Variational Inference

Cédric Archambeau
cedrica@amazon.com

OxWaSP, Machine Learning Module
Oxford, March 2019



Outline

@ Approximate Bayesian inference

@ Variational inference

» Mean field
» Relation to Expectation-Maximisation
» Structured variational inference

© Stochastic and extensions



Bayesian statistics

likelihood prior

pofx) - XA, o) = [ p(x.0) do.
posterior Y

@ The likelihood is the noise model.
@ The prior encodes constraints (if any) on the parameters ©.

@ Structure is added to the model through latent variables Z: p(X, Z|®)



Bayesian statistics

likelihood prior

pofx) - XA, o) = [ p(x.0) do.
posterior Y

@ The likelihood is the noise model.

The prior encodes constraints (if any) on the parameters ©.

Structure is added to the model through latent variables Z: p(X, Z|®)

@ The goal is to maximise the marginal likelihood or evidence p(X|m).

Predictions are averaged over zall possible models: p(x.|X) = [p(X.|©®) p(©|X) dO.



What is great about Bayesian inference?
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What is not so great with Bayesian inference?

Posterior inference: Model averaging:

p(®|X, m) x /p(X,Z,®|m) dZ. p(x.|X, m) = /p(x*|(~), m) p(®|X, m) dO.

Evidence maximisation:

p(X|m) = / p(X, 8| m) de.



Variational lower bound or evidence lower bound (ELBO)

Inp(X|m) > In p(X|m) — KL (qu(Z. ©)|p(Z, O] X, m)) = —F(w).



Variational lower bound or evidence lower bound (ELBO)

Inp(X|m) > In p(X|m) — KL (qu(Z. ©)|p(Z, O] X, m)) = —F(w).
@ The lower bound to the log marginal likelihood is obtained by applying Jensen's inequality:

In p(X|m) = In// p(X,Z,0|m) dZ d©
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|n//qWZO o) dzd®

p( X p(X,Z,©|m)
w(Z,0) In dZ d®
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p(Z,©|X, m)
= In p(X|m) //WZ® dZ dO.
\ q TZ.O)



Variational lower bound or evidence lower bound (ELBO)

Inp(X|m) > In p(X|m) — KL (qu(Z. ©)|p(Z, O] X, m)) = —F(w).
@ The lower bound to the log marginal likelihood is obtained by applying Jensen's inequality:

In p(X|m) = In// p(X,Z,0|m) dZ d©

In//qWZO PX.Z,0Im) 17 4o

9w(Z,0)
p( X p(X,Z,©|m)
w(Z,0) In dZ dO
//q qw(z 0)
p(Z,©|X, m)
= In p(X|m) //WZ® dZ dO.
\ q TZ.O)

@ The analytically intractable integration problem is replaced by an optimisation problem!



Other forms of the ELBO

p(X,Z,0|m)
//qWZ@I 7oy 9Z7°.



Other forms of the ELBO

@ Free energy interpretation:

+F(w) =

p(X,Z,©|m)
w(Z,0)l dZ dO.
//q aw(Z,0)

energy entropy

~E(Inp(X,Z,0[|m)) — H(quw(Z,0)).



Other forms of the ELBO

p(X,Z, ®|m)
w(Z,09) dZ dO.
//q QW(Z ®)

@ Free energy interpretation:

+F(w)=-E(Inp(X,Z, @\m))l— H(qw(Z,9)).

~
energy entropy

@ Penalized model fit interpretation:

—F(w)=E(Inp(X|Z,0,m)) — KL (guw(Z,0®)||p(Z,0|m)).

model fit penalty



The differential measures the randomness of a random variable:

H(p) =~ [ p(x)np(x) dx.

The or relative entropy measures how to probability densities differ:
KL (qllp) = /q(x) in P& oy > 0.
q(x)

The KL is asymmetric (thus not a distance) and only zero if g(x) = p(x) for all x.



Variational Inference



Mean field variational inference [Bea03|

@ A tractable solution is found by assuming q, factorises given the data:

gw(Z,0) = H q(zn;w,) % H q(Om; ).



Mean field variational inference [Bea03]
@ A tractable solution is found by assuming q, factorises given the data:

Q)= H q(zn;w,) % H q(Om; ).

@ The ELBO is given by

—F(w) = ZE(Inp(xn]z,,, ZKL (zn; wh)llp(zn))— ZKL(q(em;Wm)Hp(em))-

@ Variational inference (or variational Bayes or variational EM) alternates between the
following two steps:

(2 W) oc € e (InP(xn20l©)) G(Om; W) o e2-0n(InPXZ18)) 5 .



Mean field variational inference [Bea03]
@ A tractable solution is found by assuming q, factorises given the data:

Q)= H q(zn;w,) % H q(Om; ).

