Object-Oriented Functional Spreadsheets

Chris Clack and Lee Braine*

Department of Computer Science, University College London,

Gower Street, London WCI1E 6BT, UK

Abstract. The spreadsheet is one of the most successful computer ap-
plications. This popularity derives from an intuitive user interface which
both closely mimics traditional bookkeeping and allows non-programmers
to develop simple numerical applications. Unfortunately, the current user
interface is frustrating and limiting: we believe that the computational
model can be simplified to improve usability for non-programmers, ez-
tended to provide additional functionality, redesigned to facilitate reuse
(to improve performance and integrity), and embedded in an environ-
ment which supports a spreadsheet inheritance hierarchy. We propose
a new spreadsheet paradigm which incorporates many functional pro-
gramming features such as higher-order functions, a strong type system,
curried partial applications, referential transparency and lazy evaluation.
It also incorporates many object-oriented programming features such as
a class hierarchy, inheritance, overloading, overriding, subsumption, and
dynamic despatch on a distinguished object.

1 Introduction

The spreadsheet is one of the most successful computer applications. This pop-
ularity derives from the intuitive user interface which both closely mimics tra-
ditional bookkeeping and allows non-programmers to develop simple numerical
programs. The user of a spreadsheet constructs a spreadsheet application, though
it is not normally appreciated by the user that this is a form of applications pro-
gramming. In fact, the success of the paradigm depends on the user’s ability to
construct applications without needing traditional programming skills.

Despite many advances in programming languages since the late 1970s, the
spreadsheet paradigm has changed little in this time. Although some advances
have been made (for example, working with multiple worksheets, defining name
bindings, making spreadsheets available as components, linking cells to other
components, and mouse-based range identification), the central computational
model remains unaltered.

Unfortunately, the current user interface can be frustrating because there are
many simple data-manipulation operations which can only be achieved through
the application of programming skills (for example, constructing formulae which
involve relative addressing, or writing spreadsheet macros). In particular, it is

* During the course of this work, Lee Braine was supported by an EPSRC research
studentship and a CASE award from Andersen Consulting.

difficult to manipulate sequences or sets of ranges. Furthermore, the lack of
simple mechanisms for re-use reduces performance (because formulae are typi-
cally copied many times), reduces integrity (because it is difficult to tell when
a formula has been overwritten with a value), and hinders the development of
spreadsheet applications (because it is difficult to develop new applications as
extensions of existing applications).

From the perspective of the advanced spreadsheet user, application develop-
ment is equally frustrating. Existing commercial spreadsheets such as Excel?
and Lotus 1-2-3TM are often criticized for the lack of proper abstraction mech-
anisms and for the shortcomings of their macro facilities] CR92, Lit90]. Further-
more, there is a limited type system and poor support for selection and iteration
(including recursion).

We believe that many benefits can be derived from radically updating the
spreadsheet computational model, whilst retaining the essence of the spreadsheet
user interface. It might be argued that complex applications require program-
ming skills and therefore a real programming language or a database system
enriched with an advanced query language should be used. However, this view
assumes that the limits of expressibility have already been reached as far as in-
experienced users are concerned. We take the opposite view — we believe that
the limits of expressibility have not yet been reached and that empowering inex-
perienced users is a worthwhile research aim. Indeed, the “first steps” outlined
in this paper indicate how expressibility can be improved.

Since there is clearly a good correspondence between the computational
model of the spreadsheet and that of a functional language (see Section 3), it
is a natural step to attempt to extend spreadsheet functionality to encompass
the features available from modern functional programming (FP): by incorpo-
rating FP features we aim to increase the simplicity, expressibility and power of
spreadsheet programming. With an underlying FP model of computation we are
also able to investigate new and more expressive user-interface operations such
as the manipulation of visual spreadsheet regions as both l-values and r-values
in formulae. This provides an alternative mechanism to relative addressing and
avoids multiple copies of formulae.

We observe that it is difficult to organise, structure and group spreadsheets
and therefore large-scale applications can be expensive and cumbersome to de-
velop. Furthermore, spreadsheets are difficult to extend, modify and reuse, and
large applications are correspondingly difficult to maintain. These issues could
be ameliorated if spreadsheets supported the key concepts from modern object-
oriented programming (OOP).

Both FP and OOP features can be utilised to provide a high degree of reuse,
which improves performance and visual integrity; it also facilitates the constuc-
tion of audit-trails, which is often important for the financial sector.

