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Tuning deep neural nets for optimal performance

LeNet5 [LBBH98]

The search space X is large and diverse:

Architecture: # hidden layers, activation functions, . . .

Model complexity: regularization, dropout, . . .

Optimisation parameters: learning rates, momentum, batch size, . . .



Two straightforward approaches

(Figure by Bergstra and Bengio, 2012)

Exhaustive search on a regular or random grid

Complexity is exponential in p

Wasteful of resources, but easy to parallelise

Memoryless



Can we do better?



Hyperparameter transfer learning
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Democratising machine learning

Abstract away training algorithms

Abstract away representation (feature engineering)

Abstract away computing infrastructure

Abstract away memory constraints

Abstract away network architecture



Black-box global optimisation

The function f to optimise can be non-convex.

The number of hyperparameters p is moderate
(typically < 20).

Our goal is to solve the following optimisation problem:

x? = argmin
x∈X

f (x).

Evaluating f (x) is expensive.

No analytical form or gradient.

Evaluations may be noisy.
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Example: tuning deep neural nets [SLA12, SRS+15, KFB+16]

LeNet5 [LBBH98]

f (x) is the validation loss of the neural net as a function of its hyperparameters x.

Evaluating f (x) is very costly ≈ up to weeks!



Bayesian (black-box) optimisation [MTZ78, SSW+16]

x? = argmin
x∈X

f (x)

Canonical algorithm:

Surrogate model M of f #cheaper to evaluate

Set of evaluated candidates C = {}
While some BUDGET available:

I Select candidate xnew ∈ X using M and C #exploration/exploitation
I Collect evaluation ynew of f at xnew #time-consuming
I Update C = C ∪ {(xnew, ynew)}
I Update M with C #Update surrogate model
I Update BUDGET
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Bayesian (black-box) optimisation with Gaussian processes [JSW98]

1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi ) ∼ Gaussian
(
f (xi ), ς2

)
, f (x) ∼ GP(0,K).
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1 Learn a probabilistic model of f , which is cheap to evaluate:

yi |f (xi ) ∼ Gaussian
(
f (xi ), ς2

)
, f (x) ∼ GP(0,K).

2 Given the observations y = (y1, . . . , yn), compute the predictive mean and the predictive
standard deviation:

3 Repeatedly query f by balancing exploitation against exploration!
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Bayesian optimisation in practice

(Image credit: Javier González)



What is wrong with the Gaussian process surrogate?

Scaling is O
(
N3
)
.



Adaptive Bayesian linear regression (ABLR) [Bis06]

The model:

P(y|w, z, β) =
∏
n

N (φz(xn)w, β−1),

P(w|α) = N (0, α−1ID).

The predictive distribution:

P(y∗|x∗,D) =

∫
P(y∗|x∗,w)P(w|D)dw

= N (µt(x
∗), σ2t (x∗))



Multi-task ABLR for transfer learning

1 Multi-task extension of the model:

P(yt |wt , z, βt) =
∏
nt

N (φz(xnt )wt , β
−1
t ), P(wt |αt) = N (0, α−1t ID).

2 Shared features φz(x):
I Explicit features set (e.g., RBF)
I Random kitchen sinks [RR+07]
I Learned by feedforward neural net

3 Multi-task objective:

ρ
(
z, {αt , βt}Tt=1

)
= −

T∑
t=1

logP(yt |z, αt , βt)





Warm-start procedure for hyperparameter optimisation (HPO)

Leave-one-task out.



A representation to optimise parametrised quadratic functions
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Transfer learning with baselines [KO11].
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Transfer learning with neural nets [SRS+15, SKFH16].
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2
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>x + a0,t



A representation to warm-start HPO across OpenML data sets

0 50 100 150 200

iteration

8

9

10

11

12

13

(1
 -

 A
U

C
) 

* 
1
0
0

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

GP

GP transfer (ctx, L1)

Transfer learning in SVM.
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Transfer learning in XGBoost.



Learning better representations by jointly modelling multiple signals

Tasks are now auxiliary signals (related to the target function to optimise).

The target is still the validation loss f (x).

Examples are training cost or training loss.



A representation for transfer learning across OpenML data sets
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Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.



Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.



Conclusion

Bayesian optimisation automates machine learning:

Algorithm tuning

Model tuning

Pipeline tuning

Bayesian optimisation is a model-based approach that can
leverage auxiliary information:

It can exploit dependency structures [JAGS17]

It can be extended to warm-start HPO jobs [PJSA17]

It is a key building block of meta-learning

Effective representations for HPO transfer learning can be
learned.



cedrica@amazon.com



References I

James Bergstra and Yoshua Bengio.

Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13:281–305, 2012.

C. M. Bishop.

Pattern Recognition and Machine Learning.

Springer New York, 2006.

Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.
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