
5

Complexity and Emergence in Engineering
Systems

Chih-Chun Chen1, Sylvia B. Nagl2, and Christopher D. Clack1

1 Department of Computer Science, University College London
2 Department of Oncology and Biochemistry, University College London
c.chen@cs.ucl.ac.uk

Abstract. The purpose of this chapter is to introduce the reader to the key concepts
of complexity and emergence, and to give an overview of the state of the art techniques
used to study and engineer systems to exhibit particular emergent properties. We
include theories both from complex systems engineering and from the physical sciences.
Unlike most reviews, which usually focus solely on one of these, we wish to analyse the
ways in which they relate to one another, as well as how they differ, since there is often
a lack of clarity on this.

5.1 Introduction and Chapter Outline

The world economy, human body, financial markets and world wide web are just
a few examples of complex systems with emergent properties. Such systems are
composed of a set of constituents that together, through their interactions, give
rise to one or more higher level properties or behaviours. These properties are
often difficult to predict because interactions between the constituents are non-
linear (small differences at the local level can lead to very different outcomes
at the global level) and the structure of their interactions tends to change dy-
namically. Scientists seeking to understand such systems therefore require special
analytical methods and tools. At the same time, designers and engineers of infor-
mation and communication systems have sought to exploit and control emergent
properties arising from interactions between system components.

Figure 5.1 shows a map of Complex Systems research. The two major disci-
plines are Complexity Science and Complex Systems design & engineering.

Complexity Science can be further subdivided into generic concerns, where the
goal is to develop special methods and tools for understanding complex systems
in general, and domain-specific disciplines, which study a particular real-world
complex system using these special methods. There is significant dialogue and
exchange between these two branches since the development of methods can be
driven by domain-specific needs.

Complex systems design and engineering is concerned with developing sys-
tems that exploit emergent properties. These can be situated multi-component

A. Tolk, L.C. Jain (Eds.): Comp. Sys. in Knowledge-based Environments, SCI 168, pp. 99–127.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

100 C.-C. Chen, S.B. Nagl, and C.D. Clack

Fig. 5.1. Map of Complex Systems research. There is currently a lack of much-needed
dialogue between Complexity Science and Complex systems design & engineering.

systems, which satisfy some function through the collective action of the com-
ponents, or algorithms, where a solution to a computational problem is arrived
at in a distributed fashion. Complex systems design and engineering is also con-
cerned with controlling emergent system behaviours so the system’s behaviour
remains within an acceptable range.

Although Complexity Science and Complex Systems engineering have many
common concerns, dialogue between them is lacking. This chapter introduces
the fundamental complex systems concepts and constructs from both the com-
plex systems engineering and complexity science perspective. By considering the
work of both these groups within a common framework, we seek to open up the
possibility for dialogue by clarifying the main commonalities and differences.

5.1.1 Chapter Outline

The chapter will be structured as follows:

– Section 5.2 introduces the key concepts of complexity, emergence and self-
organisation, reviewing the different positions taken in the field.

– Section 5.3 compares the main theories of emergence, focusing especially on
those for distributed and multi-agent systems.

– Section 5.4 will critically review techniques that have been used to specify
and engineer specific emergent behaviours.

– Section 5.5 concludes the chapter and outlines important challenges remain-
ing in the field.

– Section 5.6 suggests readings and resources for readers wishing to further
pursue the topics described in this chapter.

Complexity and Emergence in Engineering Systems 101

5.1.2 Introductory Concepts and Terminology

Since this chapter assumes familiarity with certain terminology, and because
terms are often used ambiguously, we first define the main terms used in the
chapter.

Systems, Subsystems and System Components. A system is a set of units,
called its components or constituents, that are related to one another in some
way. Any subset of the system’s components is a subsystem. Since much of the
work in this area is in relation to multi-agent systems and simulations, we will
also refer to agents, which are the components of multi-agent systems.

Properties, Behaviours and Functions. A property of a component or sys-
tem is anything about the component or system that can be detected. For ex-
ample, a component in a particular state X can be said to have the property of
being in state X i.e. state X is a property of the component. On this definition,
structures, patterns and behaviours are all properties.

When a system is in operation, the states of its components are changing
through time. The collective effect of these changes in state during the course
of the system’s lifetime can then be said to be its behaviour. Similarly, the
behaviour of a component can be defined as the sequence of state changes it
undergoes during a specified period of time.

A designed system exists to serve some purpose, which is defined by the stake-
holders and users of the system. The properties that the system must possess to
realise this purpose are its functions. Similarly, the functions of a system com-
ponent are the properties it must possess to contribute to the system realising
its purpose.

Relationships and Interactions. Components in a system can be related to
each other in various ways. For example, one components might contain an-
other or be coupled with another. A relationship can be said to exist between
two or more components when the state of one component is in some way re-
lated to the state(s) of another component(s). The same applies to systems and
subsystems.

Interactions are a special type of relationship. To say that one component
interacts with another is to say that its state plays some causal role in determin-
ing the state of another component. For example, in a rule-based system where
rules are fired when a condition is fulfilled, an interaction between components
A and B can be defined as the case where the firing of one of A’s rules is the
consequence (either full or partial) of B being in a particular state. In contrast,
non-interactive relationships are non-causal and can usually be reduced to a
question of definition. For example, in a nested system where a component A
contains another component B, we might define states such that A is in state
qA1 when B is in qB1.

102 C.-C. Chen, S.B. Nagl, and C.D. Clack

5.2 Complexity, Emergence and Self-organisation

Complexity, emergence and self-organisation are terms that are often found to-
gether. The relationship between them can be summarised as follows:

Emergence occurs in a system when the system’s complexity increases
by self-organisation i.e. without external intervention.

Given the relationship between emergence and complexity, it is clear that
any definition of emergence must assume some measure of complexity. However,
to capture the various intuitions as to how the measure should change with
particular system features, the measure adopted often depends on the particular
domains and/or application.

5.2.1 Complexity Measures

The diversity of complexity measures described below and summarised in
Table5.1 reflects the fact the lack of consensus in this area. Because different
measures behave differently with repsect to certain system features (e.g. number
of components, number of modules), they serve different purposes more effec-
tively and therefore have different applications (also given in Table 5.1). For
example, for systems with hierarchical structures, measures relating to modular-
ity may be more useful than those that only consider algorithmic or statistical
complexity.

It is important to distinguish between the complexity of a system and the
complexity of the design of the system. The design of a system is the set of rules
or the program that generates it. Algorithmic complexity, statistical complexity
and connectivity are measures that apply to the system itself since they try to
determine how comlplex the design would have to be to generate the system1.
On the other hand, design size, logical depth and sophistication directly ad-
dress the design of the object or the program used to generate it. Structure and
organisation can apply to both the design of the system and the system itself.

Measures can also be characterised according to how they behave when pre-
sented with different systems. For example, algorithmic and statistical complex-
ity behave similarly for systems exhibiting regularity but differently for systems
with random patterns of behaviour. The algorithmic complexity of a completely
random system would be maximum (since each randomly generated event would
have to be stored), but such a system would have a low statistical complexity
since the system would be one of many (with which it would have no statistically
significant similarities) that could be generated by the random source [49], [9].

Recently, complexity measures that do not take into account the hierarchical
structure of the object/system, such as algorithmic complexity and connectivity
1 However, for designed systems, the number of symbols in the design program is

often used as an approximation for the algorithmic complexity e.g. [54]. This is
based on the assumption that the design program is also the minimal program, but
it is not possible to show this conclusively i.e. that a shorter program could not have
generated the system.

