
Object-Oriented Functional SpreadsheetsChris Clack and Lee Braine?Department of Computer Science, University College London,Gower Street, London WC1E 6BT, UKAbstract. The spreadsheet is one of the most successful computer ap-plications. This popularity derives from an intuitive user interface whichboth closely mimics traditional bookkeeping and allows non-programmersto develop simple numerical applications. Unfortunately, the current userinterface is frustrating and limiting: we believe that the computationalmodel can be simpli�ed to improve usability for non-programmers, ex-tended to provide additional functionality, redesigned to facilitate reuse(to improve performance and integrity), and embedded in an environ-ment which supports a spreadsheet inheritance hierarchy. We proposea new spreadsheet paradigm which incorporates many functional pro-gramming features such as higher-order functions, a strong type system,curried partial applications, referential transparency and lazy evaluation.It also incorporates many object-oriented programming features such asa class hierarchy, inheritance, overloading, overriding, subsumption, anddynamic despatch on a distinguished object.1 IntroductionThe spreadsheet is one of the most successful computer applications. This pop-ularity derives from the intuitive user interface which both closely mimics tra-ditional bookkeeping and allows non-programmers to develop simple numericalprograms. The user of a spreadsheet constructs a spreadsheet application, thoughit is not normally appreciated by the user that this is a form of applications pro-gramming. In fact, the success of the paradigm depends on the user's ability toconstruct applications without needing traditional programming skills.Despite many advances in programming languages since the late 1970s, thespreadsheet paradigm has changed little in this time. Although some advanceshave been made (for example, working with multiple worksheets, de�ning namebindings, making spreadsheets available as components, linking cells to othercomponents, and mouse-based range identi�cation), the central computationalmodel remains unaltered.Unfortunately, the current user interface can be frustrating because there aremany simple data-manipulation operations which can only be achieved throughthe application of programming skills (for example, constructing formulae whichinvolve relative addressing, or writing spreadsheet macros). In particular, it is? During the course of this work, Lee Braine was supported by an EPSRC researchstudentship and a CASE award from Andersen Consulting.

di�cult to manipulate sequences or sets of ranges. Furthermore, the lack ofsimple mechanisms for re-use reduces performance (because formulae are typi-cally copied many times), reduces integrity (because it is di�cult to tell whena formula has been overwritten with a value), and hinders the development ofspreadsheet applications (because it is di�cult to develop new applications asextensions of existing applications).From the perspective of the advanced spreadsheet user, application develop-ment is equally frustrating. Existing commercial spreadsheets such as ExcelTMand Lotus 1-2-3TM are often criticized for the lack of proper abstraction mech-anisms and for the shortcomings of their macro facilities[CR92, Lit90]. Further-more, there is a limited type system and poor support for selection and iteration(including recursion).We believe that many bene�ts can be derived from radically updating thespreadsheet computationalmodel, whilst retaining the essence of the spreadsheetuser interface. It might be argued that complex applications require program-ming skills and therefore a real programming language or a database systemenriched with an advanced query language should be used. However, this viewassumes that the limits of expressibility have already been reached as far as in-experienced users are concerned. We take the opposite view | we believe thatthe limits of expressibility have not yet been reached and that empowering inex-perienced users is a worthwhile research aim. Indeed, the \�rst steps" outlinedin this paper indicate how expressibility can be improved.Since there is clearly a good correspondence between the computationalmodel of the spreadsheet and that of a functional language (see Section 3), itis a natural step to attempt to extend spreadsheet functionality to encompassthe features available from modern functional programming (FP): by incorpo-rating FP features we aim to increase the simplicity, expressibility and power ofspreadsheet programming.With an underlying FP model of computation we arealso able to investigate new and more expressive user-interface operations suchas the manipulation of visual spreadsheet regions as both l-values and r-valuesin formulae. This provides an alternative mechanism to relative addressing andavoids multiple copies of formulae.We observe that it is di�cult to organise, structure and group spreadsheetsand therefore large-scale applications can be expensive and cumbersome to de-velop. Furthermore, spreadsheets are di�cult to extend, modify and reuse, andlarge applications are correspondingly di�cult to maintain. These issues couldbe ameliorated if spreadsheets supported the key concepts from modern object-oriented programming (OOP).Both FP and OOP features can be utilised to provide a high degree of reuse,which improves performance and visual integrity; it also facilitates the constuc-tion of audit-trails, which is often important for the �nancial sector.Our approach involves viewing a spreadsheet system as a programming en-vironment and using (a variant of) our new object-oriented functional lan-guage CLOVER [BC96, BC97a, BC97b, BC97c] to support the new compu-tational model. A na��ve approach might be merely to replace CLOVER's visual-

