
Abstract

The Four-Stroke Reduction Engine

Chris Clack and Simon L Peyton Jones

Department of Computer Science
University College London,

Gower St, London WC1E6BT, England

Functional languages are widely claimed to be aumable to concurrent execution by multiple
processors. This paper presents an algorithm for the parallel graph reduction of a
functional program. The algorithm supports transparent management of parallel tasks with no
explicit communication between processors.

1. Backgrouncl

A major challenge facing computer science today is the effective exploitation of
parallelism. Functional languages offer a powerful lever on the programming of parallel
machines, and the most promising model for implementing these languages is graph reduction.

Many current research projects are investigating parallel architectures ~KellBS] [DarlBl]
[HudakBS] [PeytBS]. Parallel hardware can readily be built using convent1onal technolovY,
but designing the system so that parallelism gives worthwhile gains, and so that harness1ng
this parallelism is easy for the programmer, represents a greater challenge.

This paper is concerned with the design of a parallel graph reduction algorithm that will
transparently administer the scheduling and synchronisation of concurrent tasks in a parallel
functional-programing machine. The algorithm that we .present can be coded as a finite state
machine. This enables us to produce a simple and effic1ent implementation.

Ll Functional languages and parallelism

Why not program in a conventional language which su:pports multiple tasks, such as Ada? In
a conventional language, the programmer must exphcitly code the program for parallel
evaluation. The behaviour of the program will depend on the scheduling of the tasks, and the
programmer must ensure that parallel evaluation does not alter the semantics of the program.

The absence of side effects in a functional language means that the execution of one task
cannot affect the outcome of the execution of another task. This implies that task
administration and synchronisation are inherently easier for a functional language.

Functional programs do not require explicit parallel programming. No extra langua~e
constructs are needed to write parallel functional programs, and the result of the program 1s
guaranteed to be independent of task scheduling (though this may have an impact on
efficiency) .

Penni ssim to copy witiDJI: fee ciL cr pilt'l: of this DBI:erlal. :i; granted
proyjded tiEl:: the a¢es am mt made or d:ist:db:d::al fir dira:t
c:xmercial advantage, the A C M Gqlyright mt:ice and the title of
the pml icmim and its date appear, and mt:ice :i; given tiEl:: copying
:i; by permissioooftbe .llssociatim fir Computing Machinery.To
copy otbetw:i.se, cr to l"Epti.ish, l'EIJI.im; a fee and/or lpcific
pmnissim.

© 1986 ACM ()..89791-200-418610800-0 75U 220

There should be no need for the progr1111111er to give directions concerning details of
scheduling and coiiBIIunication, but the progr~~~~~~~er nmst still design the algorithm with
concurrency in mind; we can only get the full benefits of parallelism if the algorithm is
coded to give gross parallel structure(e.g. using a divide-and-conquer approach).

An automatic compile-tine analysis of the source (called "strictness analysis") will often
detect much of the inherent parallelism [Clack85] , but this is still a research area and
prograiJBIIer annotations may be used in preference or to give additional hints to the compiler.

The resultant parallel tasks can be managed autanatically at run-time, and our aim is that
the entire business of administering parallel tasks should be hidden from the programmer.

L2 Graph reduction

A functional program is a single expression which has a natural representation as a syntax
tree. In general, there will be sharing of nodes, and so the syntax tree will be a graph,
which may be cyclic.

A functional program may be evaluated by manipulating the syntax graph. The evaluation
proceeds by means of simple steps, each of which performs a local transformation to the
graph. Each step is called a reduction, and the process is known as "graph reductioaw
[Turn79]. A reducible expression is often referred to as a redex.

Reductions may take place concurrently, since they cannot interfere with each other, and
evaluation is complete when there are no further reducible expressions(normal fixm).

The curried application of a function "f" to blo arguments x and y is represented like
this:

@

I '
@ y

I ,
f X

where "@" represents an application cell, containing pointers to function and argument.

