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Abstract Stock selection for hedge fund portfolios is a chal-nancial trading or investment problem it must be robust to
lenging problem for Genetic Programming (GP) because ththese time-varying disturbances in the markets.

markets (the environmentin which the GP solution mustsur- It follows from the above examples that by “robust” we
vive) are dynamic, unpredictable and unforgiving. How cando not mean insensitivity of the fitness of an individual to
GP be improved so that solutions are produced thataare perturbations resulting from the genetic operators (ggpiot
bustto non-trivial changes in the environment? We explorerobustness (Soule, 2003; Soule et al, 2002)); although this
two new approaches. The first approach uses subsets of égrm of “robustness” favours broad plateaus to sharp peaks
treme environments during training and the second approagh the search space, it does not give much indication about
uses a voting committee of GP individuals with differing how the best-of-run individual will perform when the fit-

phenotypic behaviour.

Keywords First keyword- Second keywordMore

1 Introduction

ness function itself changes (i.e. the surface of the search
space fluctuates). Relevant, though insufficient, otheripre
ous definitions of robustness include the insensitivityhef t
fithess of an individual to small fluctuations in an individ-
ual's parameters (sometimes known as phenotypic robust-
ness or generalizability (Branke, 1998; Tsutsui and Ghosh,

In May 1994, following an increase in US short-term inter-1997)) and the insensitivity to a noisy fitness functionz it
est rates, tumbling bond prices, and a knock-on effect on inPatrick and Grefenstette, 1988; Hammel and Back, 1994;
ternational currencies, the financial speculator GeorgesSo Miller and Goldberg, 1996). The problem with these latter
lost $650,000,000 in just two days (Lowenstein, 2002). Orfwo definitions is that all known work in the area assumes
17th August 1998, Russia defaulted on its debts; three dayBat the fluctuations or noise are drawn from a known and
later the financial markets across the world collapsed and iime-invariant distribution (typically uniform or Gaussi),

just one day, the hedge fund Long Term Capital Manageand are small. By contrast, the financial markets undergo

ment lost $553,000,000 (Lowenstein, 2002).

The financial markets are highly dynamic, unpredictable

large, abrupt and time-varying changes.
Aragon et al (Aragon and Esquivel, 2004) model a dy-

and unforgiving. If GP is used to evolve a solution to a fi-namic environment as a sequence of fitness functions, each
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defined by changes to the previous. The model uses occa-
sional macro-mutation for radical genotoype shake-up-(“re
crudescence”), and assumes that all possible changes to the
current fitness function are enumerable (and finite, and, in
practice, few). It assumes that we can evolve continuously
and wait several generations before adaptation to the new
fitness function is achieved. Unfortunately, in the realldor
we cannot wait for the evolutionary system to learn from the
new environment!

Our two approaches are substantially different to the prior
work in this area.



1. Thefirst approach is based on the assumption that exant-.
ples exist of greatly differing extreme environments. If
that assumption holds, then we propose to present these
examples to the genetic population during training in or-
der to select individuals that perform well in a variety
of extreme training environments. We call this approach
“Multiple Scenarios Training”.

. The second approach is based on the use of a “commit-
tee” structure whereby a small (odd) number of trained
GP individuals offer solutions as votes, and the major-
ity vote wins. If the individuals exhibit widely differing
phenotypic behaviour, yet all have good fithess on the
training data, we hope that this committee structure will
be robust to large changes in the environment. We call
this approach “Committee Voting”.

The obvious research question these two approaches en-
tails is, as a result of multiple-scenario exposure or cammi
tee based decision making, whether trained individuals arg'
more likely to be robust to large disturbances in the environ
ment?! There are three ways we plan to measure this kind
of robustness in the context of our finance application:

1. when exposed to an out-of-sample volatile validatioadat
set, a more robust solution will have a lower standard
deviation of returns, while the returns themselves do not
decrease; or

. when exposed to an out-of-sample volatile validatioadat
set, a more robust solution will have higher returns while
the standard deviation does not increase; or

. when exposed to an out-of-sample volatile validatioa€at
set, the mean return per unit of risk of a more robust so-
lution will not significantly reduce from that measured
during training.

2 Related Work
2.1 Robustness

Robustness for a biological system is a property to allow
a system to maintain its functionality despite internal and
external perturbations (Kitamo, 2001; Wagner, 2005).

Robustness is a very broad theme and it is impossible to
capture all its aspects by means of a single definition. Ro-
bustness is an ubiquitously observed property of bioldgica
systems. Itis considered to be a fundamental feature of com-
plex evolvable systems (Kitamo, 2001).

The definition of robustness in evolutionary systems varies
from author to author, but in broad terms, it can divided into
two categories:

1 An alternative approach is to look for @uaptivesolution, i.e. one that detects
changes in the environment and responds by modifying iesnial structure and the
way that it operates. However, a similar question arisestnirunforgiving environ-

Robust to internal changes (genotypic robustness)
Robustness as the resistance to changes from variation
operators such as crossover and mutation. Soule (Soule,
2003; Soule et al, 2002) observes that the most outstand-
ing evidence of pressure towards this type of robustness
is the phenomenon of code growth (or bloat) in GP. Code
bloat is a rapid increase in code size that does not re-
sult in fitness improvements. It is proposed that GP trees
grow this extra code (“introns”) as a means of protecting
the useful code within good solutions. By adding introns
the useful code is less likely to be affected by crossover
or other similar operators. The robustness in this sense
can be drawn parallel to gene redundancy in biosystems
and to the existence of “neutral networkswhich en-
able a population to maintain a dominant phenotype re-
quired for adaptation despite random genotype changes
during the evolution (Huynen et al, 1996).