programming interface with a spreadsheet grid to support name bindings. How-ever, spreadsheets must be \immediately reactive" in that all viewed cells havetheir current values displayed: as soon as one cell is modi�ed then all dependentcells are re-evaluated | this is very di�erent from the CLOVER edit-compile-run sequence. Thus, object-oriented functional spreadsheets present a signi�cantchallenge, not just in the combination of OOP and FP technology, but also inthe design of the semantics of this new paradigm so that it retains the essentialcharacteristics of spreadsheet programming.In this paper we present the �rst steps in our design of a new spreadsheetparadigm. We discuss the problems that must be overcome in order to achievethis goal and present our design decisions for solving these problems.2 Related WorkThere is a large body of related work regarding the spreadsheet paradigm, thoughvery little is directly relevant to the incorporation of both FP and OOP features.The closest pieces of related academic work are:{ FunSheet [DRV95] is a spreadsheet written in CLEAN. The expression lan-guage is also functional and higher-order. An interesting approach is takenin that columns are expressed as functions which are applied to a row index,which (together with higher order functions) provides a better mechanismfor abstraction than that of relative addressing. However, FunSheet does notinclude any OOP features.{ Simple [Sta93] is an enhanced declarative spreadsheet which provides aconstraint-based environment but does not address OOP issues;{ Davie and Hammond have investigated persistent hypersheets [DH96], butdo not address OOP issues;{ the Generalised Spreadsheet Model of Yoder and Cohn [YC94, YC95, YC97]and the work of Wack [Wac95] are both discussed below.Commercial products such as ExcelTM and Quattro ProTM provide support forviewing spreadsheets as components, but this does not change the computationalmodel of the spreadsheet.The integration of OOP and FP languages has received a lot of attention(see [BC96] for a survey of this related work), but most of these systems lose thekey feature of referential transparency and none consider the application of theresulting technology to spreadsheets.The use of declarative languages to implement spreadsheets has similarlyreceived considerable attention [DW88, Wra86, HW94]. However, this is notdirectly relevant to our research since we are concerned with adding both FPand OOP features to the spreadsheet computational model (rather than merelyusing FP as an implementation vehicle).Generalised Spreadsheet Model: Yoder and Cohn exploit implicit con-currency of spreadsheet operations. In [YC95], they extend the spreadsheet

paradigm allowing a block of cells to be: (i) associated with a function thattakes parameters and returns a result, and (ii) recursively de�ned (i.e. a blockmay contain other blocks). However, their approach is di�erent to ours in thatthey provide support for explicit inter-cell communication to facilitate concur-rent evaluation of spreadsheet applications; furthermore, they allow blocks toaccess any value that is a child or grandchild of the parent block, which doesnot �t well with our framework. Their research is summarised in [YC97] withthe de�nition of a Generalised Spreadsheet Model.Wack: Like Yoder & Cohn, Wack [Wac95] is primarily interested in the implicitparallelism of spreadsheets. However, he adds several new features such as user-controlled dimensionality, in�nite de�nitions, the separation of data-driven anddemand-driven parts of the spreadsheet, and user-de�ned functions (by allowingcells to be �-forms)3 Design IssuesIt has often been noted that the spreadsheet is a declarative system: a solu-tion is speci�ed using an equational style and there is no notion of control-
ow.However, it is not immediately clear how modern FP features such as polymor-phism, higher-order functions and lazy evaluation could be incorporated into aspreadsheet. Similarly, incorporating OOP features such as inheritance, classesand methods would seem to be problematic. In this short section we list some ofthe issues we have been forced to address at the design stage. The next sectionexplains how we have attempted to resolve these issues.{ Objects and Methods: What is the correspondence between the worksheetsand cells of a traditional spreadsheet and the objects and methods of OOP?Should a worksheet be an object, a method or neither? Is a cell an object, amethod or neither?{ Inheritance: The unit of inheritance in OOP is the class, yet how can thenotion of a class be incorporated into the traditional spreadsheet paradigm?{ Type safety: If there is inheritance, subtyping and dynamic despatch thenhow do we retain the referential transparency and type safety required byFP? how can these FP and OOP features be combined?{ Parametric Polymorphism: The inclusion of parametric polymorphism im-plies that parameters exist somewhere, but where? Where would such func-tions be de�ned? Would the user be able to de�ne his or her own functions(methods)? Could these functions only be used in expressions inside a cell,or could cells or worksheets themselves in some way be parameterised?{ Higher-order Functions: Would higher-order functions only be available foruse in the formulae within worksheet cells, or could worksheets themselvesin some way be higher-order?{ Lazy Evaluation: How can lazy evaluation and potentially-in�nite data struc-tures be reconciled with \immediate reactivity"? The latter requires a form