Complexity and Emergence in Engineering Systems 103

Table 5.1. System and design complexity measures

Complexity measure Definition Main application

Alogrithmic Com-
plexity

Number of symbols of the short-
est program that produces an ob-
ject. The value for algorithmic com-
plexity is always an approximation,
since it is not possible to deter-
mine with certainty what the min-
imal program would be.) E.g. [17],
[61].

Data generated by a pro-
gram.

Statistical Complex-
ity

Number of symbols of the shortest
program that produces the statisti-
cally significant features of an ob-
ject. E.g. [90], [91].

Data (usually time series)
generated by a program.

Connectivity The number of edges that can be re-
moved before the graph represent-
ing the object is split into two sep-
arate graphs. E.g. [97], [35].

Objects with highly con-
nected interacting compo-
nents.

System structure and
organisation

Function of the degree of connectiv-
ity between and within subsets of
components. E.g. [97].

Objects with sophisticated
hierarchical structures.

Design size The length in symbols of the assem-
bly procedure for an object. E.g.
[54]

Logical depth Computational complexity of the
assembly procedure for an object
i.e. the times it takes to compute
the assembly procedure. E.g. [8]

Sophistication The number of control symbols in
the program that generates the ob-
ject. E.g. [62].

Grammar size The number of production rules in
the program required to produce an
object. E.g. [35].

Design structure and
organisation

Function of the number of modules,
the reuse of these modules and the
degree of nesting. E.g. [54].

(alone), have been criticised for being counter-intuitive [97], [54]. It is argued
that the complexity measure should be such that complexity increases both
with increasing numbers of modules and with the degree of intergration between

104 C.-C. Chen, S.B. Nagl, and C.D. Clack

these modules. The results of tests with different types of systems to see how
different complexity measures behave are given in [54].

System Complexity. Here, we consider four measures of complexity addressing
a system directly: (i) Algorithmic complexity; (ii) Statistical complexity (see
Figure 5.2); (iii) Connectivity and (iv) Structure and organisation.

Fig. 5.2. Algorithmic complexity is the length of the minimal program that is able
to generate the actual system/object whereas statistical complexity is the length of
the minimal program that is able to generate the statistically significant aspects of the
system

Algorithmic complexity [17], [61]. The algorithmic complexity of a system is the
length of the smallest program that is able to generate the system. The shortest
program can also be thought of as the most efficient design for the system.
More formally, if we were to characterise the system as a string, the algorithmic
complexity would be the number of symbols in the smallest set of grammar rules
that could generate that string. (See Figure 5.2)

Statistical complexity [90], [91]. The assumption underlying statistical complex-
ity is that the system is one a set of possible systems that can be generated by
a common source. The statistical complexity of the system is the length of the
smallest program that is able to generate the statistically significant aspects of
the system. These are the aspects that the system shares with the other systems
that can be generated by the source.2 (See Figure 5.2)

2 Algorithmic and statistical complexity have in common the fact that they try to infer
something about the complexity of the generating source or design of the system
while connectivity and structure relate directly to the system itself.

Complexity and Emergence in Engineering Systems 105

Connectivity. The connectivity of a system refers to the extent to which its
components are interconnected. It is easy to see this as a network or graph
structure, where each of the nodes are the components [35]. Connectivity can
then be determined by counting the maximum number of connections that can
be removed before the system is split into two separate networks. Connectivity
does not have to be static. In fact, one of the key features of complex systems is
the fact that connectivity is dynamic, with changes in which components interact
with one another i.e. the graph topology changes over time [44]. Sophisticated
measures of connectivity are used in Neuroscience, which take into account self-
connectedness or re-entry and the fact that connections between components are
often dynamic in a system and change with time [97]. (See also Figure 5.3)

Structure and organisation. An especially high degree of connectivity between
a subset of components can be interpreted as a module. These subsets can also
show a relatively high degree of connectivity with each other, resulting in a hier-
archical structure. One measure of system complexity is therefore its modularity
and hierarchy, where a system with a high degree of modularity and hierarchy
has a higher degree of complexity (e.g. [97]).

Design Complexity. Measures of design complexity are those that relate to
the design of the system components and the way they should relate to one
another in a system. With traditional Systems design and engineering techniques,
the distinction is more difficult to draw, since the system complexity is often a
straightforward function the design complexity. However, if a system’s properties
or behaviours can not be derived from the design because the interactions and
connections between the components are dynamic, the relationship may not be
as straightforward (see Figure 5.3).

Here, we consider five design complexity measures: (i) Design size; (ii) Logical
depth; (iii) Sophistication; (iv) Grammar size and (v) Structure and organisation.

Design size. Design size is the number of symbols in the design program.

Logical depth. Logical depth is the computational complexity of the system’s
design program. Unlike design size, this would also take into account the number
of times a particular procedure is executed to produce the system.

Sophistication. Sophistication is the number of control symbols (e.g. selection
statements, loops) in the program that generates the system.

Grammar size. Grammar size is the number of rules in the design program that
produces the system.

Structure and organisation. In [54], structure and organisation includes measures
of modularity, hierarchy and reuse. Modularity refers to the number of encap-
sulated group of elements in the design program that can be manipulated as a
unit (in [54], this includes procedures). Hierarchy refers to the number of nested

106 C.-C. Chen, S.B. Nagl, and C.D. Clack

Fig. 5.3. Design and system complexity. (a) In traditional design and engineering
paradigms, the system complexity can be established analytically from the design com-
plexity. (b) Paradigms that exploit emergent properties and behaviours are those where
the relationship between design complexity and system complexity can not be estab-
lished analytically simply from the design (even if they are discovered empirically to be
related in some way). This is because in the system, the relationships and interactions
between the components tend to be dynamic and constantly changing in ways that are
not explicitly defined in the design.

layers of modules. Reuse is a measure of the average number of times elements of
the design program are used to create the resulting design. Several measures are
possible, depending on which elements are counted (e.g. reuse of build symbols
vs. reuse of modules; see [54] for more details).

5.2.2 Self-organisation

Self-organisation is the process whereby some system property occurs solely from
the behaviours and interactions between the system’s components.

Theories of self-organisation tend to fall into one of three categories:

1. Complexity-based theories, which emphasise the description of the process
of itself and characterise it as a shift in complexity.

2. Design-oriented theories, which emphasise the discrepency between the design
of the system components and the functions the system is able to perform as a
whole (without these being explicitly specified in the componenents’ deisgns).
Self-organisation is the mechanism by which this discrepency is able to exist.

3. Environment-oriented theories, which focus on the ability of the system to
adapt to its environment and tend to be interested in the occurrence of
different system properties in response to different environments through
self-organisation.

Complexity and Emergence in Engineering Systems 107

Fig. 5.4. Lower level properties give rise to a higher level emergent property, which in
turn constrains the set of lower level properties that can be realised.

If a property or behaviour arising through self-organisation tends to promote
itself, we say it is exhibiting autopeoisis [99]. Autopeoitic systems are those
where the system components, through their interactions with one another and
their individual behaviours, regenerate a set of interaction relationships (an inter-
action network). In the way, the interaction network reinforces and perpetuates
itself. This idea is also closely linked with ‘downward causation’, where an emer-
gent property constrains the properties that can be realised at lower levels; due
to these constraints, the set of higher level properties that are able to emerge is
also constrained (since these are dependent on the lower level properties). This
is illustrated in Figure 5.4.