Robust to external changes (phenotypic robustness)

(a) Robustness as the generalisation ability of the pro-

grams evolved using GP (Bersano-Begey and Daida,

1997; Kuscu, 1998, 2000; Moore and Garcia, 1997;

Panait and Luke, 2003). The concept of generali-

sation is originated from connectionist or symbolic

learning research and it is defined as the desired suc-
cessful performance of the solution when it is ap-
plied to an environment similar to the one it was
evolved for. In the context of evolutionary systems,
the ability to generalise is defined as “the predic-
tive accuracy of the learner in mapping unseen input
cases to outputs with a satisfactory degree of correc-
tion” (Kushchu, 2002). In this respect, robustness is
in line with though opposite to the definition of over-
fitting. Overfitting happens when the computational
effort spent on obtaining a more precise fit of the
sample results in an increased error on other data.

Robustness as the ability to cope with non-constant

noise (Jordaan et al, 2004; Nissen and Propach, 1998).

Practical optimisation problems often require the eval-

uation of solutions through experimentation, stochas-

tic simulation, sampling, or even interaction with the
user. Thus, most practical problems involve noise.

Jordanne et al. (Jordaan et al, 2004) investigated this

particular aspect of robustness when noise is added

to the deterministic objective function values.

(c) Robustness as the sensitivity of performance quality
in the presence of external environmental perturba-
tions. For example, Hermann (Herrmann, 1999) de-
fines robust solutions as the one that has the best
worst-case performance.

This aspect of robustness is the most consistent with
phenotypic robustness in nature. Although a biolog-
ical system exhibits robustness in terms of genes,

(b)

ment, would it haveimeto adapt and survive without prior exposure to extreme envi-

ronments? 2

Connected networks of RNA sequences with identical stractu



structures etc, from an evolution point of view, ul- optimised manceuvres for a pursuer/evader problem. The re-
timately robustness of only one feature matters: fit-sults of this study suggest that use of a fixed set of training
ness is the ability to survive and reproduce (which incases may result in brittle solutions due to the fact thatsuc
evolutionary systems means the performance qualitfixed fithess case may not be representative of possible situ-
of a solution). ations that the agent may encounter. It is shown that use of
(d) Robustness as the ability for self-repair when subjectandomly generated fithess cases at the end of each genera-
to severe phenotypic damage (Miller, 2004; Bowerstion can reduce the brittleness of the solution when the-solu
2005). This behaviour is reminiscent of autonomoudion is tested against a set of large representative situsti
regeneration of the pond organism hydra, which carafter the evolution. However, a proper selection method for
reform itself when its cells are dissociated and thertraining and testing cases is not provided.
re-aggregated in a centrifuge (Gierer et al, 1972). Rosca (Rosca, 1996) addresses issues of size and gen-
erality in GP; however, the degree of overlapping between
training instances and the testing instances does not seem t
be explicitly controlled. In such a case, an objective and di
rect comparison using a common basis between training and
testing may be difficult.

2.2 Structured Training Sets for Robustness

The way in which training data is presented to the popula
tion is central to our work yet has received little prior atte
tion. The techniques that have been proposed are twofold:
the use of random noise in the training data; and the use of
randomly generated environments (fitness cases). Howevet,3 Committees
the experimental methodology of the prior work is not en-
tirely helpful in giving confidence that robust solutionsvea  The use of a committee or “voting pool”is well known in the
actually been evolved. area of machine-learning (ML) classifier systems. In partic

Ito et al and Reynolds (lto et al, 1996; Reynolds, 1992)ular, a multiple-classifier system (MCS) (Kittler and Roli,
use noise and modify initial conditions in order to promote2001) would utilise a number of different classifiers that
robustness of the programs produced by GP — robustneggn simultaneously and their results combined in a second
both to changes in the initial conditions and to changes istage or master classifier. The master prediction algorithm
the environmental stimuli. The use of noise can be helpfulirtan either be another classification algorithm or a voting
reducing the brittleness of programs and increasing tfee lik committee. The MCS may utilise classifiers that each pro-
lihood of robustness (Reynolds, 1992). In lto et al. (ltolet a Vide a confidence estimate together with their classificatio
1996) both changing initial coordinates and the directibn o— the committee may then choose a subset of results to be
the robot, together with the introduction of noisy sensas a used for voting (Stefano et al, 2003) (Ranawana and Palade,
actuators, are tried to produce robust programs for robot b&006).
haviour. Separate training and testing sets are used betthe Where possible, complementary classifiers are chosen,
is no discussion of how training and test cases should b&hose errors are partially or fully uncorrelated. However,
chosen. Furthermore, training and testing comparisons atbis is not always possible and so a second approach is to
done on a generation basis and the measure of robustnesssigarch for combinations of classifiers whose performance
testing on a different environment after the training (iaf:  lies outside the ROC (Egan, 1975) of the constituent clas-
ter evolution has stopped) is not reported. The resultseof thsifiers. There is no guarantee of improvement with the MCS
experiments do not make it clear whether a robust behavio@pproach, but (Buxton et al, 2001) have demonstrated im-
has been reached and if so, how it is reached. pressive results using a GP to identify an optimal second-

