earning per share)÷ (absolute prev. last 6 months trailing
earning per share)

10. as above (replace 6 with 12)
11. as above (replace 12 with 36)
12. The rate of change in the reported last 12-month earningsper

share over the three year time interval terminating on the date
of the last interim period for which earnings were announced

13. (last 12-month trailing earnings per share)÷ (closing market
price)

14. (historical book value per share)÷ (closing monthly market
price)

15. (cash earnings per share)÷ (closing market price)
16. One month dollar price change
17. One year dollar price change
18. (current year’s net sales or revenue - previous year’s net sales

or revenue)÷ (previous year’s net sales or revenue)
19. (last 12-month trailing earnings per share - last 12-month div-

idend per share)÷ (last year’s book value per share)

– CFDs (Contract for Differences) are used instead of con-
ventional shares to trade on stocks. We assume 20% no-
tional trading requirement (margin), 0.25% trading com-
mission, and 5% financing rate.

At the end of each month, all of the positions held in
the portfolio are closed and the profit or loss of the portfolio
during the month is calculated. At the beginning of the next
monthly trading cycle, the simulator updates the expected
return based on the new “current” data and a new desired
long/short portfolio is formed.

5 Experiment

5.1 Multiple Scenarios Approach

Our primary research question for the multiple scenarios ap-
proach is:“are the best-of-run individuals from the two new
systems more robust than the best-of-run individual from
SGP when exposed to a volatile and previously unseen envi-
ronment?”

Our experiment compares the performance of all three
systems: SGP, MELG and MEVO. The basic GP parame-
ter settings for the three systems are identical, as given in
Table 2.
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Table 2 GP Parameter Settings

Population size (N) 1000
Method of generation Ramped half and half
Function set {+, -, *, /, Exp}
Terminal set 18 firm-specific factors
Selection scheme Fitness proportionate se-

lection
Criterion of fitness Monthly Sharpe ratio
Trees generated by elitism 10 (1%)
Trees generated by crossover 950 (95%)
Trees generated by mutation 40 (4%))
Termination criterion 100-generation evolution
Max. depth initial generation 6

5.1.1 Data

All three systems use an Investment Simulator that has an in-
vestment universe of 33 Malaysian stocks. The training data
for all three systems comprises time-series financial data for
the 33 stocks taken from the period 31st January 1999 to
31st December 2004.

SGP and MELG use a training data set of financial time-
series data taken from the period 31st January 1999 to 31st
December 2004 (71 months).

For MELG (last generation only) and MEVO, the fol-
lowing three scenarios were chosen:

1. Bull market: 31/05/2003 to 31/12/2004 (19 months);
2. Bear market: 31/01/2000 to 31/05/2001 (16 months);
3. Volatile market: 31/01/1999 to 31/03/2000 (14 months).

Figure 1 shows the overall market index for Malaysian
stocks, and a non-weighted portfolio index of the 33 invest-
ment stocks, for the overall period under study. It also indi-
cates the three scenario periods (bull, bear and volatile) and
the validation period. The market and portfolio indices both
show considerable volatility — the portfolio index (construct-
ed from the stocks in which our simulator invests) is slightly
more volatile than the overall market index, and so benefi-
cial effects displayed by our GP system cannot be due solely
to “cherry-picking” the least volatile stocks.

5.1.2 Out-of-Sample Validation

All three systems are validated on a previously unseen
“out of sample” data set, comprising time-series financial
data for the 33 stocks taken from the period 31st July 1997 to
31st December 1998. During this period the Malaysia stock
market suffered great volatility including both the highest
and lowest monthly returns in the entire period under study.
From May 1998 to October 1998, the stock index lost more
than 42%. Then from November 1998 onwards, there was a
remarkable performance from the market index, rising 23.3%
in November.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

8/1/97 12/14/98 4/27/00 9/9/01 1/22/03 6/5/04

portfolio index

market index

bullbearvolatile

trainingvalidation

M
o

n
th

ly
 R

e
tu

rn

Fig. 1 Market and portfolio indices (fractional monthly returns,31st
July 1997 to 31st December 2004), scenarios and validation period.

