
Learning Representations for

Hyperparameter Transfer Learning

Cédric Archambeau
cedrica@amazon.com

DALI 2018
Lanzarote, Spain

My co-authors

Rodolphe Jenatton Valerio Perrone Matthias Seeger

Tuning deep neural nets for optimal performance

LeNet5 [LBBH98]

The search space X is large and diverse:

Architecture: # hidden layers, activation functions, . . .

Model complexity: regularization, dropout, . . .

Optimisation parameters: learning rates, momentum, batch size, . . .

Two straightforward approaches

(Figure by Bergstra and Bengio, 2012)

Exhaustive search on a regular or random grid

Complexity is exponential in p

Wasteful of resources, but easy to parallelise

Memoryless

Can we do better?

Hyperparameter transfer learning

Hyperparameter transfer learning

Hyperparameter transfer learning

Hyperparameter transfer learning

Democratising machine learning

Abstract away training algorithms

Abstract away representation (feature engineering)

Abstract away computing infrastructure

Abstract away memory constraints

Abstract away network architecture

Black-box global optimisation

The function f to optimise can be non-convex.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.

Black-box global optimisation

The function f to optimise can be non-convex.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.

Example: tuning deep neural nets [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) is the validation loss of the neural net as a function of its hyperparameters x.

Evaluating f (x) is very costly ≈ up to weeks!

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

2 Given the observations y = (y1, . . . , yn), compute the predictive mean and the predictive
standard deviation:

3 Repeatedly query f by balancing exploitation against exploration!

Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi) ∼ Gaussian
(
f (xi), ς2

)
, f (x) ∼ GP(0,K).

2 Given the observations y = (y1, . . . , yn), compute the predictive mean and the predictive
standard deviation:

3 Repeatedly query f by balancing exploitation against exploration!

Bayesian optimisation in practice

(Image credit: Javier González)

What is wrong with the Gaussian process surrogate?

Scaling is O
(
N3
)
.

Adaptive Bayesian linear regression (ABLR) [Bis06]

The model:

P(y|w, z, β) =
∏
n

N (φz(xn)w, β−1),

P(w|α) = N (0, α−1ID).

The predictive distribution:

P(y∗|x∗,D) =

∫
P(y∗|x∗,w)P(w|D)dw

= N (µt(x
∗), σ2t (x∗))

Multi-task ABLR for transfer learning

1 Multi-task extension of the model:

P(yt |wt , z, βt) =
∏
nt

N (φz(xnt)wt , β
−1
t), P(wt |αt) = N (0, α−1t ID).

2 Shared features φz(x):
I Explicit features set (e.g., RBF)
I Random kitchen sinks [RR+07]
I Learned by feedforward neural net

3 Multi-task objective:

ρ
(
z, {αt , βt}Tt=1

)
= −

T∑
t=1

logP(yt |z, αt , βt)

Warm-start procedure for hyperparameter optimisation (HPO)

Leave-one-task out.

A representation to optimise parametrised quadratic functions

0 10 20 30 40 50

iteration

5

0

5

10

15

20

25

30

35

b
e
st

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

ABLR NN transfer (ctx)

GP

GP transfer (ctx)

Transfer learning with baselines [KO11].

0 10 20 30 40 50

iteration

5

0

5

10

15

20

25

30

35

b
e
st

DNGO

DNGO transfer (ctx)

BOHAMIANN

BOHAMIANN transfer (ctx)

ABLR NN

ABLR NN transfer

ABLR NN transfer (ctx)

Transfer learning with neural nets [SRS+15, SKFH16].

ft(x) =
a2,t

2
‖x‖2 + a1,t1

>x + a0,t

A representation to warm-start HPO across OpenML data sets

0 50 100 150 200

iteration

8

9

10

11

12

13

(1
 -

 A
U

C
)

*
1
0
0

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

GP

GP transfer (ctx, L1)

Transfer learning in SVM.

50 100 150 200

iteration

7.0

7.2

7.4

7.6

7.8

8.0

8.2

(1
 -

 A
U

C
)

*
1
0
0

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

GP

GP transfer (ctx, L1)

Transfer learning in XGBoost.

Learning better representations by jointly modelling multiple signals

Tasks are now auxiliary signals (related to the target function to optimise).

The target is still the validation loss f (x).

Examples are training cost or training loss.

A representation for transfer learning across OpenML data sets

50 100 150 200 250 300

iteration

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

T
e
st

 e
rr

o
r

*
1

0
0

Random search

ABLR

ABLR train loss (2)

GP

ABLR cost (2)

ABLR cost + train loss (3)

ABLR cost + epochwise train loss (21)

Transfer learning accross LIBSVM data sets.

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.

Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.

cedrica@amazon.com

References I

James Bergstra and Yoshua Bengio.

Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

C. M. Bishop.

Pattern Recognition and Machine Learning.

Springer New York, 2006.

Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.

Bayesian optimization with tree-structured dependencies.

In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning (ICML), volume 70 of Proceedings of Machine Learning Research, pages 1655–1664, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Donald R Jones, Matthias Schonlau, and William J Welch.

Efficient global optimization of expensive black-box functions.

Journal of Global Optimization, 13(4):455–492, 1998.

References II

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.

Fast Bayesian optimization of machine learning hyperparameters on large datasets.

Technical report, preprint arXiv:1605.07079, 2016.

Andreas Krause and Cheng S Ong.

Contextual gaussian process bandit optimization.

In Advances in Neural Information Processing Systems (NIPS), pages 2447–2455, 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.

The application of Bayesian methods for seeking the extremum.

Towards Global Optimization, 2(117-129):2, 1978.

V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau.

Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start.

ArXiv e-prints, December 2017.

References III

Ali Rahimi, Benjamin Recht, et al.

Random features for large-scale kernel machines.

In Advances in Neural Information Processing Systems (NIPS) 20, pages 1177–1184, 2007.

Matthias Seeger, Asmus Hetzel, Zhenwen Dai, and Neil D Lawrence.

Auto-differentiating linear algebra.

Technical report, preprint arXiv:1710.08717, 2017.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter.

Bayesian optimization with robust Bayesian neural networks.

In Advances in Neural Information Processing Systems (NIPS), pages 4134–4142, 2016.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.

Practical Bayesian optimization of machine learning algorithms.

In Advances in Neural Information Processing Systems (NIPS), pages 2960–2968, 2012.

References IV

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams.

Scalable Bayesian optimization using deep neural networks.

In Proceedings of the International Conference on Machine Learning (ICML), pages 2171–2180, 2015.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas.

Taking the human out of the loop: A review of Bayesian optimization.

Proceedings of the IEEE, 104(1):148–175, 2016.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo.

OpenML: networked science in machine learning.

ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