Our approach involves viewing a spreadsheet system as a programming en-
vironment and using (a variant of) our new object-oriented functional lan-
guage CLOVER [BC96, BC97a, BC97b, BC97c] to support the new compu-
tational model. A naive approach might be merely to replace CLOVER’s visual-

programming interface with a spreadsheet grid to support name bindings. How-
ever, spreadsheets must be “immediately reactive” in that all viewed cells have
their current values displayed: as soon as one cell is modified then all dependent
cells are re-evaluated — this is very different from the CLOVER edit-compile-
run sequence. Thus, object-oriented functional spreadsheets present a significant
challenge, not just in the combination of OOP and FP technology, but also in
the design of the semantics of this new paradigm so that it retains the essential
characteristics of spreadsheet programming.

In this paper we present the first steps in our design of a new spreadsheet
paradigm. We discuss the problems that must be overcome in order to achieve
this goal and present our design decisions for solving these problems.

2 Related Work

There is a large body of related work regarding the spreadsheet paradigm, though
very little is directly relevant to the incorporation of both FP and OOP features.
The closest pieces of related academic work are:

— FunSheet [DRV95] is a spreadsheet written in CLEAN. The expression lan-
guage is also functional and higher-order. An interesting approach is taken
in that columns are expressed as functions which are applied to a row index,
which (together with higher order functions) provides a better mechanism
for abstraction than that of relative addressing. However, FunSheet does not
include any OOP features.

— Simple [Sta93] is an enhanced declarative spreadsheet which provides a
constraint-based environment but does not address OOP issues;

— Davie and Hammond have investigated persistent hypersheets [DH96], but
do not address OOP issues;

— the Generalised Spreadsheet Model of Yoder and Cohn [YC94, YC95, YC97]
and the work of Wack [Wac95] are both discussed below.

Commercial products such as Excel™™ and Quattro Pro”™ provide support for
viewing spreadsheets as components, but this does not change the computational
model of the spreadsheet.

The integration of OOP and FP languages has received a lot of attention
(see [BCI6] for a survey of this related work), but most of these systems lose the
key feature of referential transparency and none consider the application of the
resulting technology to spreadsheets.

The use of declarative languages to implement spreadsheets has similarly
received considerable attention [DW88, Wra86, HW94]. However, this is not
directly relevant to our research since we are concerned with adding both FP
and OOP features to the spreadsheet computational model (rather than merely
using FP as an implementation vehicle).

Generalised Spreadsheet Model: Yoder and Cohn exploit implicit con-
currency of spreadsheet operations. In [YC95], they extend the spreadsheet

paradigm allowing a block of cells to be: (i) associated with a function that
takes parameters and returns a result, and (ii) recursively defined (i.e. a block
may contain other blocks). However, their approach is different to ours in that
they provide support for explicit inter-cell communication to facilitate concur-
rent evaluation of spreadsheet applications; furthermore, they allow blocks to
access any value that is a child or grandchild of the parent block, which does
not fit well with our framework. Their research is summarised in [YC97] with
the definition of a Generalised Spreadsheet Model.

Wack: Like Yoder & Cohn, Wack [Wac95] is primarily interested in the implicit
parallelism of spreadsheets. However, he adds several new features such as user-
controlled dimensionality, infinite definitions, the separation of data-driven and
demand-driven parts of the spreadsheet, and user-defined functions (by allowing
cells to be A-forms)

3 Design Issues

It has often been noted that the spreadsheet is a declarative system: a solu-
tion is specified using an equational style and there is no notion of control-flow.
However, it is not immediately clear how modern FP features such as polymor-
phism, higher-order functions and lazy evaluation could be incorporated into a
spreadsheet. Similarly, incorporating OOP features such as inheritance, classes
and methods would seem to be problematic. In this short section we list some of
the issues we have been forced to address at the design stage. The next section
explains how we have attempted to resolve these issues.

— Objects and Methods: What is the correspondence between the worksheets
and cells of a traditional spreadsheet and the objects and methods of OOP?
Should a worksheet be an object, a method or neither? Is a cell an object, a
method or neither?

— Inheritance: The unit of inheritance in OOP is the class, yet how can the
notion of a class be incorporated into the traditional spreadsheet paradigm?

— Type safety: If there is inheritance, subtyping and dynamic despatch then
how do we retain the referential transparency and type safety required by
FP? how can these FP and OOP features be combined?