Consider the following functional program:

LET fx=ANDxx
IN f (NOT TRUE)

(the LET introduces a definition of the function f, which takes a single argument x.
Function application is denoted by juxtaposition, thus (NOT TRUE) denotes the function NOT
applied to the argument TRUE).

The figure below shows how it would be evaluated. Notice that after each reduction the
root of the redex is overwritten with the result of the reduction.

@ @ => @ => FALSE
I ' I' I •

I I I
f @I @ @

I I ' I •
I • I I

Nar TRUE AND AND
@ FALSE

I •
I

NOT TRUE

221

2. A model for parallel graph reduction

Our proposal for parallel graph reduction has the following features:

(i) The reduction of the graph is performed by the concurrent execution of many tasks,
each of which has access to any part of the graph.

(ii) A task performs a sequence of reductions, performed in normal order.

(iii J['he purpose of a task is to reduce a particular (sub)graph to a normal form in which
there is no top level redex - we call this Weak Head Normal Form !WHNF) [Per.86]. A
task is therefore completely defined by a pointer to the root of th1s subgrap •

(iv) During its execution a task nay anticipate that it vill require the value of a
subgraph. In this case it may create a new task to evaluate the subgraph
concurrently. To create a new task, a task descriptor is placed in a task pool. We
call this sparking a task.

(v) There are a number of agents, each of which executes a task. Typically an agent vill
be implemented by a physical processor, although one processor may be timesliced to
implementmore than one agent.

(vi) There are one or more task pools, which may be accessed by the agents. A task pool
holds a number of tasks which are ready for execution. These tasks may have been
created by other tasks, or they may be tasks that have been temporarily suspended and
subsequently resumed. Unemployed agents will send requests to the task pool for work
to be done.

2.1 Parallell-

One of the major issues that IIDlSt be faced by any parallel implementation is the
generation of new tasks. When should a new task be sparked? There are two broad approaches:

(i) Spark a new task to evaluate a sub-graph when it is certain that the sub-graph will
eventually be evaluated (conservative panUiausm). This ensures that all tasks are
doing useful work.

(ii) Spark a new task to evaluate a sub-graph when it is possible that the sub-graph vill
eventually be evaluated (speculative parallelism). This offers maximum opportunities
for parallelism.

The danger of speculative parallelism is that machine resources may be consumed evaluating
pieces of graph which will eventually be discarded. Speculative tasks need particularly
complicated managementsince vital tasks IIDlSt be distinguished from non-vital tasks, and
since tasks that are no longer needed IID1St be garbage-collected [Peyt86]. We therefore
assume that only conservative parallelism vill be exploited.

2.1.1 Creating new tasks in a conservative regime

Suppose that a function F was known to (eventually) require the value of its argument
(that is, it is 11 strict II in that argument). Then a conservative scheduler could safely spark
concurrent evaluation of its argument whenever F is applied.

In the case of primitives (functions such as 11 +" that are built in to the implementation)
it is easy to know which arguments will be required. Hovever, in the case of user-defined
functions matters are nat so clear. Certainly we do not want to work it out at run-time, so
we annotate the function with information describing which arguments it is sure to need.

These annotations may either be introduced ~ the programmer or added by a compiler pass
which uses strictness analysis to deduce wh1ch arguments the function is sure to need

222

[Clack85]. Annotations should be added with care; if the evaluation semantics are altered,
non-termination may result.

Merely annotating functions in this way is not sufficient. Some functions may be strict
in a P.<lrticular argument for one application, but not for another application. Consider the
defin1tion of a function F as:

Fxy = yJx

Clearly, F is not strict in x, because the function argument y may not be strict in its
second parameter. Now suppose that elsewhere there occurs the expression

••• (FE+) •••

where E is some complex expression. In this application of F the second argument is +, so E
will certainly be evaluated subsequently. In this particular context, therefore, we can
safely spark evaluation of E, and we can indicate th1s fact by annotating the application
node.