We have deliberately chosen this period as a real test of
robustness of individuals in a dynamic and hostile environ-
ment. One expects episodes of extreme volatility in world
stock markets, and in emerging markets in particular. A suc-
cessful hedge fund stock selection model must be robust —
be able to perform in both (extreme) up and down markets.

For the out-of-sample validation, we performed 25 com-
plete training runs (each run being seeded with a different
random number) of each of the three systems (SGP, MELG,
and MEVO) and the best-of-run individual was selected from
the final generation of each run.

The selected individuals were then validated on the pre-
viously unseen data; the results of the 25 runs are discussed
in the following section.

5.2 Committee Voting Approach

Our primary research question for the committee voting ap-
proach is:“does a voting system provide more robust results
than the best-of-run individual from SGP when exposed to a
volatile and previously unseen environment?”

Our experiment compares the performance of an SGP
individual with the Voting system comprising three best-of-
run individuals derived from three GP evolutions with dif-
ferent training data sets. The basic GP parameter settings
for the GP systems are identical, as given in Table 2.

5.2.1 Data

All systems use an Investment Simulator that has an in-
vestment universe of 33 Malaysian stocks. The training data
for all systems comprises time-series financial data for the
33 stocks taken from the period 31st January 1999 to 31st
December 2004.
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SGP uses a training data set of financial time-series data
taken from the period 31st January 1999 to 31st December
2004 (71 months).

For the three special-case evolutions, the following three
market contexts were chosen:

1. Bull market: 31/05/2003 to 31/12/2004 (19 months);
2. Bear market: 31/01/2000 to 31/05/2001 (16 months);
3. Volatile market: 31/01/1999 to 31/03/2000 (14 months).

5.2.2 The Committee

During validation, the Voting investment simulator is aug-
mented with a committee structure containing a team of three
individuals.

In investment portfolio optimisation we trade monthly
and aim to pick those stocks that will perform wellregard-
lessof whether the market in the following month will be
bull, bear, or volatile. Thus, we do not follow the otherwise
obvious strategy of detecting the current market conditions
and using an individual that has been trained only on that
one market condition. Rather, the voting team comprises the
best-of-run individual chosen from each of the final popula-
tions of three GP systems each of which has been trained on
only one market condition — i.e. the three systems have un-
dergone separate training with pre-defined distinctively dif-
ferent training data sets representing the three market envi-
ronments “bull”, “bear” and “volatile”.

Our expectation is that the behavioural correlation be-
tween team members is low. Each team member generates a
predicted return for the next 30 days, for each stock in the
portfolio, and an explicit mechanism is used to combine the
members’ solutions.

There are two possible combining mechanisms, either
Averagingor Votingas shown in Figure 2.

Averaging: The first mechanism averages the team mem-
bers output. This results in a mean predicted return for
the next 30 days for each stock. The stocks are then
ranked in order of this mean predicted return, the top half
is selected for buying and the bottom half is selected for
selling.

Voting: With the second mechanism each team member uses
its predicted returns to generate its own ranking of all
the stocks; this is then converted into a buy decision for
those stocks in the top half of the ranking and a sell de-
cision for those stocks in the bottom half.
After the buy/sell recommendations have been calcu-
lated for all team members and for all stocks, a majority
voting method is applied to each stock and a final buy
or sell decision is derived for that stock. With majority
voting, if a stock has more buy recommendations than
sell recommendations, it will be bought: otherwise it is
sold.

Out-of-Sample Performance: Mean Monthly Returns
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Fig. 3 Mean monthly fractional returns.

In our experiment we will consistently use the Voting
mechanism.