Haynes and Wainwright (Haynes et al, 1995) use GP tstage classifier. Similarly, Herbster has developed sseces
evolve an agent that can survive in a hostile environmenful master prediction algorithms that can optimally congbin
Rather than using a fixed environment for a particular run, sub-prediction algorithms (Herbster and Warmuth, 1998)
new environment is generated randomly at the end of eadfiderbster, 2001; Herbster and Warmuth, 2001).
generation. In this way, it is hoped that the agent can han- Zhang and Joung (Zhang and Joung, 2000) have pre-
dle “any” environment. Since the agent does not seem to bgented a mechanism for determining the constituents of a
tested in a new environment after the evolution has stoppedpmmittee for GP classification problems. Ensemble sys-
the nature and the degree of robustness to new environmertgsns are “learning algorithms that construct a set of classi
(that might have been obtained by variable training environfiers and then classify new data points by taking a weighted
ment during the evolution) remains unexplained. vote of their predictions” (Dietterich, 2000). Dietteri¢ii-

A good example of experiments attempting to reduce thetterich, 2000) provides an informative review of these sys
brittleness of individuals generated by GP is presented items; see also (Brown et al, 2005; Liu et al, 2000; Imamura
(Moore and Garcia, 1997). The system in this paper evolvest al, 2003).



Whilst the concept of a committee structure with ma-  We consider three ways in which the GP population should
jority voting has been established for many years in the rebe exposed to these scenarios:
search area of ML classifiers, it is rarely reported in the im-
plementation of optimisers. Soule (Soule, 1999, 2000) is anl'
exception; he has investigated the evolution of co-opagati
teams that vote on solutions, but the proposed technique ig'
complex and it is not clear whether this work could be ex-
tended to problems in financial time-series analysis. See al
Zhu (Zhu and Chipman, 2006).

Several researchers have specifically investigated the ad-
vantages of robustness and the minimisation of solutidn ris
that accrue from using a committee of solutions instead of
a single model in a changing environment. The advantages
that have been previously reported are:

“Standard GP” (SGP): use the entire ve@pireated as

a single unit, throughout all generations;
“Multiple-scenario Evaluation in the Last Generation”
(MELG): use a variant of the three-dataset methodology
(Panait and Luke, 2003; Gagné et al, 2006), where the
entire vectolS (treated as a single unit) is used for 1
generations, and in the final generation individuals are
tested against a subset of environmests drawn from

S. The “best-of-run” individual used in the validation on
setV is that which has, in the final generation, the high-
est Volatility-Adjusted Fitness (see below);
“Multiple-scenario Evolution” (MEVO): in each gener-
ation, use a subset of environmefiss} drawn fromS,

and ascribe to each individual a Volatility-Adjusted Fit-

3.

1. Firstly, since the final decision is a combination of a
number of problem solvers, one obtains a more consis-

tent estimate of the output. The performance of the sys-
tem is more robust as the outcome does not depend on
the accuracy of one single model anymore, but on the
outcome of several models (Imamura et al, 2003) (Soule,

ness (see below). Evolution proceeds as normal on the
basis of this adjusted fitness measure. The “best-of-run”
individual from the final generation is used in the out-of-
sample validation on s&t.

1999).

2. Secondly, the spread or variance of the different OUtVoIatiIity-Adjusted Fitness
comes can be used to derive a measure of confidence,
called model disagreement indicator. A small difference

in behaviour gives the users more certainty about the de- \ve have previously introduce8 as the training envi-

cision (Zhang and Joung, 2000). ronments vector ang, as then" possible scenario; hence
3. Another advantage of a committee is that it enables res_ (s, ... 5,1, Now letM = {my...my};m; € She a sub-

dundancy. If the committee consists of models that beget ofSthat is used for fitness evaluation.
have differently on different environmental inputs, there | ot Ii be an individual in the population, arfa]j be the
will be at least one model available for a particular typefiiness of individual; when evaluated on scenarl'rq. Then
of environment (Dietterich, 2000; Brown et al, 2005). F, is the “fitness vector” of; when evaluated on a subset of
scenarios, given bl = {f™,.... ™ }.

We use standard deviation to calculate the volatility of
the fitness (performance) of the individual across this eang
of scenarios:

3 Description of the algorithm

3.1 Multiple Scenarios Approach

We are concerned with not only the performance or fithess o, = (1)
the GP evolved solutions but also the performance volatilit
of the GP evolved solutions across a range of environment

E — i isP
dynamics. For example, in a scenario where market prices Whef‘e'F'i _—_meaq off;, glyen b%fp 2j-1 f'i o
are rising (“bull market’), a scenario where market prices The “Volatility-Adjusted Fitness” (VaF) of an individual

are falling (“bear market), and a scenario where markelS Now defined as the mean fitness divided by volatility:
prices are fluctuating with large amplitude (“volatile mar-
ket”). Vak, =
We therefore consider the training data to be a set of fit-
ness cases — a vector of environments — representing a
possible range of different environments and then adjest th
fithess with its perceived volatility to obtain an whole pic- MELG
ture of an individual's performance . L&be the training
environments vector arg} be then" possible type of envi-
ronment, which we call a “scenario”; thé&= {s;...,}.
We also hold a separate out-of-sample validation vé¢tor

p o
XU
pJ:l

m

R
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For MELG we use a variation of the three-dataset method-
ology as outlined in (Panait and Luke, 2003; Gagné et al,
2006). In our version of this methodology, ttraining setis



used to evaluate the fitnesses of individuale in 1 gener- We are concerned with not only the performance or fit-
ations; elitism ensures that the best-of-generation iddiv ness of the GP evolved solutions but also the performance
uals survive to the last generation, and the individuals irvolatility of the GP evolved solutions across a range of en-
the last ") generation are tested against a different  vironment dynamics. For example, where market prices are
sample volatility seta best-of-run individual is selected and rising (“bull market”), where market prices are falling £ar

its quality is assessed using yet another differaumt-of market”), and where market prices are fluctuating with large
-sample validation set amplitude (“volatile market”).