At first it appears that the second sort of annotation subsumes the first.
are situations in which each is uni~ely apP-ropriate. The two forms of
complementary, and neither can be 0101tted w1thout loss [Peyt86] [Hank85]
example, consider the expression

(IF E1 f g) E2

However, there
annotation are
[Burn85]. For

where f is strict in its argument but g is not. We cannot know until run-time whether f or g
will be applied to ~' so we cannot annotate the application node. We can, however, annotate
the funct1on f so that ~ will be evaluated in parallel if f is eventually applied to it.

To summarise. we derive parallelism from

(a) primitives - we use innate knowledge about the strictness of primitives, and we
require that the implementation has some method for annotating primitive functions
with this strictness information.

(b) user functions - we use strictness analysis to determine this information, and we
require that the implementation has some method to annotate user functions.

(c) applications - we use strictness analysis to determine those situations where an
application is strict: we require a method to annotate an application node.

22 Colouring the graph to synchronise tasks

During the course of evaluation, two tasks may attempt to evaluate a COIIDI!On subgraph
simultaneously. Notice that no mutual exclusion is required (since they will both arrive at
the same result). In practice, however, it is highly desirable that only one task should
evaluate a piece of graph at a time, to avoid duplicated work. The main aim of our algorithm
is to achieve this mutual exclusion painlessly.

The idea behind the algorithm is that that as a task traverses the graph it ''paints" the
nodes that it is working m. After working on a section of graph, a task will "unpaint" the
nodes that are no longer being used.

If one task attempts to access a node that has been painted by another task, the intruding
task will be blocked until the required cell has been unpainted. Thus, if two tasks share
the sane subgraph, there will be no duplicated effort.

Consider, for example, the following program:

IErf =g6
g x • + (-x)

IN
+ (f 3) (f 1)

223

We might spark two tasks to evaluate the (f 3) and (f 1) sub-graphs, which share a cODDDOn
sub-graph f:

@

I
I

I

I ,

@

+ @I @I
I ' I '

I 3 I 1
I I f:@ ___ .

I '
g 6

The "+"might SJ?ark the nodes marked "I" thus creating two new tasks to evaluate the
ar~ents to the +". The first of these tasks to try to evaluate the node labelled f will
pamt it (let us suppose it is the left hand task in the picture). When the second task
tries to evaluate this node it will be blocked. Meanwhile the first task will reduce the f
node to WBNF by applying g to 6, and overwriting the node with the result (+ (-6)). Then,
having evaluated the arguments (-6 and 3) it will add them, remove the paint fran the f node
as it pops the node fran its stack, and overwrite the left node marked "#" with the result
(-3). Now the second task can proceed, so it will access the f node, where it will see the
(+ (-6)). It will never know that there was once a (g 6) redex there.

We intend that parallel tasks should be blocked and later resumed in a way that is
entirely transparent to the agents, and at low overhead to the implementation. There is no
explicit comunication between agents or between tasks - synchronisation between tasks is
mediated entire!¥ through the graph. The result of a reduction is conmunicated to the graph
as a single, ind1visible operation, (that is, the overwriting of the root node of the redex)
and the reduction appears to all other tasks to take place instantaneously. The graph never
appears in an intermediate state, and the interlocking of agents becomes totally hidden from
the progranmer.

2.2.1 Blocking and resumption

As mentioned above, for efficiency reasons we would like it to be possible for one task to
be blocked by another. We will now consider the blocking mechanism in more detail, with the
help of an example. Suppose a task is evaluating the expression

(+ El E2}

where E1 and E2 are complicated expressions. Now, we know that "+" will need the values of
both of its arguments, so the task can spark a child to evaluate one argument (say, E1) and
evaluate the other argument (E2) itself.