In the Artificial Intelligence and Artificial Life literature, other ‘self-*’ ter-
minology [31] is also used (e.g. self-managing, self-optimising, self-protecting).
In the current discussion, we subsume these under self-organisation, since they
are essentially special categories of self-organisation. However, we also believe
that distinguishing between different sub-categories of self-organising properties
when studying them is likely to lead to more detailed insight into the mechanisms
unique to each category.

Dynamic Shifts in Complexity. On one interpretation, self-organisation is the
dynamic process that occurs when a system shifts from one level of complexity
to another without any external input or guiding force (see Section 5.2.2). This
interpretation relates to the complexity measures for the actual system (see
Section 5.2.1 above) rather than to those for its design. The shifting of complexity
is called emergence (see Figure 5.5).

108 C.-C. Chen, S.B. Nagl, and C.D. Clack

Fig. 5.5. Shifts in complexity. A higher (a) or lower (b) complexity description of a
system may emerge as the result of self-organisation.

A shift in complexity means a change in the description of the system. If we
consider again the four measures of system complexity introduced above, we can
interpret complexity shifts as follows:

Algorithmic Complexity. A decrease in algorithmic complexity indicates that
there is another algorithm or design that can generate the system’s behaviour
more efficiently so that the current algorithm is no longer the shortest while an
increase indicates that the current algoroithm is no longer sufficient to generate
the system’s behaviour.

Statistical Complexity. Similarly, a decrease in statistical complexity indicates
that there is a shorter algorithm that can generate the statistically significant
aspects of the system’s behaviour while an increase indicates that the current
algorithm is no longer sufficient to generate the statistically significant features
of the system’s behaviour.

Connectivity. A change in connectivity means that a different number of compo-
nents in the system are connected to one another. This implies that a higher or
lower number of the components are involved in driving the system forward in
its evolution i.e. a different number of components are required for the system
to behave in a particular way.

Structure and organisation. A change in structure and organisation is re-
flected in changes in connectivity between subsets of components. For example,
highly connected components that initially functioned as modules might show a

Complexity and Emergence in Engineering Systems 109

reduction in connectivity so that the modularity and complexity of the system
decreases.

Design/Observation Discrepency in Multi-component Systems. With
a more design-oriented interpretation, we might also say that a self-organised
system is one where the behaviour exhibited by the system is not explicitly
given in the design of any of its components. Instead, the interactions between
the components together give rise to some property or behaviour of the system
with no controlling component. System properties and behaviours that occur in
this way (with no top-down control) are said to be emergent and the components
of the system are often said to exhibit cooperative or coordinated behaviour (see
Section 5.2.2).

In systemswhich are intended to performaparticular function, self-organisation
can be seen as the system’s ability to perform this function without this being ex-
plictly incorporated in the design. This means there is no one component or set of
components whose purpose in the system is to ensure that the other components’
behaviours are coordinated in such a way that the function is performed. Instead,
the components collectively give rise to an overall system behaviour that performs
the function.

Adaptivity to the Environment. Finally, a more environment-oriented and
functional view of self-organisation focuses on the ability of the system to adapt
to its environment in ways that have not been considered in the design ‘without
explicit external command..’ [87].

5.2.3 Emergence

Fundamental to the concept of emergence is the idea that there is a change in
the way system components interact and relate to one another. Depending on
the complexity measure chosen to characterise the descriptions of the system
and/or its design, emergence can be seen to result in an increase or decrease in
complexity. For example, in [10], emergence is defined as an unexpected com-
plexity drop in the description of the system by a certain observer. When an
observer observes a system at work, he has a theory about the rules governing
the system. If the observer understands very little about the system, the set of
rules he associates with the system’s behaviour will be very large, since every
component of the system will have to be described independently. When the
observer understands more about the system, he might be able to characterise
its behaviour using a smaller set of rules. This smaller set of rules represents the
lower complexity description and can be said to emerge from the larger set of
rules representing the higher complexity description.

5.2.4 Summary and Analysis

The relationship between the different theories of complexity, self-organisation
and emergence can be described by the following logical chain:

110 C.-C. Chen, S.B. Nagl, and C.D. Clack

Fig. 5.6. Lower level properties give rise to an emergent property, which in turn
constrains the set of lower level properties that can be realised.

Interactions between components → Self-organisation → Complexity
→ Emergent property → Constraints on interactions between compo-
nents

An important point to note is that the chain is not supposed to represent
a temporal or causal sequence. Interactions between components both give rise
to and constitute the emergent property, which in turn constrains the inter-
actions between the components. The phenomenon of autopeoisis results when
the constraints on the interactions perpetuate those same interactions. This is
illustrated in Figure 5.6.

Systems usually operate in a dynamic (as opposed to static) environment so
that interactions between the system and the environment can influence the
system’s operation (see Figure 5.7), giving the following logical chain (adapted
from [22]):

Environmental Change → Change in interaction graph3 → Shift in
complexity → Self-organisation → Emergence of new property

Again, no member of the chain is temporally or causally prior to any of the
others.

Unlike traditional design and engineering paradigms, designs that exploit
emergent properties and behaviours are those where the resulting system has
features that are not explicitly specified in the design. For this reason, their
3 An interaction graph represents the interaction relationships between a system’s

components. Each node in the graph represents a component and the edges represent
the interactions.

Complexity and Emergence in Engineering Systems 111

Fig. 5.7. The environment and the system together give rise to an emergent prop-
erty, which in turn constrains the properties and interactions between the system con-
stituents. If the system is also able to influence its environment, then the emergent
property would also constrain system-environment interactions via the constraints on
the system itself.

complexity can not be established analytically from the design alone (see Figure-
fig:TraditionalNew). More formally, if Cdesign stands for the design complexity,
Csystem stands for the system complexity, and Csystem = f(Cdesign), for tradi-
tional design and engineering paradigms, we can establish what the function f
is from the design whereas for paradigms exploiting emergence, we can not.

5.3 Theories of Emergence

Emergence has been a much-discussed subject in both the physical sciences and
in engineering. Unfortunately, it is often seen as an area where there is little
consensus and much confusion. However, we shall try to show that many of the
apparent differences between definitions are not fundamental but simply due to
different aspects of the phenomenon being emphasised.

5.3.1 Formalising the Micro-macro Relationship

The idea that a system can be observed and described at different levels of
abstraction is central to most definitions of emergence e.g. [23], [25], [10], [26],
[83], [86], [89], [5], [63].

In the Design and Engineering domain, this has tended to be formalised uing
language-oriented definitions based on multi-agent systems (e.g. [26], [83], [63]),
while those inspired by statistical mechanics used to study real systems (both

112 C.-C. Chen, S.B. Nagl, and C.D. Clack

physical and social) tend to focus on relating the different scopes and resolutions
of properties (e.g. [23], [89], [55], [56], [85]).

Language-oriented Definitions. Language-oriented definitions (e.g. [26], [63])
require that the macro-level description is in some way ‘greater than’ the micro-
level description i.e. the macro-level language has elements that can not be found
in the micro-level language.

A grammar can be seen as a formal computational device with a particu-
lar generative power i.e. it is able to generate a particular language or set of
languages. In Kubik’s formalisation of emergence [63], the micro-level grammar
LPARTS is determined by the sum of conditions that agents can bring about
in the environment if they act individually in the environment. If the multi-
agent system can generate a language LPARTS that can not be generated by
the summation of individual agents’ languages, it is said to have an emergent
property.

Similarly, Demazeau’s definition [26] refers to the discrepancy between the
language represented by the whole system and the langauge represented by sum-
ming the parts. A description of the whole system consists of agents (A) in their
environment (E) using interactions (I) to form an organisation (O). However, if
we simply summed these different elements (A + E + I + O), we would not get
the same result as if we considered the system as a whole.