— Parametric Polymorphism: The inclusion of parametric polymorphism im-
plies that parameters exist somewhere, but where? Where would such func-
tions be defined? Would the user be able to define his or her own functions
(methods)? Could these functions only be used in expressions inside a cell,
or could cells or worksheets themselves in some way be parameterised?

— Higher-order Functions: Would higher-order functions only be available for
use in the formulae within worksheet cells, or could worksheets themselves
in some way be higher-order?

— Lazy Evaluation: How can lazy evaluation and potentially-infinite data struc-
tures be reconciled with “immediate reactivity”? The latter requires a form

of data-driven (strict) rather than lazy evaluation, so how would the value
of an infinite data structure be displayed in a cell?

— Relative Addressing: Can FP provide a solution to the complexity of rel-
ative addressing modes? How can we provide the functionality of relative
addressing without the disadvantages of copying and complexity? How can
functionality and expressiveness be improved?

Perhaps the most daunting challenge is to find a simple unifying computational
model that is intuitive to users of traditional spreadsheets. We therefore adopt
an incremental approach; starting with a traditional spreadsheet system, we add
new features one at a time and ensure that these do not affect the essential
“look-and-feel” of the spreadsheet.

4 Evolving a New Spreadsheet Paradigm

4.1 Basic Technology

Syntax: We start by defining an abstract syntax for a simple idealized modern
spreadsheet application (known as a “workbook” in Excel). A workbook consists
of several worksheets; each worksheet consists of a grid of cells; each cell has
a label and contains an expression. We define all function application to be
prefix (to simplify the syntax) and assume that all cellLabels denote absolute
addresses (leaving relative addressing to further work). In the remainder of this
paper, we build on the following syntax definition as we add FP and OOP
features:

project :: workbook

workbook :: bookName namedef#* worksheet+
namedef :: IDENTIFIER ’=’ expression
bookName :: IDENTIFIER

worksheet :: sheetName grid

sheetllame :: IDENTIFIER

grid 11 rowt

row :: cell+

cell :: celllabel expression
celllLabel :: sheetlame rowlNum colName
rowllum :: INTEGER

colName :: IDENTIFIER

expression :: application | celllLabel | LITERAL | UNDEFINED
application :: OP arg*

arg :: range | expression

range :: cellLabel ’:’ celllabel

Interactivity and referential transparency: As noted above, a spreadsheet
specifies a collection of computations using an equational style (cells contain

either values or formulae) and there is no notion of control-flow. However, the
system is highly interactive, with recalculation of values occuring every time a
change is made to a cell. We find it helpful to view this sequence of modifica-
tions as a succession of static programs rather than as one continually-changing
program — this interpretation allows us to view every part of the system (cells,
worksheets and workbook) as being referentially transparent.

Evaluation: The interactive nature of spreadsheets results in a complex data-
driven system in which any node in the data-flow graph can be updated either to
modify the graph topology or to provide new data. The traditional data-driven
evaluation semantics are that every time a cell (a node) is updated, that cell
and all cells which depend on it (directly or indirectly) are re-evaluated. The
evaluation of a cell’s formula might cause it to access the value of another cell;
in this case it uses the most recently calculated value and does not cause further
(demand-driven) evaluation.

Problems often occur in traditional spreadsheets with cycles in the depen-
dency graph. Our system is no different; a cyclic dependency could lead to an
infinite loop. Just as with modern spreadsheets, we could detect some instances
of loops (or at least detect situations that are likely to be caused by a loop) and
issue some warning to the user.

4.2 Adding FP Features

In this subsection we progressively add several FP features to the basic spread-
sheet: parameterised worksheets, a polymorphic type system, recursion, higher-
order functions and curried partial applications. Lazy evaluation turns out to be
the most difficult FP feature to add, and we leave discussion of lazy evaluation
to further work at the end of the paper.

Parameterised worksheets: A workbook has been defined as a collection of
worksheets; we now allow one or more of these worksheets to take parameters
and to return a result. Thus, the spreadsheet application is split into two parts:
(i) simple worksheets that do not take parameters (and which provide a tradi-
tional non-reusable grid), and (ii) worksheets that take one or more parameters
and return a single result (which provide reusable “worksheet templates”).

A parameterised worksheet is thus a function definition. This is similar to
[YC95] where a block of cells may be associated with a function — however, our
mechanism differs because the code for the function is given by the spreadsheet
itself (whereas in [YC95] it is necessary to write separate code for the associ-
ated function). We believe that the grid format provides a useful structuring
mechanism for the function body, wherein cells may contain expressions with
references to the worksheet’s parameters.