When it has finished evaluating E2, the parent task will look again at E1 , to make sure
that it has been evaluated. E1 can now be in one of three possible states:

(1)

(2)

It has not been evaluated yet (perhaps because the system has been busy executing
other tasks). In this case, the parent task should proceed to evaluate E1 itself.
Eventually, another agent will try to evaluate E1 (remember, E1 was sparked, so the
child task is in the task pool) but this ch1ld task will die inmediately upon
discovering that E1 has already been evaluated.

It has been evaluated already. In this case, the parent task can inmediately proceed
to apply the function "+" to the two evaluated arguments.

(3) It is still in the process of being evaluating. Now the root node of E1 will have
been "painted" by the child task and the parent task will be blocked until E1 has
been evaluated.

224

What should happen to a task when it is blocked? There are two main alternatives:

(a) It could simply be returned to the pool of tasks awaiting execution. In due course
an unemployed agent looking for work will resume execution of the task. It will very
soon encounter the node that blocked the task before. If this node is still painted,
then the task is again blocked, and returned to the pool, otherwise it can continue
to execute normally.

(b) It could somehow be suspended, so that it is not considered for execution by
unemployed agents, and be resumed when the node which blocked it has its paint
removed. Reawakening the task would consist of putting it in the pool of tasks
awaiting execution.

The first method has the advantage of simplicity, mt it is rather inefficient, since
repeated attempts are made to execute a task which is still blocked for thesame reason.

In order to implement the second method we would somehow have to attach the blocked task
to the painted node. Then when the paint is taken off the node, the blocked task can be prt:
back in the task pool as a resumed task.

23 The task pool

A new task is created by adding a task descriptor to the task pool. What happens when
more and more tasks are sparked? If tasks are being added to the task pool faster than they
are being taken out, then the task pool may run out of space.

As we showed in section 2.2.1, after a parent sparks a child task to evaluate a strict
argument it always subsequently returns to evaluate the argument itself. Hence, all sparked
tasks in the task pool are entirely disposable (even the program root, as long as the I/O
mechanism is informed, or automatically tries again later).

Once a task has started, it will block its parent (see section 2.2.1).
vitally important that we do not throw away resumed tasks.

Therefore, it is

So a good strategy for administering the size of the task pool would seem to be:

(i)set a limit somewhat below the real limit of the task pool.
(ii) once the task pool has reached that size, ignore all sparks until the task pool

shrinks again, but
(iii) be careful not to ignore any resumptions of tasks.

23.1 Task scheduling

When an unemployed agent sends a request to the task pool, which task should be returned
out of all those in the pool? A decision liiiiSt be made on how best to schedule the available
tasks.

Although the details of scheduling tasks fran the task pool are not yet well understood,
we can offer the major comfort that with conservative parallelism the scheduling of tasks is
guaranteed not to affect the result.

However, scheduling may have a considerable effect on efficiency. lobst tasks will cause
the graph to grow before it can shrink again, so a bad choice of scheduling algorithm could
mean that many tasks will expand a subgraph and then be blocked before the shrinking occurs.
This might result in the implementation running out of memory, so that the computation grinds
to a halt.

Simple strategies like last-in-first-out {LIFO), or first-in-first-out (FIFO) may give
acceptable results and merit some investigat1on. For instance, a FIFO strategy corresponds
to breadth-first evaluation of the graph, and may therefore result in the sparking of more
parallel tasks than a depth-first LIFO strategy. Indeed, switching between the two
strategies could give useful dynamic control of the production and consumption of ~ ••

Another strategy may be always to schedule resumed tasks first, since we can be sure that
they will be doing useful work (whereas a sparked task may find that its subgraph has already
been evaluated), and since they could be blocking other tasks.

225

3. An implementation of parallel graph reduction

The four-stroke reduction engine assumes that we are implementing graph reduction using a
global heap of cells, each with three fields; tag, head and tail. The head and tail fields
may each contain either a data object or a pointer to another cell. The tag field is used to
identify the type of cell - for instance, an application cell or perhaps a "cons" cell. The
hardware should also support the indivisible update of a heap cell.