Since the micro-macro discrepancy on these definitions is inextricably linked
to the design/observation discrepancy on these definitions, there is no reference
to shifts in system complexity.

Hierarchies, Scope and Resolution. In [55] and [56], two categories of hier-
archy are described (see Figure 5.8):

1. Compositional hierarchy, where lower level properties are constituents of
higher level properties. This can be seen to correspond to α-aggregation, the
AND relationship, or part-whole;

2. Specificity or type hierarchy where higher level properties are defined at a
lower resolution than lower level properties. This can be seen to correspond
to β-aggregation [55, 56], or the OR relationship.

We can relate these two categories of hierarchy to the account of micro-macro-
property relationships given in [85], which defines a property P1 to be a macro-
property of another property P2 if:

– P2 has a greater scope than P1;
– P2 has a lower resolution than P1; or
– both.

The scope of a property is the set of constituents required for the property to
exist; for example, the property of being a flock requires a minimum number
of birds. On the other hand, the resolution is the set of distinctions that have
to be made to distinguish the property; for example, to identify a colour, one

Complexity and Emergence in Engineering Systems 113

Fig. 5.8. Two categories of hierarchy. (a) Compositional hierarchy/α-aggregation: P2,
P3 and P4 are constituents of P1. (b) Type hierarchy/β-aggregation: P6, P7 and P8 fall
in the set defined by P5.

needs to be able to distinguish between a ranges of wavelengths. Information-
theoretic interpretations of emergence in dynamic systems are based on the idea
that often, when we are considering a greater scope, we are willing to accept
some loss of accuracy or a lower resolution when predicting future behaviour
(see, for example [10], [88]).

5.3.2 Formalising the Design-Observation Discrepancy: Definitions
of Emergence for Designed Multi-agent Systems

In the context of designed multi-agent systems, a defining characteristic of emer-
gent properties and behaviours is that they arise ‘spontaneously’ without being
explicitly specifed in the design. In other words, it is not possible to predict their
occurrence simply from looking at the design program. For example, Ronald et. al.
[83] suggest that a property can be said to be emergent if (i) the system has been
constructed from a design describing the interactions between components in a lan-
guage L1, (ii) the observer is fully aware of the design but describes the behaviour
of the system using langauge L2, (iii) L1 and L2 are disinct and (iv) The causal
link between the interactions described in L1 and the system behaviour described
in L2 is non-obvious. This is somewhat controversial since it seems to make the

114 C.-C. Chen, S.B. Nagl, and C.D. Clack

Fig. 5.9. A ‘law’ emerges when an emergent property P1 constrains the properties
and/or interactions of its constituents I1 so they give rise to another emergent property
P2 made up of interacting constituents I2

emergence classification of a property dependent on the observer’s knowledge i.e.
whether or not the observer thinks the causal link between the L1 property and L2
property is non-obvious.

A more objective criterion is givenby Darley [25], who defines an emergent prop-
erty as one ‘forwhich the optimalmeans of prediction is simulation’. In otherwords,
given the design, it can only be deduced by stepping the evolution of the system,
that the property will be present.

5.3.3 Top-Down ‘Causation’ and Emergent ‘Laws’

An important feature of emergent properties is that they can constrain or influ-
ence the properties of their components. Some even hold the position that this
feature is mandatory for a property to be called ‘emergent’ (e.g. [92], [86]). The
phenomenon of ‘autopeoisis’ described in Sections 5.2.2 and 5.2.4 is an example
of this, since an emergent property sustains itself by constraining the interactions
between system components so they perpetuate themselves (see Figure 5.10).
More generally though, top-down constraints mean that a particular property P1
that emerges from a set of component properties and/or interactions I1 make
the appearance of a second set of interactions I2 more likely or certain (e.g. [6]).
If I2 is also associated with an emergent property P2, then a higher level ‘law’
will emerge that relates P1 and P2 (this might be deterministic or probabilistic).
This is illustrated in Figure 5.9. Computational statistics techniques grounded in
information-theoretic interpretations of emergence (see Section 5.3.1) can be used
to identify statistical regularities or ‘laws’ that emerge e.g. [88], [89], [24], [91].

5.3.4 Summary and Analysis

Although there are several definitions of emergence in the literature, definitions
tend to address one or more of the following:

Complexity and Emergence in Engineering Systems 115

1. the micro/macro relationship;
2. the design/observation discrepancy;
3. top-down ‘causation’ effects.

In the context of designing and engineering systems with emergent properties,
these characteristics present us with particular challenges. In particular, the
design/observation discrepancy means that it is difficult to specify components
to guarantee that their interactions give rise to the desired system behaviour.

5.4 Designing and Engineering Emergent Behaviours in
Complex Decentralised Systems

Recently, there has been significant interest in designing systems in such a way
that the system’s successful operation depends on properties and behaviours that
are not explicitly specified in the design i.e. the systems are decentralised and
self-organising. For example, multi-agent systems are used in distributed plan-
ning and reasoning (e.g. [11], [46], [2]), and swarm algorithms (e.g. [60], [32],
[67]) and other nature-inspired techniques such as genetic algorithms [48] and
artificial neural networks [66], [64], [76] have been used to solve problems, includ-
ing those that fall into the NP-complete class [51]. These systems are believed
to be more robust and adaptive (see also Section 5.2.2) to their environment
[52], [53] than traditionally designed systems with centralised control. In the
case of problem-solving algorithms, distributed knowledge and information can
be exploited to arrive at a solution.

To exploit the emergent properties of a system, traditional methods for design-
ing, engineering and analysing systems need to be replaced with new paradigms
that take into account the discrepency between the design of the individual
components and their collective behaviour in a system. Whereas traditional

Fig. 5.10. Autopeoisis. An emergent property P1 constrains the properties and in-
teractions between its constituents I1 so that I1 (and hence P1 itself) is sustained or
perpetuated.

116 C.-C. Chen, S.B. Nagl, and C.D. Clack

engineering aims to ensure that components’ interactions with one another are
predictable and controlled for successful system operation, emergence-based en-
gineeering seeks to exploit the dynamic aspect of components’ interactions.
When a traditionally engineered system fails to deliver its functionality, it is
either because one or more of the components has failed or because a control
has failed to operate. When an emergence-exploiting system fails to deliver its
functionality however, it is usually because the components have interacted in
such a way as to give some other, undesired, emergent behaviour.

Importantly, the difference between traditional methods and emergence-based
methods lies in the different relationship between the system’s design and the
system’s functionality, not necessarily in any intrinsic feature(s) of the systems
themselves. Emergence-based methods exploit the emergent features of the sys-
tem and design the system in such a way as to promote the appearance of these
emergent features whereas traditional methods do not exploit the emergent fea-
tures (even though these may still appear4). This is expressed succinctly in [15],
[43] and [45] by the following conditions that emergent-based designs satisfy:

1. The goal of a computational system is to realise an adequate function, judged
by a relevant user. This function might be a behaviour, a pattern, or some
other property that has to emerge.

2. This function is emergent if the coding of the system does not depend on
the knowledge of this function. This coding has to contain the mechanisms
facilitating the adaptation of the system during its coupling with the envi-
ronment, so as to tend toward a coherent and relevant function.

3. The mechanisms which allow the changes are specified by self-organisation
rules, providing autonomous guidance to the components’ behaviour without
any explicit knowledge about the collective functin nor how to reach it.