@ The ELBO is given by

—F(w) = ZE(Inp(xn]z,,, ZKL (zn; wh)llp(zn))— ZKL(q(em;Wm)Hp(em))-

@ Variational inference (or variational Bayes or variational EM) alternates between the
following two steps:

(2 W) oc € e (InP(xn20l©)) G(Om; W) o e2-0n(InPXZ18)) 5 .

@ The algorithm iteratively and monotonically maximises the ELBO, converging to a local
maximum of the bound (not the evidence!)



Variational inference in action
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(Image credit [Bis06])



What is lost?

Gaussian-Gamma

(Image credit [Bis06])



How to make predictions?

@ The predictive distribution is approximated by plugging in the approximate posterior gy :

p(x.|X) ~ / / P(%s |20, ©) (25 W2) A(O; (Wi} m) dz, dO.

@ When analytically intractable, one can use Monte Carlo integration or heuristics based on
statistics under the approximate posterior:

p(x«|X) = p (x«[E (z.) , E(©)).



Relation to expectation-maximisation (EM) [NH93]

~F(w) = Inp(X|®) — KL (4(Z) p(Z[X. ©)),
—F(w) = E (In p(X. Z|©)) + H(q(2))..



Relation to expectation-maximisation (EM) [NHO3]

—F(w) = Inp(X[®) — KL (q(Z)[[p(Z]X, ©)),
—F(w) =E(Inp(X.Z]©)) + H(q(Z)).

@ Expectation step: q(Z) < p(Z|X, ©®°).
@ Maximisation step: ®"" = argmaxeg E (Inp(X,Z|®)).



Relation to expectation-maximisation (EM) [NHO3]

—F(w) = |np(X|9)—KT (a(2)l[p(2]X, ©)),
—F(w) = E(Inp(X, 2|®)) + H(q(Z)).

Expectation step: q(Z) < p(Z|X, ®°).
e Maximisation step: ®"" = argmaxe E (Inp(X, Z|®)).

EM guarantees monotonic increase of the bound by construction.

EM converges to local optimum of the log likelihood [Wu83].

Approximate EM if g approximates the posterior [HZWO03].



KL(q|lp)

L(q,0)

Inp(X|6)

KL(qllp) =0

£(q,6°)

lnp(X[6°)

L(q,6")

il

Inp(X|6"")

Image credit: [Bis06].




Structured variational inference [SJ95, Wie00|

argmin KL (g (Z. ©)||p(Z, ®|X, m))

@ Mean field considers a fully factorised form to find a tractable solution.

@ Structured variational inference avoids factorising when possible or imposes an
approximate posterior of a predefined specific form.



Example: mixture of Student-t distributions [AV07]

p(x|®) = Z Tm Student (X|tem, Am, Vm) ,
m

—+o00
Student (X|pem, A, vm) = Gaussian (X|fm, Auy,) Gamma (0, 1,/2. 14, /2) dup,.
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Example: mixture of Student-t distributions [AV07]

p(x|®) = Z Tm Student (X|tem, Am, Vm) ,
m

—+o00
Student (X|pem, A, vm) = Gaussian (X|fm, Auy,) Gamma (0, 1,/2. 14, /2) dup,.

— 00

~
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M

q(u,, z,) H q(Unmy Zom)  (SMM2)
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(b) Type-2 SMM, 2% of outliers.

(c) Type-1 SMM, 15% of outliers. (d) Type-2 SMM, 15% of outliers.

Robustness against outliers.
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Stochastic Variational Inference and Other Variants



Mean field variational inference (MVI)

—F(w) = ZEU” P(xn|zn, © ZKL (zn; wi)llp(zn)) — ZKL (q(Om;wm)[p(Om)) -

" —0,(w)



Mean field variational inference (MVI)

- ;E(lnp(xn\zn, ZKL (zn; wi)llp(z5)) — Zm:KL (q(Om;wm)[p(Om)) -
=n(w)

MVI can be rewritten as batch gradient ascent:
W < arg max ln(w) — KL (q(zn; wp)||p(zn)), (VE — step)

W ¢ arg max Zﬁn(w) — KL (q(0m; wm)|lp(0m)) - (VM — step)

@ Monotonic increase of the bound; converges to local maximum of ELBO
@ Priors are conjugate to the likelihood; updates are similar to Gibbs sampling.

@ Not suitable for large data sets!