Note that a possible drawback of this methodology is  We therefore identify individuals with widely differing
that, where data samples are limited, either the trainibhg sdehaviour — one that performs well in a bull market, and
or the out-of-sample validation set must be smaller than ibne that performs well in a bear market, etc. We assume that
would be in a two-dataset methodology. However, in outthese individuals are the result of entirely separate GRievo
variation of the methodology thie-sample volatility seisa  tions using different training data. These individualstaen
vector of subsets of the inititdaining set We also choose to used at a committee stage in a majority voting algorithm.
set the fitness vector to ifg = {f,'im, f,'inl, e f,:np}, where The committee is implemented as part of our investment
fI’ino is the fitness of the individual previously calculated insimulator. The simulator is used both during GP evolution

then — 1" generation — thus, the fitness vector contains in{it is called by the fitness function) and during validation,
formation about fitness on the whole training set treated as Ut the committee is only used during validation.
single unit, as well as fitness on each of the scenarios.
Our methodology permits a more direct comparison with . )
SGP, since we know that both SGP and MELG have beeﬁ Hedge Fund Simulation
given identical training data — what is different is the way

in which that data is presented to the population. To test the two new algorithms, we simulate a long/short

market-neutral hedge fund of Malaysian equities. We choose
the Malaysian market because it (in common with other emerg-
MEVO ing markets) is particularly volatile. The GP system evelve

a non-linear equation that uses market data to determine

The MEVO algorithm differs from MELG in that it uses whether a single stock should be selected to buy, or to sell.
a two-dataset method: thim-sample volatility setised in

MELG is used not only in the final generation, but in ev- 1 Svstem O .

ery generation. The second dataset is therefore the out—ozll—' ystem Dverview

sample valldathn sel. o . Our test system comprises a GP system coupled with an in-

Thus, evolutionary selection is based on the volatility ad- ; . . .
. . . ) vestment simulator. The coupling between the two is the fit-
justed fitness Vak,, which is calculated from . . . . .

o em . ness function — the investment simulator is called each time
F,={f ", ...,f."} (see above); can be thoughtof as an . ) L
o n 2 ln ' . the GP system needs to determine the fitness of an individ-

intermediate” fitness vector for each individual, avidr; . . S . .
: ual, at which point the individual is used to control the sim-

is the “real” fithess of an individual. Note that MEVOnst . . .
exposed to the entire training séfP)' we only expose it to ulation of an hedge fund of Malaysian stocks. The simulator
ns/’ is applied to training data giving monthly prices and other

the extreme scenarios. This might be thought to put MEV .
. . actors. Monthly returns on investment are calculated, and
at a disadvantage because it does not have access to as mu . .
the end of each simulated year the Sharpe ratio (Sharpe,

information as MELG or SGP, but in early trials we discov- .
. . T . .1994) is calculated.
ered that using the entire training set as another scereatio |

to poor results. ]
Fitness

3.2 Committee Voting Approach The fitnessf for an individual is the Sharpe ratio (Sharpe,
1994), given by Equation 3.

Our stock-picking problem is an optimiser, not a classifier % _RFR

— we evolve a factor model (an equation) that provides a Sharpe Ratie= ———

real-number estimate of attractiveness of a stock, with no o

hard threshold to indicate whether to buy or sell. That equa- In Equation 3X; is the average monthly Return on In-

tion is then used by an investment simulator to make dyvestment (ROI) over the sub-perigds; is the standard de-

namic buy/sell decisions based on an assessment of the opation of monthly ROIs over the sub-periogdandRFR is

timum tactics given the relative attractiveness of allidé  the average monthly Risk Free Rate for sub-peridtie set

stocks. RFR to 0.0 for all i (equivalent to 4% per annum).

3)



Note that we have chose&rtto use a multiple-objective Table 1 Description of Factors
approach_to fitpess evalu_atio_n. At an early stage we exper =T Closing stock price on 1st day of a month
mented with using two objectives (high ROl and low volatil-| 2.  Closing stock price on last day of a month
ity) but the system performed poorly. In financial investtnen| 3. 12-month MACD: moving average convergence and diyer-

o ; gence

ROI f’;\nd volatility are very closely linked (they are not prop 4. capitalisation= (number of sharesy (stock price (<)
erly llndependent objectives); the resu_lt was that the non-5  RoE— (netincome): (shareholders’ equity)
dominated set was very small and this adversely affecteds.  ROE(this year)}- ROE(prev. year)
evolution, causing the system to converge on a local opt|- 7.  ((total debt):- (common equity))x 100

mum with poorer performance than the solution found using 8- (Sum of last 12-months of cash dividendsstock price (C))
. . . 9. (last 6 months’ trailing earnings per share - prev. lasab-t
the Sharpe Ratio as a single objective. ing earning per share) (absolute prev. last 6 months trailing

earning per share)
10. as above (replace 6 with 12)