The methods and techniques reviewed in this section come mainly from the
field of multi-agent systems. As with traditional Systems Engineering, the pro-
cess of designing and then implementing the system is usually an iterative one
that cycles (often several times) through the phases of:

1. Requirements gathering and analysis;
2. Design;
3. Construction (in software systems, this would include coding);
4. Testing.

By definition, if we are exploiting the emergent properties of a system, it is
not possible to predict with certainty that we will be able to from the design of
its components alone. However, it may be possible to establish with a particular
margin of error, how likely or with what frequency the property/behaviour will
emerge, given a particular design. Choosing an appropriate and efficient method
for doing this is itself difficult and can depend on the application.

Gleizes et. al. [45] cite three main challenges in relation to engineering systems
so they have the appropriate emergent behaviours for desired functionalities:
4 In fact, in come cases, the unexpected appearance of these features contributes to

system malfunction and is a sign of bad design.

Complexity and Emergence in Engineering Systems 117

1. Controlling system behaviour at the macro level by focusing on the design
of agents at the micro level.

2. Providing designers and engineers with the tools, models and guides to de-
velop such systems.

3. Validating these systems.

Correspondingly, the methods and techniques used in emergent systems design
and engineering can be seen to fall into one or more of the following categories:

1. Design methods and methodology that allow designers and engineers to
specify a system that exploits emergent behaviours.

2. Validation techniques.
3. Techniques for controlling interactions so that the appearance of desired

emergent properties and behaviours is facilitated, and occurrence of unde-
sirable behaviours is prevented.

The first two of these are considered in Section 5.4.1, while the latter is
considered in Section 5.4.2.

5.4.1 Design and Validation Methods

Design methods and validation techniques tend to be closely related. In the
design phase, specifications for the system’s components are drawn up based
on an understanding of how these components will interact when the system
is in operation. These specifications themselves have to be validated to ensure
they correctly reflect the requirements. Formal methods provide the strongest
form of validation for this purpose (Section 5.4.1). However, the big challenge in
engineering systems with emergent properties is in validating system behaviour
as it would be in operation. For this purpose, empirical techniques are required
(Section 5.4.1)

Formal Methods to Validate Design Specifications. Formal reasoning
frameworks can be used to validate design specifications by proving that the
specifications entail the occurence or non-occurrence of certain interactions be-
tween components. Strong statements can therefore be made about the way the
system should behave when implemented.

Formal methods can be seen to fall into the following categories (although
some methods cut across categories) [84]:

1. Model-oriented approaches, which involve the derivation of an explicit model
of the system’s desired behaviour in terms abstract mathematical objects
amalgamating the behaviour of the components. These can be further sub-
classified as:
– Process algebras e.g. Calculus of communicating systems (CCS) [71], π-

calculus [72], [36], ambient calculus [16]. These can be used to describe
the interactions between components and prove that certain conditions
are satisfied with respect to them.

118 C.-C. Chen, S.B. Nagl, and C.D. Clack

– Concurrency automata e.g. Petri nets [75], Statecharts [50], X-machines
[57], [58], which include the details of components’ operational behaviour
(X-machines have the additional feature of representing the internal
states of components [57]).

– Set-theoretic methods e.g. abstract state machines (ASM) [13], the B-
Method [65], Z notation [93].

2. Property-oriented approaches, which allow minimal constraints to be spec-
ified. These tend to be algebraic methods, which use axiomatic semantics
based on multi-sorted algebras and relate system properties to equations
over the system components e.g. BDI logic properties can be mapped down
to linear temporal logic (LTL) [12] or branching time logic (CTL) [7].

Most of these frameworks also come have tools for model-checking [20].

Empirical Methods for Validating and Developing Decentralised
Systems. Formal methods are unable to address the problem of implement-
ing or (in the case of software systems) programming the components of systems
to guarantee that the system will satisfy the design specifications [34], [33]. (This
follows from Godel’s Incompleteness Theorem [47] and the fact that the ‘halting
problem’ is an undecidable [98].) Although this is also true of non-emergence-
based design, designers seeking to exploit emergent properties have the addi-
tional challenge of understanding how non-obvious behaviours can arise from a
multitude of interactions. Empirical methods are therefore required to validate
the system’s behaviour. The premise on which these are based is that “The be-
haviour of a system is only a hypothesis about the system’s behaviour - it must
be checked by experimentation” [34].

One approach is global validation, which establishes that the system as a
whole performs the desired function. Simulation and numerical analysis of the
results can also be used to check whether the system’s performance falls within
an acceptable range. Often, agent-based models and simulations have been used
for this purpose.

A related approach is to study certain coordination mechanisms such as those
described in Section 5.4.2 and reuse them as design patterns [28], [27], [68], [42].
Analysis of these mechanisms using formalisms such as causal loop diagrams [81]
can help us to understand the causal structures underlying them (e.g. positive
and negative feedback loops) [96]. This more analytical understanding is impor-
tant as it allows us to reliably synthesise different coordination mechanisms so
they interact appropriately [94]. A formalism for relating behavioural motifs at
different levels of abstraction has been introduced in [18] and its application in
multi-level hypothesis testing is described in [19].

5.4.2 Regulating Interactions

A significant amount of work has been done to try and understand which compo-
nent interactions tend to lead to desirable emergent properties and behaviours
(and which do not). Once this has been established (either through rigorous

Complexity and Emergence in Engineering Systems 119

proof or empirical studies; see Section 5.4.1), it is the task of the designer to put
in place certain mechanisms to ensure these interactions take place (or, in the
case of undesirable properties, do not take place).

Mechanisms for regulating interactions between components in a decentralised
distributed system fall into two main categories:

– Protocols and rules, which act as a means of ensuring that the behaviour of
every component in the system results in interactions that satisfy a set of con-
straints. These might require specific agent architectures and/or capabilities;
and

– Environmental artifacts and architectures, which allow components to com-
municate with one another through shared data spaces so that their interac-
tions satisfy a set of constraints constraints.

Here, there is only space to briefly refer to the more commonly cited examples,
but the interested reader is advised to follow up on the references. For more de-
tails on coordination protocols, the reader should refer to the ‘Coordination, Or-
ganization, Institutions and Norms in Agent Systems (COIN)’ workshop series
(http://www.pcs.usp.br/∼coin/). For more details on environmental artifacts
and architectures, the ‘Environments for Multiagent Systems (E4MAS)’ work-
shop series (http://www.cs.kuleuven.be/∼distrinet/events/e4mas/) is a good
place to start.

Coordination Protocols and Local Regulation. Coordination protocols are
rules that determine the set of permissible interactions between agents. While
the precise set of protocols adopted for a particular system tends to be appli
cation-specific, various models of interaction inspired by natural and social sys-
tems are often involved. Also, environmental architectures and artifacts (see be-
low) often require specific coordination protocols and/or agent architectures to
work e.g. the Influence-Reaction model [40] requires both that agents have a
‘physical’ aspect and that the environment is active.

Examples of coordination protocols include:

– Cooperation [38] and the detection of cooperation failure [77], where agents
can coordinate their actions and share resources to achieve a goal;

– Trust [79], [74] and reputation [80], where agents can evaluate the trustwor-
thiness of their peers and find select suitable partners to interact with to
achieve their goals;

– Organisational metaphors such as roles and groups [39], [14], [21], [70], where
roles provide context constraints for agents’ behaviours;

– Norms obligations and institutions [4], [29], [100] where certain constraints
govern agents’ interactions with one another in particular situations;

– Gossip, where agents select peers to receive information from [59], [1].

Taxonomies of such protocols can be found in [30], [95] and [68].