of data-driven (strict) rather than lazy evaluation, so how would the valueof an in�nite data structure be displayed in a cell?{ Relative Addressing: Can FP provide a solution to the complexity of rel-ative addressing modes? How can we provide the functionality of relativeaddressing without the disadvantages of copying and complexity? How canfunctionality and expressiveness be improved?Perhaps the most daunting challenge is to �nd a simple unifying computationalmodel that is intuitive to users of traditional spreadsheets. We therefore adoptan incremental approach; starting with a traditional spreadsheet system, we addnew features one at a time and ensure that these do not a�ect the essential\look-and-feel" of the spreadsheet.4 Evolving a New Spreadsheet Paradigm4.1 Basic TechnologySyntax: We start by de�ning an abstract syntax for a simple idealized modernspreadsheet application (known as a \workbook" in Excel). A workbook consistsof several worksheets; each worksheet consists of a grid of cells; each cell hasa label and contains an expression. We de�ne all function application to bepre�x (to simplify the syntax) and assume that all cellLabels denote absoluteaddresses (leaving relative addressing to further work). In the remainder of thispaper, we build on the following syntax de�nition as we add FP and OOPfeatures:project :: workbookworkbook :: bookName namedef* worksheet+namedef :: IDENTIFIER '=' expressionbookName :: IDENTIFIERworksheet :: sheetName gridsheetName :: IDENTIFIERgrid :: row+row :: cell+cell :: cellLabel expressioncellLabel :: sheetName rowNum colNamerowNum :: INTEGERcolName :: IDENTIFIERexpression :: application | cellLabel | LITERAL | UNDEFINEDapplication :: OP arg*arg :: range | expressionrange :: cellLabel ':' cellLabelInteractivity and referential transparency: As noted above, a spreadsheetspeci�es a collection of computations using an equational style (cells contain

either values or formulae) and there is no notion of control-
ow. However, thesystem is highly interactive, with recalculation of values occuring every time achange is made to a cell. We �nd it helpful to view this sequence of modi�ca-tions as a succession of static programs rather than as one continually-changingprogram | this interpretation allows us to view every part of the system (cells,worksheets and workbook) as being referentially transparent.Evaluation: The interactive nature of spreadsheets results in a complex data-driven system in which any node in the data-
ow graph can be updated either tomodify the graph topology or to provide new data. The traditional data-drivenevaluation semantics are that every time a cell (a node) is updated, that celland all cells which depend on it (directly or indirectly) are re-evaluated. Theevaluation of a cell's formula might cause it to access the value of another cell;in this case it uses the most recently calculated value and does not cause further(demand-driven) evaluation.Problems often occur in traditional spreadsheets with cycles in the depen-dency graph. Our system is no di�erent; a cyclic dependency could lead to anin�nite loop. Just as with modern spreadsheets, we could detect some instancesof loops (or at least detect situations that are likely to be caused by a loop) andissue some warning to the user.4.2 Adding FP FeaturesIn this subsection we progressively add several FP features to the basic spread-sheet: parameterised worksheets, a polymorphic type system, recursion, higher-order functions and curried partial applications. Lazy evaluation turns out to bethe most di�cult FP feature to add, and we leave discussion of lazy evaluationto further work at the end of the paper.Parameterised worksheets: A workbook has been de�ned as a collection ofworksheets; we now allow one or more of these worksheets to take parametersand to return a result. Thus, the spreadsheet application is split into two parts:(i) simple worksheets that do not take parameters (and which provide a tradi-tional non-reusable grid), and (ii) worksheets that take one or more parametersand return a single result (which provide reusable \worksheet templates").A parameterised worksheet is thus a function de�nition. This is similar to[YC95] where a block of cells may be associated with a function | however, ourmechanism di�ers because the code for the function is given by the spreadsheetitself (whereas in [YC95] it is necessary to write separate code for the associ-ated function). We believe that the grid format provides a useful structuringmechanism for the function body, wherein cells may contain expressions withreferences to the worksheet's parameters.Each parameterised worksheet is given a name and the result of the worksheetis de�ned by the user to be an expression, which may be the value of one of theworksheet cells (this is similar to [YC95] where the �rst cell of a block is de�ned to