We present an algorithm that is applicable to all forms of graph reduction. We describe
how the scheme works both for primitives and for user functions. Our preferred
representation for a user function is the supercombinator, although the algorithm is
adaptable to other representations.

3.1 Task execution and the 2-stroke cycle

We assume that reductions are carried out in normal order, which specifies that the
leftmost outermost redex should be reduced first. The expression to be eva~uated can only be
of the form

f E1 E2 ••• En

where f is a data object (such as TRUE), built-in function (such as .!H)), or user-defined
function, and there are zero or more arguments Ei which denote arbitrarily large
expressions. The graph of this expression looks like this:

@

I '

Sup~ose that f takes a arguments1 the leftmost outermost redex will be the application of
f to 1ts arguments E1 , E2t ••• E.. ISefore the graph reduction machine can reduce this redex it
must find f: it goes down the left branch of each application node fran the root until it
finds a non-application node.

This left-branching chain of application nodes is called the spine of the expression.

It is therefore rather easy to find the next redex to reduce. We descend the spine,
painting the spine nodes as we go, until we find a function. Then, based on the function we
find, we go back up the spine, collecting the arguments Ei and unpainting the spine nodes as
we go, to find the root of the redex. Now the function and all its arguments are available
and the reduction may be carried out; the result overwrites the root of the redex.

In order to minimise the overheads of task-switching, we prefer not to remember the
argument stack in the task state descriptor. Thus, collecting the arguments must wait until
we go back up the spine, since it· is only when ascending that we can guarantee never to be
bloCked.

After completing a reduction, the task again descends the spine and the process repeats.
When the task finds that a function does not have enough arguments on the spine, or the
expression is now a data object, then the subgraph has reached WHNFand the task dies.

This "down-up" cycle is somewhat reminiscent of a piston engine, and we call it the 2-
stroke cycle. In fact, we only use this method to reduce user functions and primitives with
no strict arguments: for all other primitives we need to use four strokes, as we discuss
later.

226

3.1.1 Representation of a task

When a task is not being executed by an agent it must be represented in some way in store.
The representation of a task must contain all the information required to continue executing
the task from the point at which it was last blocked. In conventional multi-tasking
operatin!1 systems this representation is often called a Task Control Block, and contains
informatJ.on such as the task's stack pointer, its program counter and the state of the task's
registers.

By contrast, in our parallel reduction model a task could be represented completely by a
single pointer to the root of the subgraph it is evaluating. The complete state of a
partially completed task is held in the graph, so that a pointer to the root of its subgraph
suffices to represent a task at any stage in its life (not only when it is newly sparked).

At any moment an agent can stop performing reductions on a task, put its root pointer back
into the task pool, and begin executing another task.

The only trouble with this representation of a task is that if a task is blocked and
subsequently resumed the agent has to descend the spine of the subgraph from the root. This
is due to the fact that no information is saved about the state of a task - the agent must
look in the graph to see how far the task got before being blocked.

We may choose to save more state Information in each task descriptor (held in the. task
pool), and a technique called pointer reversal gives us a way to save enough state to allow
the task to continue from where it was suspended, i.e. without having to descend the
subgraph from the root again. Furthermore, pointer reversal allows us to save this much
state using just tvo pointers!

3.1.2 Pointer reversal

An evaluator can descend the spine of an expression without using a stack by reversing
pointers in the spine as it goes. This pointer-reversing technique is described by Stoye et
al [Stoye84].

For example, to descend the spine of (+ E1 1!2), we use two pointers "B" (for Backward) and
"F" (for Forward). B and F point to two ad~acent nodes on the spine; spine nodes below F
have undisturbed pointers pointing down the sp1ne to the next node, whereas spine nodes above
B have reversed pointers that point up the spine to the previous node. To descend the spine,
we read the function pointer in the "F "cell - this becomes the new "F", and we overwrite the
cell's function pointer with the old B. The old "F" becomes the new ''B":

8: t t t

F:-----> @ B:---> @ @

I \ I \

I I

+ .j. .j. t .j.