120 C.-C. Chen, S.B. Nagl, and C.D. Clack

Environmental Artifacts and Architectures. Environmental artifacts and
architectures are used to mediate agent interactions, providing a means for agents
to interact with each other reliably [78]. Examples include:

– Interaction channels, where agents share and filter data by publishing and
subscribing to repositories, which is responsible for sending (and blocking)
messages to the appropriate agents. Examples include multicast interactions
[3], shared memory and tuple-based approaches [41], and event-based inter-
action [37].

– Sychncronisation mechanisms, which can be centralised or decentralised.
These hold the resulting effects of simultaneous actions until it is safe to
execute them in the system. In centralised synchronisation (e.g. the Influence-
Reaction model [40]), the data structures are accessible to all agents in the
system whereas in decentralised synchronisation, the system is split into re-
gions which each hold a group of agents that can act simulateously and
independently from other agents in the system [101].

– Overlay networks, which restrict the set of agents that can interact with one
another. Usually there are protocols that allow new agents to join and leave
a network. Examples include distributed hash tables [82] and ‘ObjectPlaces’,
which has view and role abstractions [102].

– Stigmergic mechanisms, such as pheremones [73] and fields [69], which allow
agents to interact and share data indirectly. As agents move around in their
enviornment, they can store data in their current location and this can be
accesed by other agents (sometimes only within a given time frame). With
fields, the data can themselves propogate according to certain rules that
prescribe how they spread.

5.4.3 Summary and Analysis

Designing and engineering complex systems with emergent properties is chal-
lenging because by definition, the appearance of these properties can not be
established analytically from the design of system’s components. However, for-
mal and empirical methods have been proposed to better inform designs:

– Formal methods allow designers of these systems to express their design spec-
ifications unambiguously and prove that certain conditions and properties
hold for specifications.

– Empirical methods allow certain interaction patterns to be identified and
reused in the form of protocols and environmental artifacts.

Perhaps the most important criticism of emergence-based design principles is
that although they are “compatible with the good average-case performance...
they often conflict with a design’s predictability”. On the other hand, such sys-
tems may provide the only means of solving computational problems that would
otherwise be too time-consuming to solve. Furthermore, by applying empirical
methods and studying such systems, it is possible that we are able to achieve
sufficient predictability (and reliability) for a particular purpose.

Complexity and Emergence in Engineering Systems 121

5.5 Conclusions

This chapter has introduced the main concepts of complexity, self-organisation
and emergence. As well as theories from the design and engineering of complex
systems, we have also reviewed theories from the physical and complex systems
sciences. Complex systems, whether designed or natural, are difficult to analyse
because system properties and behaviours are driven by the collective properties
and/or relationships between the system’s components. Designing and engineer-
ing such systems to exploit their emergent properties and behaviours is therefore
inherently difficult; formal specification techniques need to be supplemented with
empirical methods and analytical techniques.

At the same time, scientists studying complex systems, either in the abstract
or in specific domains such as Finance, Systems Biology, Earth Science, Ecol-
ogy and Economics, face similar challenges. There therefore needs to be more
mutual engagement between complexity scientists and complex systems engi-
neers so that methods and techiques can be shared. One of the reasons such
engagement has been slow to come about is the confusion surrounding termi-
nology. This chapter has taken the first step to addressing this by clarifying the
main distinctions and commonalities between different theories of emergence and
complexity.

5.6 Resources and Suggested Readings

Complexity Science is the umbrella term used to describe disciplines that study
complex systems with emergent properties. It includes the development of meth-
ods for analysing and modelling such systems (e.g. network theory, dynamical
systems analysis, statistical mechanics) as well as more domain-specific concerns
(e.g. why do stock markets crash?). The reader wishing to learn more about
these should refer to the Bibliography and Resource List.

5.6.1 Bibliography

– Axelrod, R., Cohen, M. D. (2001) Harnessing complexity: Organisational
implications of a scientific frontier. Basic Books.

– Bar-Yam, Y (1999) The Dynamics of Complex Systems (Studies in non-
linearity). Perseus Books.

– Flake, G. W. (2000) The computational beauty of nature: Computer explo-
rations of fractals, chaos, complex systems and adaptation. MIT Press.

– Holland, J. (2000) Emergence: From chaos to order. Oxford University Press.
– Resnick, M. (1997) Turtles, termites and traffic jams: Explorations in mas-

sively parallel microworlds. MIT Press.
– Waldorp, M. (1992) Complexity: The emerging science at the edge of order

and chaos. Simon and Schuster.

122 C.-C. Chen, S.B. Nagl, and C.D. Clack

Acknowledgements

The work presented in this paper is the result of a multi-disciplinary collabo-
ration between the authors: Chih-Chun Chen (Computer Science: complexity
science and multi-agent systems), Sylvia Nagl (Oncology: complexity science,
systems biology and philosophy of science), and Christopher Clack (Computer
Science: type systems, logics, rule-based and adaptive systems).

References

1. Allavena, A., Demers, A., Hopcroft, J.: Correctness of gossip-based membership
protocol. In: Proceedings of the 24th ACM Symposium on the Principle of Dis-
tributed Computing (2005)

2. Atkins, E.M., Abdelzhar, T.F., Shin, K.G., Durfee, E.H.: Planning and resource
allocation for hard real-time, fault-tolerant plan execution. Autonomous Agents
and Multi-Agent Systems Journal (Best of Agents 1999 special issue) (1–2), 57–78
(March/June 1999)

3. Balbo, F., Pinson, S.: Toward a multi-agent modelling approach for urban public
transportation systems. In: Engineering societies in the agents world II. Springer,
Heidelberg (2001)

4. Barbuceanu, M., Gray, T., Mankovski, S.: Coordinating with obligations. In: Pro-
ceedings of the second international conference on autonomous agents, pp. 62–69
(1998)

5. Bedau, M.A.: Downward causation and the autonomy of weak emergence. Prin-
cipia 3, 5–50 (2003)

6. Beer, R.D.: Autopoiesis and cognition in the game of life. Artificial Life 10, 309–
326 (2004)

7. Benerecetti, M., Cimatti, A.: Symbolic model checking for multi-agent sys-
tems. In: Proceedings of the model checking and artificial intelligence workshop
(MoChArt 2002), held with 15th ECAI, Lyon, France, pp. 1–8 (July 21–26, 2002)

8. Bennett, C.H.: On the nature and origin of complexity in discrete, homogenou,
locally-ineracting systems. Found. Phys. 16, 585–592 (1986)

9. Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A.: Predictability: a way to
characterise complexity. Physics Reports 356, 367–474 (2002)

10. Bonabeau, E., Dessalles, J.L.: Detection and emergence. Intellectica 2(25), 85–94
(1997)

11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

12. Bordini, R., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model-checking. Autonomous agents and multi-agent systems 12, 239–
256 (2006)

13. Borger, E., Stark, R.: Abatrsct State Machines: A method for high-level system
design and analysis. Springer, Heidelberg (2003)

14. Cannata, N., Corradini, F., Merelli, E., Omicini, A., Ricci, A.: An agent-oriented
conceptual framework for systems biology. Trans. On Comput. Syst. Biol. 3, 105–
122 (2005)

15. Capera, D., George, J.P., Glize, M.P.: The amas theory for complex problem
solving based on self-organising cooperative agents. In: The First International
TAPOCS Workshop at IEEE 12th WETICE, pp. 383–388 (2003)

Complexity and Emergence in Engineering Systems 123

16. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Foundations of Software Sci-
ence and Computation Structures: First Interational Conference FOSSACS 1998.
Springer, Berlin (1998)

17. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
J. Assoc. Comput. Mach. 13, 547–569 (1966)

18. Chen, C.-C., Nagl, S.B., Clack, C.D.: A calculus for multi-level emergent be-
haviours in component-based systems and simulations. In: Aziz-Alaoui, M.A.,
Bertelle, C., Cosaftis, M., Duchamp, G.H. (eds.) Proceedings of the satellite con-
ference on Emergent Properties in Artificial and Natural Systems (EPNACS)
(October 2007)

19. Chen, C.-C., Nagl, S.B., Clack, C.D.: A method for validating and discovering
associations between multi-level emergent behaviours in agent-based simulations.
In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008.
LNCS (LNAI), vol. 4953. Springer, Heidelberg (2008)

20. Clarke, E.M., Grumberg, E.M., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (2000)

21. Corradini, F., Merelli, E., Vita, M.: A multi-agent system for modelling carbohy-
drate oxidation in cell. In: Computational Science and Its Applications (ICCSA
2005: International Conference, Part II), Singapore, May 9-12, 2005, Proceedings,
pp. 1264–1273 (May 2005)

22. Cotsaftis, M.: In: Aziz-Alaoui, M.A., Bertelle, C., Cotsaftis, M., Duchamp, G.H.E.
(eds.) Proceedings of EPNACS 2007, Emergent Properties in Natural and Artifi-
cial Systems, Dresden, Germany, October 1–5, pp. 9–33 (2007)

23. Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induc-
tion. Physica D 75, 11–54 (1994)

24. Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Lev-
els of entropy convergence. Chaos 13(1), 25–54 (2003)

25. Darley, V.: Emergent phenomena and complexity. Arificial Life 4, 411–416 (1994)
26. Demazeau, Y.: Steps towards multi-agent oriented programming. In: First Inter-

national Workshop on Multi Agent Systems, Boston, Mass. (1997)
27. DeWolf, T., Holvoet, T.: A catalogue of decentralised coordination mechanisms

for designing self-organising emergent applications. Technical Report CW 458,
Department of Computer Science, K. U. Leuven (2006)

28. DeWolf, T., Holvoet, T.: Decentralised coordination mechanisms as design pat-
terns for self-organising emergent applications. In: Proceedings of the Fourth
International Workshop on Engineering Self-Organising Applications, pp. 40–61
(2006)

29. Dignum, F., Morley, D., Sonenberg, L., Cavedon, L.: Towards socially sophisti-
cated bdi agents. In: Proceedings of ICMAS 2000 (2000)

30. d’Inverno, M., Luck, M.: Understanding agent systems, ch. 3, pp. 39–66. Springer,
Heidelberg (2001)

31. Dowling, J., Cunningham, R., Curran, E., Cahill, V.: Component and system-wide
self-* properties in decentralized distributed systems. In: Self-Star: Internatinal
Workshop on Self*- Properties in Complex Information Systems (2004)

32. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications
and resources. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, pp. 27–30 (2001)

33. Edmonds, B.: Engineering self-organising systems, methodologies and applica-
tions. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R.
(eds.) ESOA 2005. LNCS (LNAI), vol. 3464. Springer, Heidelberg (2005)

124 C.-C. Chen, S.B. Nagl, and C.D. Clack

34. Edmonds, B., Bryson, J.: The insufficiency of formal design methods - the neces-
sity of an experimental approach - for the understanding and control of complex
multi-agent systems. In: Proceedings of AAMAS, pp. 938–945 (2004)

35. Edmunds, B.: Syntactic measures of complexity. PhD thesis, University of Manch-
ester (1999)

36. Esterline, A., Rorie, T.: Using the π-calculus to model multi-agent systems. In:
Greenbelt, M.D. (ed.) Proceedings of the First International Workshop on Formal
APproaches to Agent-Based Systems, vol. 1871. Springer, Heidelberg (2001)

37. Eugster, P., Felber, P., Guerraoui, P., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

38. Ferber, J.: Multi-Agents Systems: An Introduction to Distributed Artificial Intel-
ligence. Addison-Wesley, Reading (1999)

39. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organi-
sations in multi-agent systems. In: Proceedings of the Third International Con-
ference on Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Computer
Society Press, Los Alamitos (1998)

40. Ferber, J., Muller, J.-P.: Influences and reaction: A model of situated multiagent
systems. In: Second international conference on multi-agent systems, AAAI (1996)

41. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces principles, patterns, and practice.
Addison-Wesley, Reading (1999)

42. Gardelli, L., Viroli, M., Omicini, A.: Design patterns for self-organising multi-
agent systems. In: Proceedings of EEDAS 2007 (2007)

43. George, J.P., Gleizes, M.P.: Experiments in emergent programming using self-
organising multi-agent systems. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.)
CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 450–459. Springer, Heidelberg
(2005)

44. Giavitto, J.-L., Michel, O.: Mgs - a rule-based programming language for complex
objects and collections. Electronic Notes in Theoretical Computer Science, 59
(2001)

45. Gleizes, M.-P., Camps, V., George, J.-P., Capera, D.: Engineering systems which
generate emergent functionalities. In: Engineering Environment-Mediated Multi-
agent Systems (EEMMAS 2007). LNCS. Springer, Heidelberg (2007)

46. Gmytrasiewicz, P.L., Durfee, E.H.: Rational coordination in multi-agent systems.
Autonomous Agents and Multi-Agent Systems Journal 3(4), 319–350 (2000)

47. Godel, K.: Uber formal unentscheidbare satze der principia mathematica und
verwandter system i. Monatschefte Math. Phys. 38, 173–198

48. Goldberg, D.: Genetic Algorithms in Search Optimisation and Machine Learning.
Addison-Wesley, Reading (1989)

49. Grassberger, P.: Toward a quantitative theory of self-generated complexity. Inter-
national Journal of Theoretical Physics 25, 907–938 (1986)

50. Harel, D.: Statecharts - a visual formalism for complex systems. SCP 8, 231–274
(1987)

51. Harel, D.: Algorithmics - The Spirit of Computing, 3rd edn. Addison-Wesley,
Reading (2004)

52. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge
(1992)

53. Holland, J.: Emergence - from chaos to order. Oxford University Press, Oxford
(2000)

54. Hornby, G.S.: Modularity, reuse, and hierarchy: Measuring complexity by mea-
suring structure and organisation. Complexity 13(2), 50–61 (2007)

Complexity and Emergence in Engineering Systems 125

55. Johnson, J.: Hypernetworks for reconstructing the dynamics of multilevel systems.
In: Proceedings of European Conference on Complex Systems (November 2006)

56. Johnson, J.: Multidimensional Events in Multilevel Systems, pp. 311–334.
Physica-Verlag HD (2007)

57. Kefalas, P., Eleftherakis, G., Kehris, E.: Communicating x-machines: A practi-
cal approach for formal and modular specification of large systems. Journal of
Information and Software Technology 45, 269–280 (2003)

58. Kefalas, P., Halcombe, M., Eleftherakis, G., Gheorghe, M.: formal method for the
development of agent-based systems. In: Plekhanova, V. (ed.) Intelligent Agent
Software Engineering. Idea Group Publishing, UK (2003)

59. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the 44th IEEE Symposium on Foundations of Com-
puter Science (2003)

60. Kennedy, J., Eberhart, R.C.: Particle swarm optimisation. In: Proceedings of
the IEEE International Conference on Evolutionary computation, pp. 1942–1948
(1995)