4.2 The Investment Simulator 11. as above (replace 12 with 36)
12. The rate of change in the reported last 12-month earmiegs
We simulate a market-neutral long/short hedge fund of share over the three year time interval terminating on the da

of the last interim period for which earnings were announced

Malaysian equities. The fund focuses on a basket of 33 - . ;
. . . § 13. (last 12-month trailing earnings per shatefclosing market
Malaysian stocks, which it can buy (“go long”) or sell (even price)
if it doesn’t own any — “go short”). Since all 33 stocks are| 14. (historical book value per share)(closing monthly market
quite well correlated, the market-neutral strategy singoly price) _ _ _
tails buying the profitable stocks and selling (short if reece | 1>+ (cash eamings per share)closing market price)
. 16. One month dollar price change

sary) those_ s_tocks tha_t are performl_ng podrly. | 17. One year dollar price change

The training data is monthly prices (and other technii 18. (current year's net sales or revenue - previous yeat'sales
cal and fundamental data) over a period of 71 months. All or revenue): (previous year's net sales or revenue)

19. (last 12-month trailing earnings per share - last 124mdiv-
idend per share}- (last year's book value per share)

trading occurs at the beginning of each month and the re
sulting stock mix is held for the duration of the month. At
the beginning of each month, the simulator uses the individ-
ual provided by the GP system as a stock selection model
that quantitatively measures the attractiveness of eack;st

this model is a non-linear combination of technical and fun-
damental factors to predict the return expectation for each
stock over a 4-week forward horizon.

For each month, we apply the stock selection model to » .
the current month data — this is a table per stock with 19 At the .end of each month, all O_f the positions held '_n
factors (see Table 1) and 7,680 data points. A return prediéhe_porthIIO are cI_osed and the profit or IO_SS (_Jf the pordfoli
tion is assigned to each stock. during the month is calculated. At the beginning of the next

The stocks are grouped into 4 market sectors and withifftonthly trading cycle, the simulator updates the expected

each sector all stocks are ranked according to the expectéﬁtum based on the new “current” data and a new desired

return. The portfolio simulator then makes the followinglong/Short portfolio is formed.
fund management decisions:

CFDs (Contract for Differences) are used instead of con-
ventional shares to trade on stocks. We assume 20% no-
tional trading requirement (margin), 0.25% trading com-
mission, and 5% financing rate.

— The long/short portfolio is both dollar neutral and sector

neutral. Thus, at all times, 24 stocks are maintained i% Experiment

the portfolio with 12 long positions and 12 short posi-
tions equally distributed across all the sectors. Accord- . .
ing to the ranking, the top 3 stocks in each sector becomg'1 Multiple Scenarios Approach

the top fractile and the bottom 3 become the bottom frac- . . . .
: . Our primary research question for the multiple scenaries ap
tile. The top fractile of each sector and the bottom frac- - A

roach is*are the best-of-run individuals from the two new

tile of each sector are chosen to hold long positions ang .
. . . . systems more robust than the best-of-run individual from
short positions respectively in the portfolio.

_ Sectors are equally weighted and each stock is give%GP when exposed to a volatile and previously unseen envi-

. : . . ronment?”
equal weight in the portfolio. Thus, each position ac- )
counts for approximately 4% of total portfolio value. Our experiment compares the performance of all three
systems: SGP, MELG and MEVO. The basic GP parame-

3 A contrarianstrategy might do the opposite — sell the high stocks and bey t ter settings for the three systems are identical. as given in
low stocks, on the expectation that mean-reversion willoemd the high stocks will !

fall while the low stocks will rise. Table 2.




Table 2 GP Parameter Settings

validation training

Population sizeN) 1000 T

Method of generation Ramped half and half os ﬁ

Function set {+,-* 1, Exp} 02 n f

Termmal set l%_3 firm-specific f_actors o H m- H,: A \ I 1 A
Selecton seheme ecion oo o g LA TR AR 1 R gl
Tiees generated by eifism e N AL ‘M\;f KQJ’ VNS
Trees generated by crossover 950 (95%) o ﬁ j \ 1 ﬂ U

Trees generated by mutation 40 (4%)) - u - H volatie bear bull

Termination criterion 100-generation evolution
Max. depth initial generation 6

—— portfolio index

04 i

-0.

- - -market index

5
8/1/97 12/14/98 4/27/00 9/9/01 1/22/03 6/5/04

5.1.1 Data
. . Fig. 1 Market and portfolio indices (fractional monthly returr®g,st
Allthree SySt.emS usean InveStmem Simulator that.hfis an 'GUIy 1997 to 31st December 2004), scenarios and validagdogh
vestment universe of 33 Malaysian stocks. The training data
for all three systems comprises time-series financial data f _ _ _
the 33 stocks taken from the period 31st January 1999 to We have deliberately chosen this period as a real test of
31st December 2004. robustness of individuals in a dynamic and hostile environ-
SGP and MELG use a training data set of financial timement. One expects episodes of extreme volatility in world
series data taken from the period 31st January 1999 to 318{ock markets, and in emerging markets in particular. A suc-
December 2004 (71 months). cessful hedge fund stock selection model must be robust —
For MELG (last generation only) and MEVO, the fol- be able to perform in both (extreme) up and down markets.
lowing three scenarios were chosen: For the out-of-sample validation, we performed 25 com-
plete training runs (each run being seeded with a different
1. Bull market: 31/05/2003 to 31/12/2004 (19 months);  random number) of each of the three systems (SGP, MELG,
2. Bear market: 31/01/2000 to 31/05/2001 (16 months); and MEVO) and the best-of-run individual was selected from
3. Volatile market: 31/01/1999 to 31/03/2000 (14 months)he final generation of each run.
The selected individuals were then validated on the pre-