Each parameterised worksheet is given a name and the result of the worksheet
is defined by the user to be an expression, which may be the value of one of the
worksheet cells (this is similar to [YC95] where the first cell of a block is defined to

be the block’s value). Note that (i) the expression may return a data-structure
containing the values from many cells in the worksheet, and (ii) the value(s)
returned are determined by the worksheet (callee) rather than by the caller of
the worksheet, which improves encapsulation.

The changes required to the spreadsheet syntax are as follows (the rest of
the syntax remains unchanged):

simpleworksheet :: sheetlName grid

worksheet :: sheetName parameter+ result grid
parameter :: IDENTIFIER

result :: expression

application :: OP arg* | sheetName arg+

A polymorphic type system: Traditional spreadsheets are restricted to a few
base types such as number, string, bool and location (i.e. a cell label). We extend
this to include the base types int, real, nat, string, bool, and new aggregate types
of tuple and list. Note that cell location identifiers (such as “B3”) which appear
in formulae have the type of the cell to which they refer.

Each type supports a collection of primitive operations (including a show
operator that is silently applied to the result of every cell). At this stage we
assume that lists are finite.

Parameterised worksheets have function type and we extend the type system
to include parametric polymorphism. We provide polymorphism through the use
of a type variable which can range over all types. Abstract data types are left to
a later section in which we develop an object-oriented type system that identifies
classes with types and allows user-defined classes.

We define a type syntax and enforce type declaration for worksheets and cells
as follows:

type :: ’int’ | ’real’ | ’nat’ | ’string’ | ’bool’
| ’tuple’ typet | ’list’ type
| typeVariable | type ’->’ type

typeVariable :: TYPE_IDENTIFIER
worksheet :: sheetlName parameter+ result type grid
cell :: cellLabel type expression
expression :: application | cellLabel | LITERAL
| °(’ expression item* ’)°
| [0’ | °[’ expression item* ’]’
| UNDEFINED
item :: ?,’ expression

Recursion: Worksheets are allowed to make recursive reference to themselves.
However, the data-driven evaluation semantics of a spreadsheet require the safe-
guard that recursive definitions always terminate.

We choose to restrict our system (through syntactic constraints) to primi-
tive recursion that is guaranteed to terminate. This restricts the computational

power of the system, yet in the next section we add higher-order functions and
this combination of primitive recursion plus higher-order functions provides a
system of adequate computational power (see [Tur95]). The syntactic constraint
we apply is that each recursive function must have a consiructed type as its pa-
rameter of recursion, the function must not recurse when the base case of the
constructed type is detected, and each recursive call must be on a syntactic sub-
component of its parameter of recursion. In this, we follow the lead of [Tur95].

Higher-order functions: In order to ensure that primitive recursion does not
restrict us to a small set of computable programs, we extend our spreadsheet sys-
tem so that it is legal to pass values of function type (i.e. names of parameterised
worksheets or built-in operators, and partial applications as defined in the next
section). Similarly, values of function type can be stored in cells and returned
as the result of a worksheet. These are incorporated by supporting bracketed
function types and expressions which can be worksheet names:

type tro... | 20 type ’->? type ’)?

expression :: ... | sheetName

Curried partial applications: We have already defined our syntax to allow
worksheets and built-in operations to be applied to multiple arguments in Cur-
ried form: we now extend the semantics to allow partial application.

A cell may now produce a partial application (of function type) and may
contain a value that is the name of a parameterised worksheet or of a built-in
operation, but note that we do not introduce generalised function abstraction
and so cells cannot be A-forms (see [BC96] for explanation).

We modify the syntax to support curried partial application by allowing any
expression to be applied in function position (all the other required changes are
in the semantics, which we do not present in this paper).

4.3 Adding OOP Functionality

We add OOP functionality to the above system in a similar way (and using
similar design decisions) as we added OOP to FP to produce the CLOVER
language [BC96]. We will not repeat the arguments of [BC96] here, but merely
observe that it is possible to reconcile FP with the key aspects of OOP except
for the issue of object identity, which in CLOVER must have copy-semantics
rather than having mutable internal state.

For our object-oriented functional spreadsheet system we extend the user
interface with a Smalltalk-like environment with browsers for the workbook
hierarchy, attribute declarations and worksheet declarations, plus a worksheet
editor providing a standard spreadsheet “look-and-feel” (see Figure 1).