61. Kolmogorov, A.N.: On the length of programs for computing finite binary se-
quences. Prob. Info. Transm. 1, 1–17 (1965)

62. Koppel, M.: Complexity, depth and sophistication. Complex Systems 1, 1087–
1091 (1987)

63. Kubik, A.: Toward a formalization of emergence. Artificial Life 9, 41–66 (2003)
64. Kung, S.Y.: Digital Neural Networks. PTR Prentice Hall, Englewood Cliffs (1993)
65. Lano, K.: The B Language and Method: A Guide to Practical Formal Develop-

ment. In: FACIT. Springer, Heidelberg (1996)
66. Lau, C.: Neural networks, theoretical foundations and analysis. IEEE Press, Los

Alamitos (1991)
67. Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid particle swarm optimiser with

breeding and subpopulations. In: Proceedings of the third Genetic and Evolution-
ary Computation Conference (2001)

68. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organisation in computer science. Journal of System Architecture 52, 160–443
(2006)

69. Mamei, M., Zambonelli, F.: Field-based coordination for pervasive multiagent
systems. Springer, Heidelberg (2006)

70. Messie, D., Oh, J.C.: Environment organisation of roles using polymorphism. In:
Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI),
vol. 3830, pp. 251–269. Springer, Heidelberg (2006)

71. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

72. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (i and ii).
Inform. and Comput. 100(1), 1–77 (1992)

73. Van Dyke Parunak, H., Brueckner, S.A., Sauter, J.: Digital pheromones for coor-
dination of unmanned vehicles. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2004. LNCS (LNAI), vol. 3374. Springer, Heidelberg (2005)

74. Patel, J., Teacy, W.T.L., Jennings, N.R., Luck, M.: A probabilistic trust model
for handling inaccurate reputation sources. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 193–209. Springer, Heidelberg
(2005)

75. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut fuer Instru-
mentelle Mathematik, Bonn (1962)

126 C.-C. Chen, S.B. Nagl, and C.D. Clack

76. Philippides, A., Smith, T., Husbands, P., O’Shea, M.: Diffusible neuromodulation
in real and artificial neural networks. In: AI Symposium, Second International
Conference on Cybernetics, Applied Mathematics and Physics: CIMAF 1999. Ed-
itorial Academia (1999)

77. Picard, G., Gleizes, M.P.: Cooperative self-organisation to design robust and
adaptive collectives. In: Second International Conference on Informatics in Con-
trol, Automation and Robotics (ICINCO 2005), Barcelona, Spain, September 14–
17, pp. 236–241. INSTICC Press (2005)

78. Platon, E., Mamei, M., Sabouret, N., Honiden, S., Parunak, H.V.D.: Mechanisms
for environmenrts in multi-agent systems: Survey and applications. Auton. Agent
Multi-Agent Syst. 14, 31–47 (2007)

79. Ramchurn, S., Huynh, D., Jennings, N.R.: Trust in multiagent systems. The
Knowledge Engineering Review 19(1), 1–25 (2004)

80. Ramchurn, S.D., Jennings, N.R., Sierra, C., Godo, L.: Devising a trust model
for multi-agent interactions using confidence and reputation. Applied Artificial
Intelligence, pp. 833–852 (2004)

81. Randers, J.: Elements of the System Dynamics Method. MIT Press, Cambridge
(1980)

82. Ratnasamy, S., Karp, B.: Ght: A geographic hash table for data-centric storage.
In: Proceedings of the international workshop on wireless sensor networks and
applications, Atlanta. ACM Press, New York (2002)

83. Ronald, E., Sipper, M.: Design, observation, surprise! a test of emergence. Artifcial
Life 5, 225–239 (1999)

84. Rouff, C., Hinchey, M., Rash, J., Truszkowski, W., Gordon-Spears, D.: Formal
Methods and Agent-based Systems. Springer, Heidelberg (2006)

85. Ryan, A.: Emergence is coupled to scope, not level. Nonlinear Sciences (2007)
86. Sawyer, R.K.: Simulating emergence and downward causation in small groups.

In: Proceedings of the Second International Workshop on Multi-Agent Based
Simulation, pp. 49–67. Springer, Berlin (2001)

87. Di Marzo Serugendo, G., Gleizes, G., Glize, P.: Self-organisation and emergence
in multi-agent systems. The Knowledge Engineering Review 20, 165–189

88. Shalizi, C.: Causal Architecture, Complexity and Self-Organization in Time Series
and Cellular Automata. PhD thesis, University of Michigan (2001)

89. Shalizi, C.R., Crutchfield, J.P.: Computational mechanics - pattern and predic-
tion, structure and simplicity. Journal of Statictical Physics 104, 819–881 (2001)

90. Shalizi, C.R., Shalizi, K.L.: Optimal non-linear prediction of random fields on
networks. Discrete Mathematics and Theoretical Computer Science, 11–30 (2003)

91. Shalizi, C.R., Shalizi, K.L.: Blind construction of optimal nonlinear recursive pre-
dictors for discrete sequences. In: Chickering, M., Halpern, J.J. (eds.) Uncertainty
in Artificial Intelligence: Proceedings of the Twentieth Conference. AUAI Press
(2004)

92. Silberstein, M., McGeever, J.: The search for ontological emergence. The Philo-
sophical Quarterly 49(195), 201–214 (1999)

93. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Englewood Cliffs
(1989)

94. Sudeikat, J., Renz, W.: Toward requirements engineering for self-organising multi-
agent systems. In: Proceedings of the First IEEE International Conference on
self-adaptive and self-organising systems (SASO 2007), pp. 299–302 (2006)

95. Sudeikat, J., Renz, W.: Building complex adaptive systems: On engineering self-
organising multi-agent systems. In: Application of complex adaptive systems.
IDEA (2007)

Complexity and Emergence in Engineering Systems 127

96. Sudeikat, J., Renz, W.: Toward systemic mas development: Enforcing decen-
tralised self-organisation by composition and refinement of archetype dynam-
ics. In: Engineering Environment-Mediated Multiagent Systems (EEMAS 2007).
LNCS. Springer, Heidelberg (2007)

97. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: Relating
functional seggregation and integration in the nervous system. PNAS 91, 5033–
5037 (1994)

98. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proc. Lond. Math. Soc. 42, 230–265

99. Varela, F.: Principles of Biological Autonomy. Elsevier, New York (1979)
100. Vigano, F., Fornara, N., Colombetti, M.: An event driven approach to norms

in artificial institutions. In: Boissier, O., Padget, J., Dignum, V., Lindemann,
G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM
2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 142–154. Springer, Heidelberg
(2006)

101. Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fun-
damenta Informaticae 63(2–3), 125–158 (2004)

102. Weyns, D., Vizzari, G., Holvoet, T.: Environments for situated multi-agent sys-
tems: Beyond infrastructure. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2005. LNCS (LNAI), vol. 3830. Springer, Heidelberg (2006)

	Introduction and Chapter Outline
	Chapter Outline
	Introductory Concepts and Terminology

	Complexity, Emergence and Self-organisation
	Complexity Measures
	Self-organisation
	Emergence
	Summary and Analysis

	Theories of Emergence
	Formalising the Micro-macro Relationship
	Formalising the Design-Observation Discrepancy: Definitions of Emergence for Designed Multi-agent Systems
	Top-Down `Causation' and Emergent `Laws'
	Summary and Analysis

	Designing and Engineering Emergent Behaviours in Complex Decentralised Systems
	Design and Validation Methods
	Regulating Interactions
	Summary and Analysis

	Conclusions
	Resources and Suggested Readings
	Bibliography

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