6 Discussion of results (Multiple Scenarios Approach)

Figure 3 shows the mean monthly returns (over 25 runs) on
the validation data for all three systems (SGP, MELG and
MEVO), together with the porfolio index returns. The port-
folio index (constructed from the stocks in which our sim-
ulator invests) shows considerable volatility — it is more
volatile than the overall market index seen in Figure 1, and
so beneficial effects displayed by our GP system cannot be
due solely to “cherry-picking” the least volatile stocks. SGP
is not very volatile, but neither does it make much profit.
Both MELG and MEVO appear to be adept at avoiding losses
yet still able to make good gains in positive months. Figure 4
show vividly the difference between the large cumulative
losses of the portfolio index compared with the cumulative
gains of MELG and MEVO.

Out-of-Sample Performance: Cumulative Mean 
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Fig. 4 Cumulative monthly fractional returns.



9

GP
Committee
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Stock N:    return 1   return 2    return 3

Stock Data for 
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START NEW MONTH

Stock 1:     mean return

Stock N:    mean return
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Selection:
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Fig. 2 The Committee in action: either Averaging or Voting.

Figure 5 gives another view of the mean monthly returns
by plotting the frequency distributions of returns in the val-
idation period. The portfolio index (dashed) is very volatile,
whereas all three GP systems are much less volatile (though
with significant positive fat tails).

Frequency distributions of mean monthly ROIs
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Fig. 5 Frequency distributions of mean monthly fractional returns.

6.1 Robustness

So what does this tell us about “robustness”, and how do
we measure it? Simplistically, we might take robustness to
be synonymous with “low variance” — i.e. the performance
of the individual does not alter much, despite the extreme
volatility of the market environment. However, in practice

we have a much more exacting requirement: it is not help-
ful to an investor to know that an individual robustly (i.e.
with low variance) makes a loss regardless of the market! A
much more helpful measure is to know that the individual
combines two qualities of (i) high return on investment and
(ii) low variance in the face of extreme volatility.

In Section 1 we stated our three measures of robustness:

1. when exposed to an out-of-sample volatile validation data-
set, a more robust solution will have a lower standard
deviation of returns, while the returns themselves do not
decrease; or

2. when exposed to an out-of-sample volatile validation data-
set, a more robust solution will have higher returns while
the standard deviation does not increase; or

3. when exposed to an out-of-sample volatile validation data-
set, the mean return per unit of risk of a more robust so-
lution will not significantly reduce from that measured
during training.

The performance of our three systems, using robustness
measures 1 and 2 above, are illustrated in Figure 6, which
shows standard deviation plotted against returns. Specifi-
cally, the figure plots returns in excess of the risk free rate,
and we have added data for the portfolio index and for a
popular non-genetic technical strategy (using Moving Aver-
age Convergence Divergence (MACD) to select stocks). The
portfolio index is shown to be not at all satisfactory, with
both low returns and high standard deviation; the MACD
approach performs much better than the portfolio index, but
not as well as any of the three GP systems. In terms of ro-
bustness:
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1. The three GP systems and MACD all have similar stan-
dard deviations (a ranked T-test indicates no significant
difference in the GP distributions) and so by this mea-
sure no one system is more robust than another.

2. By contrast, the three GP systems and MACD differ in
their returns while their standard deviations do not dif-
fer, so by measure 2 they are not equally robust. In or-
der (from least to most robust) we have MACD, then
SGP, the MEVO and finally (the best) MELG. We fur-
ther quantify this below.

Robustness Comparison
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Fig. 6 Robustness comparison.

Fund managers use a very similar approach to our ro-
bustness measures 1 and 2 — they use the Sharpe Ratio
(Sharpe, 1994) (see Section 4.1) which determines the ROI
(in excess of the risk free rate) per unit of risk (given by
the standard deviation). Since the standard deviations in this
case are the same, a Sharpe Ratio comparison also provides
a quantitative comparison of returns and thus of our robust-
ness measure 2. Therefore, we have calculated the Sharpe
Ratios (across 25 runs) for each of the three GP systems.