@ Ez F:-> @ Ez 8:-----> @ Ez
I ' I '

I I
.j. .j. .j. + +
+ E1 + El F:-> + El

227

The act of descending the spine using pointer-reversal is sometimes called unwinding the
spine. Conversely, ascending the spine is called rewinding.

At first it appears that this is totally unworkable in a parallel machine, since the
pointer-reversed graph is in a "peculiar state" which will be incomprehensible to other
tasks. However, pointer reversal only reverses the painted ~. No other task will look
inside a pointer-reversed node, and it is therefore safe to use this technique.

The complete state of a task can now be represented by two pointers, the F and B pointers.
When a blocked task is resumed, the F and B pointers are already pointing to the area of the
graph which is of interest.

In a sequential implementation, pointer-reversal is not as efficient as using a stack,
since the pointers have to be re-reversed when rewinding the spine. However, in a parallel
implementation which uses the graph-colouring scheme to synchronise tasks, nodes have to be
"unpainted" as the spine is ascended, and there will probably be little extra coat to re­
reverse the pointers as well.

we conclude that pointer reversal may save repeatedly unwinding the spine each time a task
is blocked, and adds very little to the overheads of task switching.

3~ Sparking tasks

Recall fran section 2.1.1 that the parallelism information is conveyed to the evaluating
agents by two forms of annotated graph nodes, namely annotated functions and annotated
application nodes. We implement the second form of annotation by means of the tag field in a
cell - special kinds of application tags show whether the application node is strict in its
argument.

Annotations to application cells can be discovered and sparked on the way down down the
spine, whereas annotations to primitives and user functions cannot be discovered until we
reach the bottom of the spine, and so strict arguments mst be sparked on the way up the
spine. Of course, we mst be careful Dot to spark an argument twice, which would be
wasteful. This is easy to achieve, by altering the tag of a spine node when its argument is
sparked.

32 Task synchronisation

We saw above how task s~chronisation could be achieved by "aila:a:'iu;J'' the graph. Now we
are in a position to descr1be our implementation of such a synchronisation scheme:

32.1 How to colour the graph

We implement the "colouring" idea with special values of the tag attached to each node.
At each sta!fe of reduction, a task will check the cell tag it wishes to reference, and the
value of th1s tag will determine the future computation. We assume that memory is cheap
enough that the extra memory S,Pace required is Dot profligate. The scheme need Dot be
especially wasteful of time, s1nce we can design intelligent memory units to implement
special read-modify-write instructions that depend on the value of the tag of the cell (thus
allowing us to access the cell, check to see if it is already painted, then paint it if it
was1't before - all in one indivisible operation).

3.2.2 The blocking mechanism

How do we achieve the blocking of multiple tasks on one painted node? We could achieve
this by adding an extra field to every application node. This points to a list of tasks
which should be reawakened when the paint on the node is removed. This is the approach taken
by the ALICE machine [Dar181].

Attaching an extra field to every application node seems rather wasteful, since most of
them will Dot have any tasks blocked on them. Our proposal is to overwrite the head of the
application node with a pointer to a list of blocked tasks (we call this a task queue), and
remember the old head in the tail of the list. Some mechanism would then be requued to
indicate that there were blocked tasks queued up on a painted node - for instance, yet
another special value for the cell tag.

228

It is only the unwind and rewind operations that affect the blocking and resumption
mechanisms. When a task unwinds it may be blocked and will be added to a task queue. When
the blocking task finally rewinds back up the spine, it will come across a cell with an
attached task queue and all blocked tasks in the queue will now be added to the task pool.

One advantage of the mechanism described here is that it is sufficiently simple and low­
level that it can be implemented in hardware (e.g. VISI), and that as such it can form part
of an Intelligent Memory Unit - if the agents talk to memory via high-level operations there
is absolutely no need for them to know about this blocking mechanism! If an agent is
executing a task that is blocked, it only needs to know that the task cannot continue, and
that the task pool should be consulted for more work.

