APPENDIX A
JOINT MARGINAL LIKELIHOOD

Let K be the number of features and D the number of observations. As detailed in Section 2.1, the conditional likelihood for the finite-dimensional three-parameter IBP is obtained by activating $K^* \leq K$ features, and then sampling the first observations for which the feature is active according to a uniform distribution and the subsequent ones according to a Beta-Bernoulli distribution. The variable K^* is distributed according to a Binomial distribution and the remaining entries follow a Beta-Bernoulli distribution. The chain rule of probability leads to the following marginal likelihood:

$$p(\tilde{\Theta}) = \text{Binomial}(K^*|\frac{\eta}{K}, K) \times \prod_{k \leq K^*} \text{BB}(\ddot{\theta}_k - 1|D - 1, 1 - \sigma + \frac{\eta \delta}{K}, \delta + \sigma),$$

where $\text{BB}(k|n, \alpha, \beta)$ is the Beta-Bernoulli distribution, which is defined as follows:

$$\text{BB}(k|n, \alpha, \beta) = \frac{\Gamma(\alpha + \beta)\Gamma(\alpha)\Gamma(\beta)\Gamma(n + \alpha + \beta)}{\Gamma(\alpha + \beta)\Gamma(n + \alpha + \beta)}.$$

Hence, in the limit of large K, the binomial tends to a Poisson distribution and the joint likelihood is independent of K:

$$\lim_{K \to \infty} P(\tilde{\Theta}) = \exp \left(-\eta \sum_{j=0}^{D-1} \frac{\Gamma(1 + \delta)\Gamma(j + \delta + \sigma)}{\Gamma(j + 1 + \delta)\Gamma(\delta + \sigma)} \right) \eta^{K^*} \times \prod_{k \leq K^*} \frac{\Gamma(1 + \delta)\Gamma(D - \ddot{\theta}_k + \delta + \sigma)\Gamma(\ddot{\theta}_k - \sigma)}{\Gamma(1 - \sigma)\Gamma(\delta + \sigma)\Gamma(D + \delta)},$$

which is the same expression as the one found in [?]. It is straightforward to show that the marginal likelihood of the two-parameter IBP is recovered for $\sigma = 0$.

APPENDIX B
ON THE HIERARCHICAL PITMAN-YOR PROCESS

HPY-LDA is an extension of HDP-LDA where the DP priors (1-2) are replaced by PYB priors, i.e., $H \sim \text{PYB}(\alpha_0, H_0, \sigma_0)$ and $G_d \sim \text{PYB}(\alpha H, \sigma)$, where σ_0 and σ denote the discount parameters. It should be noted that this model is only able to capture power-law distributions in the topics, but not in the words. We implemented a Chinese restaurant franchise Gibbs sampler for HPY-LDA by modifying Teh’s code for HDP-LDA. We fixed the discount parameters σ_0 and σ respectively to 0 and 0.25. We also tried the values $\sigma_0 = \sigma = 0.5$ following [?], as well as $\sigma_0 = 0$ and $\sigma = 0.1$, but they led to worse performances and we do not report the results here. Other details of the experimental setup are identical to that of HDP-LDA described in Section 5.3. It should be noted that we do not consider a truncated version of HPY-LDA like [?]. Moreover, we believe their sampler (Algorithm 6, specifically) is incorrect. While sampling the topic for a word, we would have to first choose a topic and then choose a table serving that topic, which would require additional book-keeping.