Comparison of the Sharpe Ratio distributions shows that
all three systems achieve substantially better results than the
portfolio index (as expected from Figure 6) and a ranked
T-test comparison of the Sharpe Ratios indicates a statisti-
cally significant difference between all three systems. The
p-values (the probabilities that two compared distributions
are from the same population) are presented in Table 3. The
means of the Sharpe Ratio distributions are: 0.125 (SGP),
0.305 (MEVO), and 0.421 (MELG) — MELG is substan-
tially the most robust system of the three.

Our third measure of robustness determines how much
the mean return per unit of risk reduces when moving from
the training set to the validation set. This is shown in Fig-
ure 7. The percentage reductions in Sharpe Ratio (and as-
sociated p-values from a ranked T-test) were 65% for SGP

Table 3 Summary of Ranked T-test (p-values)

Compare SGP with MELG: 4.01×10−16

Compare SGP with MEVO 4.13×10−16

Compare MEVO with MELG 4.62×10−9

(1.4× 10−11) , 25% for MEVO (3.1×10−8) and just over
2% for MELG (0.92), indicating a substantial robustness ad-
vantage for MELG.
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Fig. 7 Robustness measure: drop in Sharpe Ratio.

7 Discussion of results (Voting Committee Approach)

Figure 8 plots the frequency distributions of returns in the
validation period. The market and portfolio indices (dashed
lines) are both very volatile; SGP makes a fairly consistent
slight loss balanced by some gains in a positive short fat tail.
The Voting system makes a fairly consistent slight gain but
with a short fat positive tail.

7.1 Robustness

In this experiment, as in the previous experiment, we ob-
serve robustness measure 1, 2 and 3 (see Section 1.

In each case there were 25 training runs, each run be-
ing seeded with a different random number: for SGP, the
reported mean ROI and standard deviation are the results of
applying the best individual from the final generation to the
validation data; for the Voting system, a voting pool of 3 in-
dividuals was selected from final generations of each of the
25 runs — the voting pools were then applied to the vali-
dation data and the mean ROI and standard deviation calcu-
lated.

The performance of the two systems, using robustness
measure 1 and 2 are illustrated in Figure 9.
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Monthly Return Frequency
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Fig. 8 Frequency distributions of mean monthly fractional returns.

– The Voting system and SGP system have similar stan-
dard deviation and so by this measure no one system is
more robust than another.

– By contrast, the Voting system is superior in terms of re-
turn. Figure 10 gives the frequency distribution for the
Sharpe ratio for both SGP and the Voting system. As
above, in each case there were 25 training runs, each run
being seeded with a different random number. Both sys-
tems beat the portfolio index Sharpe Ratio of -0.297 (a
negative return on investment!), but the Voting system is
substantially superior. A ranked T-test result is displayed
in Table 4 and indicates a convincing difference between
the two systems. Therefore, the Voting system is more
robust than SGP in terms of measure 2.

The percentage reductions in Sharpe Ratio (and asso-
ciated p-values from a ranked T-test) were 65% for SGP
(1.4×10−11) , 13% for the Voting system (5.6×10−4). The
performance of the voting system in the different environ-
ments is more resilient to changes, thus more robust.

Robustness Comparison
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Fig. 9 Robustness comparison.

Sharpe Ratio Frequency Distribution
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Fig. 10 Frequency distributions of Sharpe ratios. Voting average=
0.567292236,σ = 0.111250913, SGP average= 0.12483279,σ =
0.062651544.