33 4-stroke reduction

The four-stroke reduction engine is named after the fashion in which it reduces primitives
applied to their ar9¥ments. In contrast with user functions(and primitives with no strict
arguments), a primitive application like (+ E1 ~) cannot be reduced any further until the
strict arguments E1 and E2 have been evaluated. Therefore, a task must ensure that all
strict arguments have been evaluated (either by itself, or by another task). To be more
s?ecific, any primitive which has at least one strict argument will need four "strokes"
(1nstead of two) to reduce:

B:

(1) inlet stroke
unwind the spine to determine which primitive is being applied, sparking any strict
applicationson the way.

(2) com~ression stroke
rew1nd to the topmost strict argument, sparking strict arguments on the way

(3) power stroke
unwind the spine again, evaluating strict arguments one at a time on the way down
(and reversing pointers as bef~).

(4) exhaust stroke
finally rewind to the root of the redex, collecting the now-evaluated arguments,
perform the reduction and overwrite the root of the redex with the result.

We illustrate four-stroke reduction using the example "+ E1 E2"

(i) Inlet Stroke

1' 1' 1'

P:-----> @ B:---> @ @

I \ I \

I I
+ J. J. 1' .1.
@ £2 F:-> @ Ez 8:-----> @ E2

I \ I .
I I

.1. J. .1. .1. 4-
+ E1 + El F:-> + El

(ii) Compression Stroke

1' 1'
@ 8:---> @

I \

I
t .j. J.

B:---> @ £2 F:-> @ E2
I \

I
.j. I I

F-> + El + E1 (sparked)

229

(iii) Power Stroke

t t t
@ <-B B:---> @ @

I I '
I I

... ... t ...
@ B2 <-P F:-> @ 5(evaluated) 8:-> @ s

I \ I ' I
I I I

.J.
+ El + El .. E1 <-F

(iv) Exhaust Stroke

t t Bt
@ B:---> @ F-> 11

I .
I

t
B:---> @ 5 F:-> @ 5 @

I • I •
I I

...
F-> + 6(evaluated) .. 6 + 6

3.4 Opti•isations

A disadvantage of the blocking scheme outlined above is that it risks unnecessary
serialisation.

Consider the case of a shared subgraph that is already in WHNF, as might be the case with
a connnonly used _Partial application. As one task unwinds into the subgraph it paints the top
node, thus blockl.ng any other tasks fran unwindin~to it. But if the subgraph is already
in WHNF there is no point in making other tasks . It is perfectly safe to allow any
number of tasks simultaneous access to the subgraph!

This is a specific instance of a general rule: once a sub-graph is in WHNF it will never
be altered, so it is quite safe for many tasks to have (read only) access to it.

OUr implementation allows many tasks to access a subgraph in WBNF, by requiring that tasks
do not use pointer reversal when traversing WHNF subgraphs (they can never be blocked when
doing so).

230

~ Finite State Machine

Perhaps the most satisfying feature of our algorithm is that it can be represented as a
finite state machine. This is possible because of the way that we use graph-colouring in
order to synchronise tasks.

- The execution of each task is governed by a finite state machine.

- Each agent executes a finite state machine (physically, the same code will run on all
processors in a multiprocessor machine).

- The tasks can each be in any one of a fixed, small number of states.

- The first action of an agent at each stage of the finite state machine will be to
access a cell in the shared graph. Each agent holds the B and F pointers that
represent the current task. If the current state is one that descends the spine, then
the cell accessed will be the F cell. In an ascending state, the B cell will be
accessed.

- The value of the tag of the accessed cell will determine the subsequent action (such as
sparking the tail of the cell just read, and the painting or unpainting of a cell) and
will specify the next state transition (often this will be to stay in the same state).