be the block's value). Note that (i) the expression may return a data-structurecontaining the values from many cells in the worksheet, and (ii) the value(s)returned are determined by the worksheet (callee) rather than by the caller ofthe worksheet, which improves encapsulation.The changes required to the spreadsheet syntax are as follows (the rest ofthe syntax remains unchanged):simpleworksheet :: sheetName gridworksheet :: sheetName parameter+ result gridparameter :: IDENTIFIERresult :: expressionapplication :: OP arg* | sheetName arg+A polymorphic type system: Traditional spreadsheets are restricted to a fewbase types such as number, string, bool and location (i.e. a cell label). We extendthis to include the base types int, real, nat, string, bool, and new aggregate typesof tuple and list. Note that cell location identi�ers (such as \B3") which appearin formulae have the type of the cell to which they refer.Each type supports a collection of primitive operations (including a showoperator that is silently applied to the result of every cell). At this stage weassume that lists are �nite.Parameterised worksheets have function type and we extend the type systemto include parametric polymorphism.We provide polymorphism through the useof a type variable which can range over all types. Abstract data types are left toa later section in which we develop an object-oriented type system that identi�esclasses with types and allows user-de�ned classes.We de�ne a type syntax and enforce type declaration for worksheets and cellsas follows:type :: 'int' | 'real' | 'nat' | 'string' | 'bool'| 'tuple' type+ | 'list' type| typeVariable | type '->' typetypeVariable :: TYPE_IDENTIFIERworksheet :: sheetName parameter+ result type gridcell :: cellLabel type expressionexpression :: application | cellLabel | LITERAL| '(' expression item* ')'| '[]' | '[' expression item* ']'| UNDEFINEDitem :: ',' expressionRecursion: Worksheets are allowed to make recursive reference to themselves.However, the data-driven evaluation semantics of a spreadsheet require the safe-guard that recursive de�nitions always terminate.We choose to restrict our system (through syntactic constraints) to primi-tive recursion that is guaranteed to terminate. This restricts the computational

power of the system, yet in the next section we add higher-order functions andthis combination of primitive recursion plus higher-order functions provides asystem of adequate computational power (see [Tur95]). The syntactic constraintwe apply is that each recursive function must have a constructed type as its pa-rameter of recursion, the function must not recurse when the base case of theconstructed type is detected, and each recursive call must be on a syntactic sub-component of its parameter of recursion. In this, we follow the lead of [Tur95].Higher-order functions: In order to ensure that primitive recursion does notrestrict us to a small set of computable programs, we extend our spreadsheet sys-tem so that it is legal to pass values of function type (i.e. names of parameterisedworksheets or built-in operators, and partial applications as de�ned in the nextsection). Similarly, values of function type can be stored in cells and returnedas the result of a worksheet. These are incorporated by supporting bracketedfunction types and expressions which can be worksheet names:type :: ... | '(' type '->' type ')'expression :: ... | sheetNameCurried partial applications: We have already de�ned our syntax to allowworksheets and built-in operations to be applied to multiple arguments in Cur-ried form: we now extend the semantics to allow partial application.A cell may now produce a partial application (of function type) and maycontain a value that is the name of a parameterised worksheet or of a built-inoperation, but note that we do not introduce generalised function abstractionand so cells cannot be �-forms (see [BC96] for explanation).We modify the syntax to support curried partial application by allowing anyexpression to be applied in function position (all the other required changes arein the semantics, which we do not present in this paper).4.3 Adding OOP FunctionalityWe add OOP functionality to the above system in a similar way (and usingsimilar design decisions) as we added OOP to FP to produce the CLOVERlanguage [BC96]. We will not repeat the arguments of [BC96] here, but merelyobserve that it is possible to reconcile FP with the key aspects of OOP exceptfor the issue of object identity, which in CLOVER must have copy-semanticsrather than having mutable internal state.For our object-oriented functional spreadsheet system we extend the userinterface with a Smalltalk-like environment with browsers for the workbookhierarchy, attribute declarations and worksheet declarations, plus a worksheeteditor providing a standard spreadsheet \look-and-feel" (see Figure 1).The new syntax for our object-oriented functional spreadsheet system ispresented below:

project :: simpleworksheet* namedef* workbooksimpleworksheet :: sheetName gridnamedef :: IDENTIFIER '=' expressionworkbook :: bookDefn workbook*bookDefn :: bookName attribute* worksheet+attribute :: IDENTIFIER typebookName :: IDENTIFIERworksheet :: sheetName parameter+ result type gridsheetName :: IDENTIFIERparameter :: IDENTIFIERresult :: expressiongrid :: row+row :: cell+cell :: cellLabel type expressioncellLabel :: sheetName rowNum colNamerowNum :: INTEGERcolName :: IDENTIFIERexpression :: application | cellLabel | sheetName | UNDEFINEDapplication :: expression arg+arg :: range | expressionrange :: cellLabel ':' cellLabeltype :: typeVariable| type '->' type | '(' type '->' type ')'| bookName type*typeVariable :: TYPE_IDENTIFIERWe de�ne a class to be a collection of parameterised worksheets which share somecommon attributes. An object is th rei�cation of a class: that is, an instance ofa class where the attributes have been given concrete values. This approachcontrasts with [YC95] where a single block of cells (i.e. a single worksheet) isidenti�ed as an object.A parameterised worksheet now corresponds to a method and what was pre-viously a namedef is now an attribute with a de�ned type and scope that islocal to the class (now called the \workbook"). All parameterised worksheetsmust take at least one argument which is the distinguished object (DO). Whena worksheet name is applied, the DO determines dynamically in which workbookthe actual worksheet can be found (the same worksheet name can be used inmany di�erent workbooks). Within a worksheet, arguments may be referred toas arg1, arg2 etc., with the the last argument (which is de�ned to be the DO)always referred to as self.Unparameterised worksheets do not �t well within a class structure (they donot have a DO) and so they are lifted to the top level | to use OOP terminology,they may be thought of as a collection of \invocations".

Fig. 1. Prototype spreadsheet environmentWe also provide top-level bindings with global scope. Since a workbook is aclass, it de�nes a new type and our type syntax is extended to allow referenceto workbook names as types. To support container classes (e.g. a tree of int, listof char), we allow workbook names to take zero or more type parameters.We de�ne a class hierarchy with inheritance to structure spreadsheet appli-cations, organise workbooks and promote reuse. This is achieved syntacticallyby de�ning a project to be a hierarchy of workbooks, each with its own de�-nition and zero or more sub-workbooks. A newly-de�ned class can override thede�nitions of inherited worksheets (as long as the type does not change) and canprovide multiple overloadedings for newly-de�ned worksheets (as long as each isuniquely distinguishable according to its type). The class hierarchy is initialisedwith de�nitions of classes for each of the built-in types: this simpli�es our typesyntax since every type is either a class or a function type. An object is therei�cation of a class; values are given to the class attributes upon instantiation.Parameterised worksheets are dynamically despatched according to their DO.The class hierarchy also provides a subtype relation, with subsumption occuringduring the application of a parameterised worksheet to its arguments.Objects are instantiated in worksheet cells by applying the class constructor(there must be at least one for each class) to the arguments. Every class musthave a show method which produces a displayable representation of its internalstate. The default show method (de�ned in the class at the root of the classhierarchy) returns a default message: the show method for an object of class int