Table 4 Ranked T-test results (p-value)

SGP vs. Voting (Mean ROI): 3.8×10−8

SGP vs. Voting (Standard Deviation): 4.0×10−4

SGP vs. Voting (Sharpe Ratio): 4.32×10−16

7.2 Multiple Scenarios Approach vs. Voting Approach

We compare the robustness of the two approaches (MELG
vs. MEVO vs. voting system) in Figures 11 and 12. Fig-
ure 11 compares the robustness of the three systems in terms
of performance in relation to associated risk (robustness mea-
sures 1 & 2). Figure 12 compares the robustness of the three
systems in relation to change of the performance in different
environments (robustness measure 3). In Figure 11, MEVO
is slightly outperformed by MELG and the voting system as,
given the same level of risk, it does not yield higher returns
than the other two systems. MELG more consistently gives
higher returns than the voting system, at the cost of higher
risk. The same pattern emerges in Figure 12; again, MELG
has the best performance, beating MEVO, and SGP has the
worst performance.

8 Summary and Conclusion

In a volatile and unforgiving financial environment, it is pos-
sible to obtain a substantial improvement in the robustness
of hedge fund stock selection through 1) the use of carefully
selected scenarios of extreme market behaviour during GP
training; and 2) the use of a voting committee comprising
an odd number of GP individuals trained on a variety of dif-
ferent training sets (and therefore with differing phenotypic
behaviour).



12

Robustness Comparison

0

0.05

0.1

0.15

0.2

0.25

-0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05

Mean Return less Risk Free Rate

S
ta

n
d

a
r
d

 D
e
v
ia

ti
o

n

SGP MACD Portfolio Index MELG MEVO Voting

Fig. 11 Robustness comparison of all three systems.
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Fig. 12 Drop in mean Sharpe Ratios for all three systems.

Our system used a GP system to evolve a non-linear
factor model for stock-picking, coupled with an Investment
Simulator that modeled a long-short, market-neutral, sector-
neutral hedge fund trading Contracts for Difference (CFDs)
in the highly volatile Malaysian stock market. Historical
stock data (both technical and fundamental) was used from
the period 1997–2004.

We introduced three practical measures of robustness:
the first two compared volatility against returns on invest-
ment, and the third compared the Sharpe Ratio during train-
ing with the Sharpe Ratio during validation (see Section 1).

For the Multiple Scenarios approach, experiments were
run on three GP systems (MELG, MEVO and a “standard”
GP system — SGP) with 25 runs of each, and comparisons
were made with both a portfolio index and a non-genetic
simple technical analysis for stock picking.

Although robustness measure 1 showed no significant
difference between the three GP systems, statistical analysis
of measures 2 and 3 indicated overwhelmingly that MELG
provides the most robust individual, with SGP being the
least robust. All three GP systems were shown to have bet-
ter performance than the non-genetic technical analysis, and
this in turn performed very much better than the portfolio
index.

For the Committee voting approach, experiments were
run on two GP systems: (i) SGP, and (ii) a committee of
three best-of-run individuals from three GP systems utilising
different sets of training data. Statistical analysis indicated
that the Voting system provides a remarkable improvement
in terms of robustness measure 2 when compared to SGP.

When we compare the three best systems — MELG,
MEVO and the voting system — MELG and the voting sys-
tem show a slight edge over MEVO in terms of all three ro-
bustness measures. In Figure 12 the voting system appears
to be slightly better than MELG; however, there is no statis-
tically significant difference between MELG and the voting
system when we compare the distributions of their Sharpe
Ratios (we obtain a ranked T-test P-value of 0.268589).

Further work in this area includes extending the exper-
iment to a larger universe of stocks; combining the scenar-
ios mechanism with other robustness-enhancing techniques;
and investigating better ways to present the extreme scenar-
ios to the population. For example, we are trying to gain a
better understanding of why using the complete training set
as a separate scenario for MEVO did not give good results.
Also it includes combining the voting mechanism with other
robustness-enhancing techniques, experimenting with dif-
ferent sizes of committee and different ways to obtain good
individuals with widely differing phenotypic behaviour, and
attempting to gain a better understanding of the mechanisms
of robustness.

The authors thank Dr Gerard Vila and Prospect Wealth
Management for suggestions and discussions, SIAM Capi-
tal for financial support, and Reuters for access to financial
data. We also thank the anonymous referees for their helpful
comments.
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