Figure 1 shows the overall market index for Malaysian . .
stocks, and a non-weighted portfolio index of the 33 investViously unseen data; the results of the 25 runs are discussed

ment stocks, for the overall period under study. It also-indi in the following section.
cates the three scenario periods (bull, bear and volatile) a
the validation period. The market and portfolio indicestbot
show considerable volatility — the portfolio index (constt-
ed from the_ stocks in which our simulaltor invests) is slightl Our primary research question for the committee voting ap-
more volatile than the overall market index, and so benefiy 401 is“does a voting system provide more robust results
cial effects displayed by our GP system cannot be due solely, o, the hest-of-run individual from SGP when exposed to a
to “cherry-picking”the least volatile stocks. volatile and previously unseen environment?”

Our experiment compares the performance of an SGP
individual with the Voting system comprising three best-of
run individuals derived from three GP evolutions with dif-
ferent training data sets. The basic GP parameter settings

All three systems are validated on a previously unseefpr the GP systems are identical, as given in Table 2.

“out of sample” data set, comprising time-series financial

data for the 33 stocks taken from the period 31st July 199716.2.1 Data

31st December 1998. During this period the Malaysia stock

market suffered great volatility including both the highes

and lowest monthly returns in the entire period under study. All systems use an Investment Simulator that has an in-
From May 1998 to October 1998, the stock index lost morevestment universe of 33 Malaysian stocks. The training data
than 42%. Then from November 1998 onwards, there was or all systems comprises time-series financial data for the
remarkable performance from the marketindex, rising 23.3%3 stocks taken from the period 31st January 1999 to 31st
in November. December 2004.

5.2 Committee Voting Approach

5.1.2 Out-of-Sample Validation



SGP uses a training data set of financial time-series dat
taken from the period 31st January 1999 to 31st Decembsg
2004 (71 months). 04

For the three special-case evolutions, the following three
market contexts were chosen:

1. Bull market: 31/05/2003 to 31/12/2004 (19 months);
2. Bear market: 31/01/2000 to 31/05/2001 (16 months);
3. Volatile market: 31/01/1999 to 31/03/2000 (14 months).

Out-of-Sample Performance: Mean Monthly Returns

-0.2

Fractional Monthly Return

5.2.2 The Committee 03

-0.4

-0.5
Months

During validation, the Voting investment simulator is aug —SGP —=—MELG —+MEVO - - - - Portfolio Index
mented with a committee structure containing a team of three

individuals. Fig. 3 Mean monthly fractional returns.
In investment portfolio optimisation we trade monthly

and aim to pick those stocks that will perform wedgard- _ _ ) )
lessof whether the market in the following month will be !N our experiment we will consistently use the Voting
bull, bear, or volatile. Thus, we do not follow the otherwise Mechanism.

obvious strategy of detecting the current market condition
and using an individual that has been trained only on thaé
one market condition. Rather, the voting team comprises the

best-of-run individual chosen from each of the final popula-Figure 3 shows the mean monthly returns (over 25 runs) on
tions of three GP systems each of which has been trained

o . He validation data for all three systems (SGP, MELG and
only one market condition — i.e. the three systems have u

dergone separate training with pre-defined distinctivéfly d rMEVO)’ together with the porfolio index returns. The port-

f t training dat ¢ iing the th Kt folio index (constructed from the stocks in which our sim-
eren r?'?;)nglll,, ?ba se"s rip‘)‘resletr.ll 'Tg € three market €Ny, jator invests) shows considerable volatility — it is more
rongen s bu t’t' ear ?hn i t\rl]o ab| (:]' . | lation b volatile than the overall market index seen in Figure 1, and
ur expectation is that the behavioural COmeialion be, po eficia| effects displayed by our GP system cannot be
tween team members is low. Each team member generates a “ T "
i . due solely to “cherry-picking” the least volatile stock& S
predicted return for the next 30 days, for each stock in the

toli d licit hanism i dt bine th is not very volatile, but neither does it make much profit.
POrHoto, ?n an explicit mechanism s used to combin€ NG 5ih MELG and MEVO appear to be adept at avoiding losses
members’ solutions.

. - . ..._yetstill able to make good gains in positive months. Figure 4

The_re are tvyo possible c_ompmmg mechanisms, e'thei/how vividly the difference between the large cumulative
Averagingor Votingas shown in Figure 2. losses of the portfolio index compared with the cumulative
Averaging: The first mechanism averages the team memgains of MELG and MEVO.

bers output. This results in a mean predicted return for

the next 30 days for each stock. The stocks are then

ranked in order of this mean predicted return, the top hal Out-of-Sample Performance: Cumulative Mean

is selected for buying and the bottom half is selected foi Monthly Returns

selling.
Voting: With the second mechanism eachteam memberus 05

its predicted returns to generate its own ranking of all 0 Jo o hEd 4 i 'l

the stocks; this is then converted into a buy decision fol Ho2l a4l sl el 78l o 1Q ag) 12 13 14 151 16 17

those stocks in the top half of the ranking and a sell de I B T

cision for those stocks in the bottom half.