returns the value of the integer which is stored in an internal attribute.5 Relative Addressing and RegionsTraditional spreadsheets use both absolute and relative addressing inside cellformulae to reference the values held in other cells. Relative addresses are in-terpreted as (row and column) o�sets from the current cell; the assumption isthat a single formula can be copied into one or more other cells and the relativeaddresses will in each case be o�sets from the cell that contains a copy of theformula.We hold that the use of relative addressing and the copying of formulaeis undesirable because (i) it does not support abstraction (attention remainsfocussed at the level of the cell rather than at the structure of the numericalmodel), (ii) it does not support reuse (if a change must be made to the formulathen new copies must be created all over again), (iii) it is extremely di�cult todetect whether one of the formulae has been overwritten with a basic value, and(i) it is an unnecessary waste of memory to store the many copies.Furthermore, [Hen95] notes that there are many desirable operations onspreadsheets that are easy to specify but di�cult to program (and are beyondthe grasp of the inexperienced user). These tend to be high-level operations thatwork on the structure of the data; there are no compensatory features to facili-tate such high-level operations and so much of the functionality of spreadsheetsis denied to the inexperienced user (and made di�cult for the experienced user).Thus, one of the most important aims of our work on updating the computa-tional model of the spreadsheet is to replace the concept of relative addressingand formula copying with something more suitable.We are currently investigating a new syntax for expressing regions of cells.We believe that the use of higher-order functions over regions can reduce muchof the complexity inherent in current relative addressing. We start by de�ningregions in a very similar way to traditional spreadsheet ranges - that is, two celladdresses separated by a colon. If the two addresses are on the same row (orcolumn), this is interpreted as a list of cells (one-dimensional): if they are ondi�erent rows and columns then this is interpreted as a (row-major) list of listsof cells (two-dimensional):[A1:A5] is a 1-D vertical list of �ve cells[A1:G1] is a 1-D horizontal list of seven cells[A1:C3] is a 2-D list of lists containing nine cellsWhat makes regions di�erent from ranges is that regions can be used as l-valuesas well as r-values. To make a speci�c comparison, in many current spreadsheetsit is possible to de�ne a formula in one cell and then arrange for all of the cellsin a range to receive a separate copy of the formula (with relative addressesmapped appropriately): by contrast, in our system all of the cells in a regioncan have their values de�ned by a single function. In the former, each cell is a

separate l-value for each separate copy of the function, whereas in the latter theentire region is the l-value for a single function.This requires no extra modi�cation to the user interface for a single cell;indeed, operations on a single cell appear unchanged. However, a new mechanismis added so that the user can bind a formula to a region of cells. Note that thetype and \shape" of the right-hand-side of the de�nition must match the typeand \shape" of the left-hand-side. Thus, de�ning a formula for the region [A1:A5]will require an expression on the right-hand-side that returns a list of �ve values(which will then be mapped one-to-one onto the cell locations contained in theregion on the left-hand-side). This simple measure of using regions as l-valueseliminates formula copying and eliminates the need for relative addressing. 2By providing higher-order functions which work on lists, it is now possibleto express succinctly relationships of medium complexity:[A1:A5] = map (*2) [B1:B5][A1:G1] = repeat 7 (sum (map (*3) [A1:A9]))The real power with regions is achieved by providing a compact syntax for se-quences of regions, in a similar way to Miranda's 3 list-comprehensions. We pro-pose a new feature called region-comprehensions which draw their motivationfrom [Hen95] and which also bear some relationship to Scholz's \WITH-loops"[SCH97] (which provide a variant of ZF-expressions over arrays). This featureis at a very early stage of development, so for the purposes of this paper wemerely provide the following examples (which may be used either as l-values orr-values):[[A1:D1], [E1:H1] .. [Q1:T1]]is a collection of 1-D regions all on the same row[[A1:D1], [C1:F1] .. [I1:L1]]is a collection of overlapping 1-D regions all on the same row[[A2:C4], [B3:D5] .. [D5:F7]]is a collection of overlapping 2-D regionsIn the above expressions a sequence of regions is de�ned by example. There aretwo base regions and a terminating region. Given two base regions [aimi:ajmj]and [bini:bjnj] four o�sets are calculated as (o1; o2; o3; o4) = (bi�ai; ni�mi; bj�aj ; nj �mj).The region comprehension is interpreted as a sequence of regions where thenext region in the sequence is determined by applying the o�sets to the previousregion, so that for a previous region [An : Bm] the next region in the sequencewould be [(A+ o1)(n + o2) : (B + o3)(m + o4)]. The sequence terminates whenthe �nal region is encountered.2 Of course, cell addresses (both l-values and r-values) will have to be recomputedwhen a row or column is added or deleted.3 Miranda is a trademark of Research Software Limited