Noisy, but unbiased estimates of the gradient wrt w,,

_F(w) = Ze w)—ZKL w(zn)|1p(21)) ZKL(qw O0m) || P(Om)) -



Noisy, but unbiased estimates of the gradient wrt w,,

—F(w) = Zf,,(w) - ZKL (qw(zn)llP(zn))) — Z KL (qw(0m)|lp(0m)) -

n m

B OF (w)
oW,

-2 (Z £a(w) — KL (qw(em)up(em»)



Noisy, but unbiased estimates of the gradient wrt w,,

_F(w) = Ze w)—ZKL Gw(z0)llp(zn)) ZKL(qw 0m)||p(Om)) -

- oW, = % <Z en(w) — KL (qw(gm)”p(em))>
S (PRI AIECEN



Stochastic variational inference (SVI) [HBB10]

We use stochastic gradient descent in the variational M-step:

W < Wy, + /)tN% ln(w) — (9(6m: Wim)]|P(6m)) ,
OW 1, N

where >, py = 00 and Y, p? < oc.




Stochastic variational inference (SVI) [HBB10]

We use stochastic gradient descent in the variational M-step:

0 KL (q(6,; Wi, 0,
w0 (1) - KGO0t P00 )
OW 1, N

where >, py = 00 and Y, p? < oc.

@ Stochastic approximation of the gradient [RM51]:

» Small memory footprint; sequential method.
» Requires adjusting the learning rate p;.
» Monotonic increase of bound is lost (no sanity check)



Stochastic variational inference (SVI) [HBB10]

We use stochastic gradient descent in the variational M-step:

(MW) B KL(q(Hm;wm)llp(Om))> ’

(
Wy, < Wy, + p: V-

OW 1, N

where >, py = 00 and Y, p? < oc.

@ Stochastic approximation of the gradient [RM51]:

» Small memory footprint; sequential method.
» Requires adjusting the learning rate p;.
» Monotonic increase of bound is lost (no sanity check)

@ SVI corresponds to stochastic natural gradients wrt qy,, for exponential family
distributions [HBWP13].



Incremental variational inference (IVI) [AE15]

—F(w) = Zﬁn(w) - Z KL (q(zn; wn)|[p(zn)) — Z KL (q(0m; wim)[|p(0:m)) -

——
=ty (w)



Incremental variational inference (I1VI) [AEL5]

w) = an ZKL (zn; wh)llp(zn)) — ZKL (q(Om; W) [|p(O:m)) -
n m
:ZN(W)
Let s(X,Z) =), s,(x,.z,) be the vector of sufficient statistics:
Wy, <—argmax Cy(s,w)—(,(s,.w) + (s, w) — KL(q(Om:wm)||p(0m)) .
Wm

where s%(x,,2,) is the new vector of sufficient statistics.



Incremental variational inference (I1VI) [AEL5]

w) :an( ZKL (zn; wh)lp(zn)) —ZKL(q(@m;Wm)Hp(Bm)).
n m
=ty (w)
Let s(X,Z) =), s,(x,.z,) be the vector of sufficient statistics:
Wy, <—argmax Cy(s,w)—(,(s,.w) + (s, w) — KL(q(Om:wm)||p(0m)) .
Wm
where s%(x,,2,) is the new vector of sufficient statistics.

Sequential like SVI, but maintains a batch estimate of s(X, Z).

°
@ Needs to store the sufficient statistics.
@ No parameters to tune.

°

Monotonic increase of bound is recovered!

Can be interpreted as stochastic average gradient descent [SLB13].



Relation to incremental EM

@ MVI updates can be re-written in terms of the sufficient statistics:

q(zn; wp) ox -z (InP(sn]©)) (O W) ox eB-om(nPEION (g, ).



Relation to incremental EM

@ MVI updates can be re-written in terms of the sufficient statistics:

q(zn; wp) ox -z (InP(sn]©)) (O W) ox eB-om(nPEION (g, ).

@ VI updates can be re-written in a similar fashion as in incremental EM [NH93]:

G(zn; W) o Bz (InP(:11©)), G(Om; W) ox eB-om(np(s 50 15.0)) gy,



Topic models

Arts” “‘Budgets “Children” “Education”
NEW MILLION CHILDREN  SCHOOL
FILM TAX OMEN STUDENTS
SHOW PROGRAM PEOPLI SCHOOLS
NSIC BUDGET CHILD EDUCATION
MOVIE  BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
BEST PARENTS TEACHER
ACTOR SAYS BENNETT
FIRST FAMILY MANIGAT
YORK WELFARE  NAMPHY
OPERA MEN STATE
THEATER A PERCENT  PRESIDENT
ACTRESS GOVERNMENT ~CARE ELEMENTARY
LOVE CONGRESS LIFE

‘The William Randolph Hearst Foundation will give 5125 million to Lincoln Center. Metropoli-

tan Opera Co.. New York Philharmonic and Juilliard School. “Our bosrd felt that we had a
real opportunity to make a mark on the fiure of the performing arts with these erants an act
every bit as important as our traditional areas of support in health, medical rescarch. education

and the social <er Hearst Foundation Pr

ident Randolph A. Hearst said Monday in

smouncing the wants Lincoln Center's share will be

will house young artists and provide new public facilties

New York Philharmonic will receive $100.000 each. The Juilliard School. where music and

the perforniing arts are taught, will get $250.000. The Hearst Foundation. a leading supporter

of the Lincoln Center Consolidated Corporate Fiund. will make  its usual annial $100.000
tion. too.