After the buy/sell recommendations have been calcu

lated for all team members and for all stocks, a majority] -1->

voting method is applied to each stock and a final buy

or sell decision is derived for that stock. With majority Months

voting, if a stock has more buy recommendations thar Osep WMELG B MEVO £ iPortfolio Index

sell recommendations, it will be bought: otherwise it is
sold. Fig. 4 Cumulative monthly fractional returns.

Discussion of results (Multiple Scenarios Approach)

-0.5

Fractional Monthly Return




Averaging
Stock 1:  return1 return2 return3 Stock 1:  mean return
>
GP HE>
_ Stock N: return1 return2 return 3 Stock N:  mean return
i Voting
Stock Data for
this month Stock 1: BUY  BUY  SELL
Ranked
Stocks
Stock N: SELL  SELL  BUY
START NEW MONTH i i
Selection: Bzillf;g?wr;:lf
Majority Vote
for buy or sell Sell bottom half

Calculate new
Portfolio value at  «—
end of month

Update
Portfolio

Fig. 2 The Committee in action: either Averaging or Voting.

Figure 5 gives another view of the mean monthly returnave have a much more exacting requirement: it is not help-
by plotting the frequency distributions of returns in thé-va ful to an investor to know that an individual robustly (i.e.
idation period. The portfolio index (dashed) is very vd&gti  with low variance) makes a loss regardless of the market! A
whereas all three GP systems are much less volatile (thoughuch more helpful measure is to know that the individual
with significant positive fat tails). combines two qualities of (i) high return on investment and
(ii) low variance in the face of extreme volatility.

In Section 1 we stated our three measures of robustness:

Frequency distributions of mean monthly ROIs
: 1. when exposed to an out-of-sample volatile validatioa<dat
w0 set, a more robust solution will have a lower standard
deviation of returns, while the returns themselves do not
’ decrease; or
. 2. when exposed to an out-of-sample volatile validatioadat
Il set, a more robust solution will have higher returns while
. ; the standard deviation does not increase; or
Il i 3. when exposed to an out-of-sample volatile validatioadat
' o m set, the mean return per unit of risk of a more robust so-
) i HE i i NI lution will not significantly reduce from that measured
oeowmoen e e e VOF:Satki:::-xl ROOI oromE o oeE e e during training.
OsGp HMELG B MEVO iPortfolio Index

The performance of our three systems, using robustness

Fig. 5 Frequency distributions of mean monthly fractional return measures 1 and 2 above, are illustrated in Figure 6, which

shows standard deviation plotted against returns. Specifi-

cally, the figure plots returns in excess of the risk free,rate

and we have added data for the portfolio index and for a
6.1 Robustness popular non-genetic technical strategy (using Moving Aver

age Convergence Divergence (MACD) to select stocks). The
So what does this tell us about “robustness”, and how dgortfolio index is shown to be not at all satisfactory, with
we measure it? Simplistically, we might take robustness tdoth low returns and high standard deviation; the MACD
be synonymous with “low variance” — i.e. the performanceapproach performs much better than the portfolio index, but
of the individual does not alter much, despite the extrem@ot as well as any of the three GP systems. In terms of ro-
volatility of the market environment. However, in practice bustness:
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1. The three GP systems and MACD all have similar stanTable 3 Summary of Ranked T-test (p-values)
dard deviations (a ranked T-test indicates no significant i -
difference in the GP distributions) and so by this mea- Compare SGP with MELG: | 4.01x 107
i y Compare SGP with MEVO | 4.13x 10 1®
sure no one system is more robust than another. Compare MEVO with MELG | 4.62x 10 °
2. By contrast, the three GP systems and MACD differ in
their returns while their standard deviations do not dif-
fer, so by measure 2 they are not equally robust. In or(1.4>< 10-11) | 25% for MEVO (31 x 10-8) and just over

der (from least to most robust) we have MACD, thenye tor MELG (0.92), indicating a substantial robustness ad-
SGP, the MEVO and finally (the best) MELG. We fur- vantage for MELG.

ther quantify this below.

Reduction in Sharpe Ratio from Training to
Validation

Robustness Comparison
0.5

0.45
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-0.08 -0.06 -0.04 -0.02 0 0.02 0.04
Mean Return less Risk Free Rate

<O SG | ] G (0] XMAC foli d . . .
P MR MEV MACD X Portfollo Index Fig. 7 Robustness measure: drop in Sharpe Ratio.

Fi

g. 6 Robustness comparison.

Fund managers use a very similar approach to our rol Discussion of results (Voting Committee Approach)

bustness measures 1 and 2 — they use the Sharpe Ratio o )
(Sharpe, 1994) (see Section 4.1) which determines the RG9Ure 8 plots the frequency distributions of returns in the
(in excess of the risk free rate) per unit of risk (given byvaI|dat|on period. The market and portfolio indices (dakhe

the standard deviation). Since the standard deviatiorigsn t lines) are both very volatile; SGP makes a fairly consistent

case are the same, a Sharpe Ratio comparison also proviosé;?ht IO_SS balanced byksomefgf’;\:ns n a_posmvel_ SEO” fgt La'
a quantitative comparison of returns and thus of our robustT e Voting system makes a fairly consistent slight gain but