The new syntax for our object-oriented functional spreadsheet system is
presented below:

project :: simpleworksheet* namedef#* workbook

simpleworksheet :: sheetName grid

namedef :: IDENTIFIER ’=’ expression
workbook :: bookDefn workbook#*

bookDefn :: bookllame attribute* worksheet+
attribute :: IDENTIFIER type

bookName :: IDENTIFIER

worksheet :: sheetName parameter+ result type grid
sheetName :: IDENTIFIER

parameter :: IDENTIFIER

result :: expression

grid 11 rowt

row 11 cell+

cell :: celllLabel type expression
celllLabel :: sheetName rowNum collName
rowlum :: INTEGER

colName :: IDENTIFIER

expression :: application | celllLabel | sheetName | UNDEFINED
application :: eXpression arg+

arg :: range | expression

range :: cellLabel ’:’ celllabel

type :: typeVariable

| type ’->’ type | *(° type ’->’ type ’)°
| bookName type*
typeVariable :: TYPE_IDENTIFIER

We define a class to be a collection of parameterised worksheets which share some
common attributes. An object is th reification of a class: that is, an instance of
a class where the attributes have been given concrete values. This approach
contrasts with [YC95] where a single block of cells (i.e. a single worksheet) is
identified as an object.

A parameterised worksheet now corresponds to a method and what was pre-
viously a namedef is now an attribute with a defined type and scope that is
local to the class (now called the “workbook”). All parameterised worksheets
must take at least one argument which is the distinguished object (DO). When
a worksheet name is applied, the DO determines dynamically in which workbook
the actual worksheet can be found (the same worksheet name can be used in
many different workbooks). Within a worksheet, arguments may be referred to
as argl, arg? etc., with the the last argument (which is defined to be the DO)
always referred to as self.

Unparameterised worksheets do not fit well within a class structure (they do
not have a DO) and so they are lifted to the top level — to use OOP terminology,
they may be thought of as a collection of “invocations”.

Object-Oriented Functional Spreads heet Prototype

File Edit Compile

PROJECT: bankSystem

WORKBOOKS ATTRIBUTES WORKSHEETS
Object = |AccountMurmber Integer |openAccount: Integer —>
Balance @ Maoney Y
Boolean FirstMame :; String withdraw ;@ Money —> Accc
Character LastMame & String
Collection Title :: String
List DateOfBirth Date
Tuple
Union
Day i =< p— =

deposit i Money —> Account

count: putBalance A2

o] co] ~f] el B eo o[=[2

A | B [c] [E
Ti=g] Unsigned Java Applet Mindow

Fig. 1. Prototype spreadsheet environment

We also provide top-level bindings with global scope. Since a workbook is a
class, it defines a new type and our type syntax is extended to allow reference
to workbook names as types. To support container classes (e.g. a tree of int, list
of char), we allow workbook names to take zero or more type parameters.

We define a class hierarchy with inheritance to structure spreadsheet appli-
cations, organise workbooks and promote reuse. This is achieved syntactically
by defining a project to be a hierarchy of workbooks, each with its own defi-
nition and zero or more sub-workbooks. A newly-defined class can override the
definitions of inherited worksheets (as long as the type does not change) and can
provide multiple overloadedings for newly-defined worksheets (as long as each is
uniquely distinguishable according to its type). The class hierarchy is initialised
with definitions of classes for each of the built-in types: this simplifies our type
syntax since every type is either a class or a function type. An object is the
reification of a class; values are given to the class attributes upon instantiation.

Parameterised worksheets are dynamically despatched according to their DO.
The class hierarchy also provides a subtype relation, with subsumption occuring
during the application of a parameterised worksheet to its arguments.

Objects are instantiated in worksheet cells by applying the class constructor
(there must be at least one for each class) to the arguments. Every class must
have a show method which produces a displayable representation of its internal
state. The default show method (defined in the class at the root of the class
hierarchy) returns a default message: the show method for an object of class int

returns the value of the integer which is stored in an internal attribute.

5 Relative Addressing and Regions

Traditional spreadsheets use both absolute and relative addressing inside cell
formulae to reference the values held in other cells. Relative addresses are in-
terpreted as (row and column) offsets from the current cell; the assumption is
that a single formula can be copied into one or more other cells and the relative
addresses will in each case be offsets from the cell that contains a copy of the
formula.

We hold that the use of relative addressing and the copying of formulae
is undesirable because (i) it does not support abstraction (attention remains
focussed at the level of the cell rather than at the structure of the numerical
model), (ii) it does not support reuse (if a change must be made to the formula
then new copies must be created all over again), (iii) it is extremely difficult to
detect whether one of the formulae has been overwritten with a basic value, and
(1) it is an unnecessary waste of memory to store the many copies.