- In a real implementation, knowledge of actions and state transitions can be
incorporated in the intelligent memory. Thus, with a knowledge of the particular
high-level memory operation being requested by a processing element, and of the value
of the tag of the cell being accessed, the intelligent memory can itself take care of
administrative details such as painting and unpainting.

It is important to realise that the value of both tags is required to determine the next
state transition1 the value of one of the tags is implied by the current state, and the value
of the other tag must be determined by reading from the graph.

How do we define the different states? They are derived from a combination of

(1) the direction of pointer-reversal (are we unwinding or rewinding?)
!~~) the value of the "known" tag (B if going down the graph: F if going IP)•

(l.l.J.) the number of strict arguments still to be collected (compression stroke only), and
(iv) the total number of arguments left to be rewound past (exhaust stroke only).

What happens when a task is resumed? Since a task can only be blocked during the inlet or
power strokes, then (iii) and (iv) above do not apply. It also follows that the task must be
unwinding. The only condition left is (ii), so directly after resuming a task the first
thing that an agent must do to establish the state of the task is to read the value of the B
tag.

Our finite state machine currently has a total of 12 states (including the optimisation of
using a stack to traverse shared subgraphs in WHNF), and there are 22 different kinds of tag
- all of which are application nodes in various guises!

5. Conclusion and project status

This algorithm has been implemented as part of the Alvey-funded GRIP project. GRIP (Graph
Reduction In Parallel) is a parallel machine based on about 120 processing elements, a fast
asynchronous bus, and about 30 intelligent memory units. The finite state machine has now
been coded (in C) and we have a running simulator of a parallel graph reduction machine. It
is intended that the code executed by an agent should be ported without change onto the
actual processing elements in GRIP. Our experience has shown that implementing parallel
graph reduction is by no means trivial, and we could not have pro!lressed as far if the
algorithm had not been represented as a finite state machine. As evidence of this, we found
that debugging the simulator has consisted almost entirely of remedying typing errors rather
than changing the algorithm. The simulator is now producing results which will help us with
the final stages of the hardware design.

231

[Burn85]

[Clack85]

[Darl81]

[Hank85]

[Hudak85)

[Kell85]

[Peyt85]

[Peyt86]

[Stoye84]

[Turn79]

References

Burn G, Hankin CL and Abramsky s, "Strictness analysis of higher order
functions", Science of Computer Programming (to appear); also DoC 85/6, Dept Comp
sci, Imperial College London, April 1985.

Clack CD and Peyton Jones SL, "Strictness analysis - a practical approach",
Functional Programming Languages and Computer Architecture, ed Jouannaud, LNCS
201, Springer Verlag, pp35-49, August 1985.

Darlington J, Reeve M, "ALICE - a multiprocessor reduction machine for the
parallel evaluation of applicative lan~ages", Proc ACM Conf on Functional
Programming Languages and Computer Arch1tecture, New Hampshire, pp65-75, Oct
1981.

Hankin CL, Burn GL and Peyton-Jones SL, "An approach to safe parallel combinator
reduction", Dept Comp Sci, Imperial College, Oct 1985.

Hudak P, "Functional programming on mu1 t iprocessor architectures - research in
progress", Dept Comp Sci, Yale University, November 1985.

Keller RM, "Rediflow architecture prospectus", UUCS-85-105, Dept Comp Sci,
University of Utah, Aug 1985.

Peyton Jones SL, Clack CD, Salkild J and Hardie M, "GRIP - a parallel graph
reduction machine", Dept Comp Sci, University College London, November 1985.

Peyton Jones SL, "Implementation of Functional Programming Languages", Prentice
Hall (to be published) , 1986.

Stoye WR, Clarke TJW, Norman AC, "Some practical methods for rapid combinator
reduction", AQI Symposium on Lisp and Functional Programming, Austin, pp159-166,
August 1984.

Turner DA, "A new implementation technique for applicati ve languages" , Software
Practice and Experience 9, pp31-49, 1979.

232