@ Organise and browse large document collections.
@ Capture underlying semantic structure in an unsupervised way.

@ Extremely popular (e.g., more than 22k citations in Google Scholar)



Latent Dirichlet allocation (LDA) [DMBO03]

o e Observations are word counts per docu-
. 4000) = H
== ment. LDA assumes an admixture model:
Ssooo == = =

7000} — 7:7::7:77 :77 = 777 XGNVXD

LDA infers a low-rank approximation of the matrix of counts:
E(XX)~ 30", Xg ~ Multinomial(®8y, Ny)

where ® ¢ ]RKXK, ®c REXK and K is small.



Graphical model

@O O

Ny K

04 ~ Dirichlet(alk), zp|04 ~ Categorical(6y),
¢k ~ Dirichlet(51y/), Wnl|zn, { i }K_, ~ Categorical(¢s,).



Log-predictive probability for LDA as a function of the number of
processed documents

Wikipedia Customer Review Arxiv
-7 =6
- . 1 I e S e
£-75 R £ AR £ .5 diol
g AL R g PR g
3 . 5 2 3
2 s ,' — 2 & /
g ; é’ B E 7 N
g -85 : I 3
o : 53 o3
& : & £
I / 2 2-75
= -9 H —1VI 1000 = -7.5] —1VI 2000 = —IVI 2000
i ---8VI 1000 ---SVI 2000 - --8VI2000
: =MV --Mvi --MvI
) u 10° 0.6 0.8 1 1.2 1.4 1.6 3.5 4
Documents seen (log scale) Documents seen x 10° x10°

IVI converges faster and to a higher value on all considered datasets.

(K=100, g = 0.5 and 3y = 0.05)



Yet another form of the ELBO based on the score function

—F(w)=E(Inp(X,Z,0|m)) + H(qw(Z, ®)).



Yet another form of the ELBO based on the score function

—F(w)=E(Inp(X,Z,0|m)) + H(quw(Z,0®)).

Write the gradient in terms of the score function:

~OF(w) E <0In q(zn; whp)

ow, - ow,,

(In p(xp,2n|®) — In g(zp; w,,)))

K (k)
l Z ML”) <|n p(x ng)|@) “n q(zgk). w ))
K 8Wn n ' n )

k=1

(k)

where z,,’ ~ q(z),



Black-box variational inference [RGB14]

K
2y (3W“7(Z(nk)?v‘h)(|n (xn,21©) ~ In (28 wy)
Kk:1 ow, P\Xn, Zn a\zn "y Wp )

W, < wW, +

where Y, A\t = 00 and Y, A2 < oo.

o

Algorithm

i
— Black Box VI

100,

Held Out Log Predictive Likelihood

150

0
Time (in hours)

Figure 1: Comparison between Metropolis-Hastings
within Gibbs and Black Box Variational Inference. In
the x axis is time and in the y axis is the predictive
likelihood of the test set. Black Box Variational Infer-
ence reaches better predictive likelihoods faster than
Gibbs sampling. The Gibbs sampler’s progress slows
considerably after 5 hours.



Black-box variational inference [RGB14]

(k).
9Ing(zn " wn) (ln p(xn,21©) — In g(z1; W”)) ’

W, < wW, + ow
n

x|
M=

x
Il

1

where Y, A\t = 00 and Y, A2 < oo.

o

50,
|
|
|
|
|

Algorithm

@ Remove conjugacy requirement
@ Variance reduction techniques:

» Rao-Blackwellization
» Control variates

i
| / — Black Box VI

Held Oyt Log Predictivg Likelinood

150

0 5 2
Time (in hours)

Figure 1: Comparison between Metropolis-Hastings
b Ca n be scaled u p with SVI within Gibbs and Black Box Variational Inference. In
the x axis is time and in the y axis is the predictive
likelihood of the test set. Black Box Variational Infer-
ence reaches better predictive likelihoods faster than
Gibbs sampling. The Gibbs sampler’s progress slows

considerably after 5 hours.



Other approximate inference methods

0.8 1
0.8
0.6
0.6
0.4
0.4
0.2 0.2
0 0
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3
Laplace approximation. KL (q||p) vs. KL (pl|q). [Min01]

(Image credit: [Bis06].



Further reading

Christopher Bishop (2006): Pattern Recognition and Machine Learning. [Bis06]
Kevin Murphy (2012): Machine Learning: a Probabilistic Perspective. [Murl2]

David Blei, et al. (2017): Variational Inference: a Review for Statisticians. [BKM17]
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