Furthermore, [Hen95] notes that there are many desirable operations on
spreadsheets that are easy to specify but difficult to program (and are beyond
the grasp of the inexperienced user). These tend to be high-level operations that
work on the structure of the data; there are no compensatory features to facili-
tate such high-level operations and so much of the functionality of spreadsheets
is denied to the inexperienced user (and made difficult for the experienced user).
Thus, one of the most important aims of our work on updating the computa-
tional model of the spreadsheet is to replace the concept of relative addressing
and formula copying with something more suitable.

We are currently investigating a new syntax for expressing regions of cells.
We believe that the use of higher-order functions over regions can reduce much
of the complexity inherent in current relative addressing. We start by defining
regions in a very similar way to traditional spreadsheet ranges - that is, two cell
addresses separated by a colon. If the two addresses are on the same row (or
column), this is interpreted as a list of cells (one-dimensional): if they are on
different rows and columns then this is interpreted as a (row-major) list of lists
of cells (two-dimensional):

[A1:A5] is @ 1-D wvertical list of five cells
[A1:G1] is @ 1-D horizontal list of seven cells
[A1:C3] is @ 2-D list of lists containing nine cells

What makes regions different from ranges is that regions can be used as l-values
as well as r-values. To make a specific comparison, in many current spreadsheets
it is possible to define a formula in one cell and then arrange for all of the cells
in a range to receive a separate copy of the formula (with relative addresses
mapped appropriately): by contrast, in our system all of the cells in a region
can have their values defined by a single function. In the former, each cell is a

separate l-value for each separate copy of the function, whereas in the latter the
entire region is the l-value for a single function.

This requires no extra modification to the user interface for a single cell;
indeed, operations on a single cell appear unchanged. However, a new mechanism
is added so that the user can bind a formula to a region of cells. Note that the
type and “shape” of the right-hand-side of the definition must match the type
and “shape” of the left-hand-side. Thus, defining a formula for the region [A1:A5]
will require an expression on the right-hand-side that returns a list of five values
(which will then be mapped one-to-one onto the cell locations contained in the
region on the left-hand-side). This simple measure of using regions as l-values
eliminates formula copying and eliminates the need for relative addressing. 2

By providing higher-order functions which work on lists, it is now possible
to express succinctly relationships of medium complexity:

[A1:A5]
[A1:G1]

map (*2) [B1:B5]
repeat 7 (sum (map (*3) [A41:49]1))

The real power with regions is achieved by providing a compact syntax for se-
quences of regions, in a similar way to Miranda’s 2 list-comprehensions. We pro-
pose a new feature called region-comprehensions which draw their motivation
from [Hen95] and which also bear some relationship to Scholz’s “WITH-loops”
[SCHY97] (which provide a variant of ZF-expressions over arrays). This feature
is at a very early stage of development, so for the purposes of this paper we
merely provide the following examples (which may be used either as l-values or
r-values):

[[A1:D1], [E1:H1] .. [Q1:T1]]
is a collection of 1-D regions all on the same row

[[A1:D1], [C1:F1] .. [I1:L1]]
is a collection of overlapping 1-D regions all on the same row

[[A2:c4]1, [B3:D5] .. [D5:F7]]
is a collection of overlapping 2-D regions

In the above expressions a sequence of regions is defined by example. There are
two base regions and a terminating region. Given two base regions [a;m,:a;m;]
and [bjn;:b;n;] four offsets are calculated as (o, 0%, 0% 0%) = (b; —ai, ni—m, bj—
Gj, vy — m]-).

The region comprehension is interpreted as a sequence of regions where the
next region in the sequence is determined by applying the offsets to the previous
region, so that for a previous region [An : Bm] the next region in the sequence
would be [(A + o)(n + 0?) : (B + 03)(m + o*)]. The sequence terminates when
the final region is encountered.

%2 Of course, cell addresses (both I-values and r-values) will have to be recomputed
when a row or column is added or deleted.
3 Miranda is a trademark of Research Software Limited

Clearly, the above region comprehensions are very simple. We are currently

investigating the extension of region comprehensions to incorporate generators,
filters and recurrence relations as found in list comprehensions. The further
development of regions and region-comprehensions is a key area for future work.

5.1 Examples

The following two examples demonstrate the use of a higher-order function to-
gether with region comprehensions.