ness measure 2. Therefore, we have calculated the Sharwgh a shortfat positive tail.
Ratios (across 25 runs) for each of the three GP systems.
Comparison of the Sharpe Ratio distributions shows that.1 Robustness
all three systems achieve substantially better resultsttiea
portfolio index (as expected from Figure 6) and a rankedn this experiment, as in the previous experiment, we ob-
T-test comparison of the Sharpe Ratios indicates a statistserve robustness measure 1, 2 and 3 (see Section 1.
cally significant difference between all three systems. The In each case there were 25 training runs, each run be-
p-values (the probabilities that two compared distribugio ing seeded with a different random number: for SGP, the
are from the same population) are presented in Table 3. Threported mean ROI and standard deviation are the results of
means of the Sharpe Ratio distributions are: 0.125 (SGPapplying the best individual from the final generation to the
0.305 (MEVO), and 0.421 (MELG) — MELG is substan- validation data; for the Voting system, a voting pool of 3 in-
tially the most robust system of the three. dividuals was selected from final generations of each of the
Our third measure of robustness determines how mucB5 runs — the voting pools were then applied to the vali-
the mean return per unit of risk reduces when moving frondation data and the mean ROI and standard deviation calcu-
the training set to the validation set. This is shown in Fig-lated.
ure 7. The percentage reductions in Sharpe Ratio (and as- The performance of the two systems, using robustness
sociated p-values from a ranked T-test) were 65% for SGiheasure 1 and 2 are illustrated in Figure 9.
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Monthly Return Frequency Sharpe Ratio Frequency Distribution
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Fig. 10 Frequency distributions of Sharpe ratios. Voting average
0.567292236,0 = 0.111250913, SGP average 0.12483279,0 =

Fig. 8 Frequency distributions of mean monthly fractional return 0.062651544.

— The Voting system and SGP system have similar staniable 4 Ranked T-test resdilts (p-value)

dard deviation and so by this measure no one system is
more robust than another. SGP vs. Voting (Mean ROI): 38x10°8
— By contrast, the Voting system is superior in terms of re-
turn. Figure 10 gives the frequency distribution for the
Sharpe ratio for both SGP and the Voting system. As SGP vs. Voting (Sharpe Ratio): 4.32% 10-16
above, in each case there were 25 training runs, each run
being seeded with a different random number. Both sys-
tems beat the portfolio index Sharpe Ratio of -0.297 (

negative return on investment!), but the Voting system i?'z Multiple Scenarios Approach vs. Voting Approach

substantially superior. A ranked T-test result is dispthye We compare the robustness of the two approaches (MELG
in Table 4 and indicates a convincing difference between .\, v/~ /s voting system) in Figures 11 and 12. Fig-
the two systems. Therefore, the Voting system is MO re 11 compares the robustness of the three systems in terms

robust than SGP in terms of measure 2. of performance in relation to associated risk (robustnessm

The percentage reductions in Sharpe Ratio (and ass§4'€S 1&2). Figure 12 compares the robustness _of thethree
ciated p-values from a ranked T-test) were 65% for SGESYSt€mMs in relation to change of the performance in differen
(1.4x 10-1Y) , 13% for the Voting system (6 x 10-4). The environments (robustness measure 3). In Figure 11, MEVO
performance of the voting system in the different environJs slightly outperformed by MELG and the voting system as,

ments is more resilient to changes, thus more robust. given the same level of risk, it does not yield higher returns
than the other two systems. MELG more consistently gives

higher returns than the voting system, at the cost of higher

SGP vs. Voting (Standard Deviation): 4.0 x 10~*

Robustness Comparison risk. The same pattern emerges in Figure 12; again, MELG
has the best performance, beating MEVO, and SGP has the
¢ 02 worst performance.

8 Summary and Conclusion

01

Standard Deviation

[51s]
) DD%:FID * W" . - . . . . .
050 ) In a volatile and unforgiving financial environment, it isppo
sible to obtain a substantial improvement in the robustness
007 B0 etk Free S 0.03 005 of hedge fund stgck selection through 1) the use of ca_refully
evotng  DsGP  EMACD @ roriolo Index selected scenarios of extreme market behaviour during GP
training; and 2) the use of a voting committee comprising
Fig. 9 Robustness comparison. an odd number of GP individuals trained on a variety of dif-

ferent training sets (and therefore with differing phemity
behaviour).
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Robustness Comparison
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Fig. 11 Robustness comparison of all three systems.
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Reduction in Sharpe Ratio from Training to
Validation

For the Committee voting approach, experiments were
run on two GP systems: (i) SGP, and (ii)) a committee of
three best-of-run individuals from three GP systems uiiljs
different sets of training data. Statistical analysis datkd
that the Voting system provides a remarkable improvement
in terms of robustness measure 2 when compared to SGP.

When we compare the three best systems — MELG,
MEVO and the voting system — MELG and the voting sys-
tem show a slight edge over MEVO in terms of all three ro-
bustness measures. In Figure 12 the voting system appears
to be slightly better than MELG; however, there is no statis-
tically significant difference between MELG and the voting
system when we compare the distributions of their Sharpe
Ratios (we obtain a ranked T-test P-value (f&8589).

Further work in this area includes extending the exper-
iment to a larger universe of stocks; combining the scenar-
ios mechanism with other robustness-enhancing techniques
and investigating better ways to present the extreme scenar
ios to the population. For example, we are trying to gain a
better understanding of why using the complete training set

as a separate scenario for MEVO did not give good results.
Also it includes combining the voting mechanism with other
robustness-enhancing techniques, experimenting with dif
ferent sizes of committee and different ways to obtain good
individuals with widely differing phenotypic behaviouna
attempting to gain a better understanding of the mechanisms
of robustness.
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