Clearly, the above region comprehensions are very simple. We are currentlyinvestigating the extension of region comprehensions to incorporate generators,�lters and recurrence relations as found in list comprehensions. The furtherdevelopment of regions and region-comprehensions is a key area for future work.5.1 ExamplesThe following two examples demonstrate the use of a higher-order function to-gether with region comprehensions.Quarterly and Annual Pro�ts:A B C D E F G H I J K L M N O P--1 | 1993 1994 1995 19962 | Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q43 | 3 12 12 4 7 15 28 12 15 39 30 15 10 10 10 104 |5 |'93 '94 '95 '966 | 31 62 99 40The data in row 3 of the above worksheet represents quarterly pro�t �gures for acompany. This row can be viewed as a sequence of non-overlapping 1-D regions[A3:D3], [E3:H3] etc. The data in row 6 represents the annual pro�t �gures:traditionally, this would be achieved by constructing a formula in cell A6 andthen copying that formula to the cells B6, C6 and D6 using a mouse select anda paste command. However, we note the following:1. The formula is not simple. For example, an obvious mistake is to use theformula sum(A3:D3) and copy this to the other calles. However, the relativeaddressing translation would cause B6 to be set to the formula sum(B3:E3)(which is incorrect). The required formula (here, in Excel) requires an appre-ciation of both absolute and relative addressing which is probably beyondthe capability of inexperienced users:SUM(OFFSET(A3,0,4*(COLUMN(A3)-1),1,4))2. If a change must be made to the formula, the copy-select-paste proceduremust be repeated;3. It is very di�cult to detect whether one of the cells in row 6 has beeninadvertently or deliberately replaced with a value instead of a copy of theformula.By contrast, in our example row 6 has been derived through the use of a singleformula with no copying. Furthermore, our formula is simpler (noting that eachregion is selected with the mouse):[A6:D6] = map sum [[A3:D3], [E3:H3] .. [M3:P3]]

Changing the spreadsheet so that the annual sums are held in a vertical (ratherthan horizontal) region of cells is also easier with region comprehensions:[A6:A9] = map sum [[A3:D3], [E3:H3] .. [M3:P3]]versusSUM(OFFSET(A3,0,4*(ROW(A6)-ROW(A6)),1,4))Two-Dimensional Moving Sum: The numbers in the following spreadsheetprovide the underlying data which must be analysed. The required analysis isto generate a two-dimensional moving sum across the leading diagonal. That is,we require the sum of the nine values in the region [A1:C3] followed by the sumof the nine values in the region [B2:D4] and so on. Note that these regions areoverlapping. The sums are presented in the �nal row: this is again di�cult toachieve in traditional spreadsheets (relative addressing would make it easy toprint the sums in a diagonal line of cells starting at A10 and ending at F15, butto print the sums all on one row requires programming skill). Here is the Excelsolution:SUM(OFFSET(A1,COLUMN(A1)-1,COLUMN(A1)-1,3,3))If we allow the built-in primitive sum to be overloaded so that it sums a list oflists of numbers as well as a list of numbers, then our solution is much simpler:[A10:F10] = map sum [[A1:C3], [B2:D4] .. [F6:H8]]A B C D E F G H---------------------------------1 | 3 4 7 13 10 3 1 232 | 7 13 10 3 1 23 89 243 | 32 7 19 13 10 3 1 284 | 1 3 7 23 34 2 9 915 | 5 2 5 93 37 8 8 436 | 9 9 5 36 43 1 3 937 | 2 9 1 85 56 9 2 218 | 2 3 9 47 34 2 9 539 |10|102 98 241 277 167 1936 Project Status and Further WorkThe design presented in this paper has resulted from our work in the areaof object-oriented functional programming (OOFP). The notion of an object-oriented functional spreadsheet is both interesting in its own right and is usedas a driving application for the development of our OOFP language, CLOVER[BC96]. We are currently implementing a prototype of this design and are col-laborating with the University of St.Andrews to take these ideas further. Weidentify three areas in particular for further work:

Semantics: At present we have an informal semantics and our most pressing\next step" is to de�ne formally the semantics of our new computational model.Regions and Region Comprehensions: Our region comprehensions are cur-rently very simple, but they provide a substantial improvement over relativeaddressing and formula-copying. We need to express formally the semantics ofboth regions and region-comprehensions, as well as investigating non-contiguousregions, more powerful comprehensions, and other operations on regions.Demand-driven evaluation semantics: The inclusion of lazy evaluation intothe spreadsheet system is rather problematic because of the unusual evaluationand display requirements (every cell's value is visible and may be recalculatedas soon as any change is made). Although the ability to manipulate potentially-in�nite data will bring improved expressiveness, such values cannot be displayedand the data-driven evaluation would seem to destroy any hope for laziness.7 Summary and ConclusionThe central computational model of the spreadsheet paradigm has changed littleduring the past 20 years. We have identi�ed some of the bene�ts that could bederived from incorporating modern FP and OOP features into this model. Wediscussed some key issues of such an integration and then presented our initialsteps towards a novel spreadsheet design with the addition of FP and OOPfeatures, together with the use of regions and region comprehensions to obviatethe need for relative addressing.References[BC96] L. Braine and C. Clack. Introducing CLOVER: an Object-OrientedFunctional Language. In W. Kluge, editor, Implementation of Func-tional Languages, 8th International Workshop (IFL'96), Selected Pa-pers, LNCS 1268, 1{20, Springer-Verlag, 1996.[BC97a] L. Braine and C. Clack. An Object-Oriented Functional Approach to In-formation Systems Engineering. In Proceedings CAiSE'97 4th DoctoralConsortium on Advanced Information Systems Engineering, 1997.[BC97b] L. Braine and C. Clack. Object-Flow. In Proceedings 13th IEEE Sym-posium on Visual Languages (VL'97), 418{419, 1997.[BC97c] L. Braine and C. Clack. The CLOVER Rewrite Rules: A Translationfrom OOFP to FP. In Proceedings 9th International Workshop on Im-plementation of Functional Languages (IFL'97), 467{488, 1997.[CR92] Casimir and Rommert. Real Programmers Don't Use Spreadsheets.ACM SIGPLAN Notices 27(6), 10{16, 1992.[DH96] A. Davie and K. Hammond. Functional Hypersheets. In Proceedings 8thInternational Workshop on Implementation of Functional Languages(IFL'96), 39{48, 1996.[DRV95] W. De Hoon, L. Rutten, and M. Van Eekelen. Implementing a Func-tional Spreadsheet in Clean. Journal of Functional Programming,5(3):383{414, 1995.

[DW88] W. Du and W. Wadge. An intensional language as the basis of a 3Dspreadsheet design. In Proceedings IEEE International Conference onComputer Languages 1988 (ICCL'88), 2{9, 1988.[HW94] B.Harvey and M.Wright. Simply Scheme: Introducing Computer Sci-ence. MIT Press, 1994.[Hen95] D. Hendry. Display-Based Problems in Spreadsheets: A Critical Inci-dent and a Design Remedy. In Proceedings 11th International IEEESymposium on Visual Languages (VL'95), 284{290, 1995.[Lit90] C. Litecky. Spreadsheet Macro Programming: a Critique with Emphasison Lotus 1-2-3. Journal of Systems and Software, 13(3), 197{200, 1990.[SCH97] S. Scholz. With-loop Folding in Sac-Condensing Consecutive Array Op-erations. In Proceedings Implementation of Functional LanguagesWork-shop IFL'97, 225{242, 1997.[Sta93] M. Stadelmann. A Spreadsheet based on Constraints. In Proceedings6th Symposium on User Interface Software and Technology (UIST'93),217{224, 1993.[Tur95] D. Turner. Elementary Strong Functional Programming. In P. Harteland M. Plasmeijer, editors, Proceedings First International Symposiumon Functional Programming Languages in Education (FPLE'95), LNCS1022, 1{13, Springer-Verlag, 1995.[Wac95] A. Wack. Partitioning Dependency Graphs for Concurrent Execution:A Parallel Spreadsheet on a Realistically Modelled Message PassingEnvironment. PhD Thesis, Department of Computer and InformationSciences, University of Delaware, 1995.[Wra86] S. Wray. Implementation and Programming Techniques for FunctionalLanguages. Phd Thesis, University of Cambridge, 1986.[YC94] A. Yoder and D. Cohn. Real Spreadsheets for Real Programmers. InProceedings IEEE International Conference on Computer Languages1994 (ICCL'94), 1994.[YC95] A. Yoder and D. Cohn. A Framework for Complete Spreadsheet Lan-guages. Technical Report, Distributed Computing Research Lab, Uni-versity of Notre Dame, Indiana, USA, 1995.[YC97] A. Yoder and D. Cohn. Domain-Speci�c and General-Purpose As-pects of Spreadsheet Languages. In Proceedings Workshop on Domain-Speci�c Languages, 1997.
This article was processed using the LATEX macro package with LLNCS style