Quarterly and Annual Profits:

(o2 T 2 B NN GV (& I

1993 1994 1995 1996

QL Q2 Q3 Q4 QL Q2 Q3 Q4 QL Q2 Q3 Q4 QL Q2 Q3 Q4
3 12 12 4 7 15 28 12 15 39 30 15 10 10 10 10

’93 94 95 96
31 62 99 40

The data in row 3 of the above worksheet represents quarterly profit figures for a
company. This row can be viewed as a sequence of non-overlapping 1-D regions
[A3:D3], [E3:H3] etc. The data in row 6 represents the annual profit figures:
traditionally, this would be achieved by constructing a formula in cell A6 and
then copying that formula to the cells B6, C6 and D6 using a mouse select and
a paste command. However, we note the following:

1. The formula is not simple. For example, an obvious mistake is to use the

formula sum(A3:D3) and copy this to the other calles. However, the relative
addressing translation would cause B6 to be set to the formula sum(B3:E3)
(which is incorrect). The required formula (here, in Excel) requires an appre-
ciation of both absolute and relative addressing which is probably beyond
the capability of inexperienced users:
SUM(OFFSET(A3,0,4% (COLUMN (A3)-1),1,4))

. If a change must be made to the formula, the copy-select-paste procedure

must be repeated;

. It is very difficult to detect whether one of the cells in row 6 has been

inadvertently or deliberately replaced with a value instead of a copy of the
formula.

By contrast, in our example row 6 has been derived through the use of a single
formula with no copying. Furthermore, our formula is simpler (noting that each
region is selected with the mouse):

[A6:D6] = map sum [[A3:D3], [E3:H3] .. [M3:P3]]

Changing the spreadsheet so that the annual sums are held in a vertical (rather
than horizontal) region of cells is also easier with region comprehensions:

[A6:A9] = map sum [[A3:D3], [E3:H3] .. [M3:P3]]

SUM(OFFSET($4$3,0,4*(ROW(A6)-ROW(A6)),1,4))

Two-Dimensional Moving Sum: The numbers in the following spreadsheet
provide the underlying data which must be analysed. The required analysis is
to generate a two-dimensional moving sum across the leading diagonal. That is,
we require the sum of the nine values in the region [A1:C3] followed by the sum
of the nine values in the region [B2:D4] and so on. Note that these regions are
overlapping. The sums are presented in the final row: this is again difficult to
achieve in traditional spreadsheets (relative addressing would make it easy to
print the sums in a diagonal line of cells starting at A10 and ending at F15, but
to print the sums all on one row requires programming skill). Here is the Excel
solution:

SUM(OFFSET(A1,COLUMN(A1)-1,COLUMN(A1)-1,3,3))

If we allow the built-in primitive sum to be overloaded so that it sums a list of
lists of numbers as well as a list of numbers, then our solution is much simpler:

[A10:F10] = map sum [[A1:C3], [B2:D4] .. [F6:H8]]

1] 3 4 7 13 10 3 1 23
2] 7 13 10 3 1 23 89 24
3132 7 19 13 10 3 1 28
4] 1 3 7 23 33 2 9 91
5] 5 2 5 93 37 8 8 43
61 9 9 5 36 43 1 3 93
71 2 9 1 8 56 9 2 21
81 2 3 9 47 34 2 9 53
9 |

10/102 98 241 277 167 193

6 Project Status and Further Work

The design presented in this paper has resulted from our work in the area
of object-oriented functional programming (OOFP). The notion of an object-
oriented functional spreadsheet is both interesting in its own right and is used
as a driving application for the development of our OOFP language, CLOVER
[BC96]. We are currently implementing a prototype of this design and are col-
laborating with the University of St.Andrews to take these ideas further. We
identify three areas in particular for further work:

Semantics: At present we have an informal semantics and our most pressing
“next step” is to define formally the semantics of our new computational model.

Regions and Region Comprehensions: Our region comprehensions are cur-
rently very simple, but they provide a substantial improvement over relative
addressing and formula-copying. We need to express formally the semantics of
both regions and region-comprehensions, as well as investigating non-contiguous
regions, more powerful comprehensions, and other operations on regions.

Demand-driven evaluation semantics: The inclusion of lazy evaluation into
the spreadsheet system is rather problematic because of the unusual evaluation
and display requirements (every cell’s value is visible and may be recalculated
as soon as any change is made). Although the ability to manipulate potentially-
infinite data will bring improved expressiveness, such values cannot be displayed
and the data-driven evaluation would seem to destroy any hope for laziness.

7 Summary and Conclusion

The central computational model of the spreadsheet paradigm has changed little
during the past 20 years. We have identified some of the benefits that could be
derived from incorporating modern FP and OOP features into this model. We
discussed some key issues of such an integration and then presented our initial
steps towards a novel spreadsheet design with the addition of FP and OOP
features, together with the use of regions and region comprehensions to obviate
the need for relative addressing.

References

[BC96] L. Braine and C. Clack. Introducing CLOVER: an Object-Oriented
Functional Language. In W. Kluge, editor, Implementation of Func-
tional Languages, 8th International Workshop (IFL’96), Selected Pa-
pers, LNCS 1268, 1-20, Springer-Verlag, 1996.

[BC97a] L. Braine and C. Clack. An Object-Oriented Functional Approach to In-
formation Systems Engineering. In Proceedings CAiSE’97 4th Doctoral
Consortium on Advanced Information Systems Engineering, 1997.

[BCITh] L. Braine and C. Clack. Object-Flow. In Proceedings 13th IEEE Sym-
posium on Visual Languages (VL’97), 418-419, 1997.
[BC97c] L. Braine and C. Clack. The CLOVER Rewrite Rules: A Translation

from OOFP to FP. In Proceedings 9th International Workshop on Im-
plementation of Functional Languages (IFL’97), 467-488, 1997.

[CR92] Casimir and Rommert. Real Programmers Don’t Use Spreadsheets.
ACM SIGPLAN Notices 27(6), 10-16, 1992.
[DH96] A. Davie and K. Hammond. Functional Hypersheets. In Proceedings 8th

International Workshop on Implementation of Functional Languages
(IFL’96), 39-48, 1996.

[DRV95] W. De Hoon, L. Rutten, and M. Van Eekelen. Implementing a Func-
tional Spreadsheet in Clean. Journal of Functional Programming,
5(3):383-414, 1995.

[DW8S]

[HW94]

[Hen95]

[Lit90]

[SCH97]

[Sta93]

[Tur95]

[Wac95]

[Wra86]

[YC94]

[YC95]

[YC97]

W. Du and W. Wadge. An intensional language as the basis of a 3D
spreadsheet design. In Proceedings IEEE International Conference on
Computer Languages 1988 (ICCL’88), 2-9, 1988.

B.Harvey and M.Wright. Simply Scheme: Introducing Computer Sci-
ence. MIT Press, 1994.

D. Hendry. Display-Based Problems in Spreadsheets: A Critical Inci-
dent and a Design Remedy. In Proceedings 11th International IEEE
Symposium on Visual Languages (VL’95), 284-290, 1995.

C. Litecky. Spreadsheet Macro Programming: a Critique with Emphasis
on Lotus 1-2-3. Journal of Systems and Software, 13(3), 197-200, 1990.
S. Scholz. With-loop Folding in Sac-Condensing Consecutive Array Op-
erations. In Proceedings Implementation of Functional Languages Work-
shop IFL’97, 225-242, 1997.

M. Stadelmann. A Spreadsheet based on Constraints. In Proceedings
6th Symposium on User Interface Software and Technology (UIST’93),
217-224, 1993.

D. Turner. Elementary Strong Functional Programming. In P. Hartel
and M. Plasmeijer, editors, Proceedings First International Symposium
on Functional Programming Languages in Education (FPLE’95), LNCS
1022, 1-13, Springer-Verlag, 1995.

A. Wack. Partitioning Dependency Graphs for Concurrent Execution:
A Parallel Spreadsheet on a Realistically Modelled Message Passing
Environment. PhD Thesis, Department of Computer and Information
Sciences, University of Delaware, 1995.

S. Wray. Implementation and Programming Techniques for Functional
Languages. Phd Thesis, University of Cambridge, 1986.

A. Yoder and D. Cohn. Real Spreadsheets for Real Programmers. In
Proceedings IEEE International Conference on Computer Languages
1994 (ICCL’94), 1994.

A. Yoder and D. Cohn. A Framework for Complete Spreadsheet Lan-
guages. Technical Report, Distributed Computing Research Lab, Uni-
versity of Notre Dame, Indiana, USA, 1995.

A. Yoder and D. Cohn. Domain-Specific and General-Purpose As-
pects of Spreadsheet Languages. In Proceedings Workshop on Domain-
Specific Languages, 1997.

This article was processed using the ITEX macro package with LLNCS style

