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ABSTRACT
Probabilistic models of sequences play a central role in most
machine translation, automated speech recognition, lossless
compression, spell-checking, and gene identification applica-
tions to name but a few. Unfortunately, real-world sequence
data often exhibit long range dependencies which can only
be captured by computationally challenging, complex mod-
els. Sequence data arising from natural processes also often
exhibit power-law properties, yet common sequence mod-
els do not capture such properties. The sequence memoizer
is a new hierarchical Bayesian model for discrete sequence
data that captures long range dependencies and power-law
characteristics while remaining computationally attractive.
Its utility as a language model and general purpose lossless
compressor is demonstrated.

1. INTRODUCTION
It is an age-old quest to predict what comes next in se-

quences. Fortunes have been made and lost on the success
and failure of such predictions. Heads or tails? Will the
stock market go up by five percent tomorrow? Is the next
card drawn from the deck going to be an ace? Does a partic-
ular sequence of nucleotides appear more often then usual
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in a DNA sequence? In a sentence, is the word that fol-
lows the United going to be States, Arab, Parcel, Kingdom,
or something else? Using a probabilistic model of sequences
fit to a particular set of data is usually an effective way of
answering these kinds of questions.

Consider the general task of sequence prediction. For
some sequences, the true probability distribution of the next
symbol does not depend on the previous symbols in the se-
quence. For instance, consider flipping a coin that comes
up heads with probability p or tails with probability 1 − p
every time it is flipped. Subsequent flips of such a coin are
completely independent and have the same distribution (in
statistics, such coin flips are called independent and iden-
tically distributed (iid)). In particular, heads will occur
with probability p irrespective of whether previous flips have
come up heads or tails. Assuming we observe a sequence of
such coin flips, all we need to do is to estimate p in order to
fully characterize the process that generated the data.

For more interesting processes the distribution of the next
symbol often depends in some complex way on previous out-
comes. One example of such a process is natural language
(sequences of words). In English, the distribution of words
that follow the single-word context United is quite different
from the distribution of words that follow Cricket and rugby
are amongst the most popular sports in the United. In the
first case the distribution is relatively broad (though not
nearly as broad as the distribution given no context at all),
giving significant probability to words such as States, King-
dom, Airlines, and so forth, whereas in the second case the
distribution is almost certainly highly peaked around King-
dom. Information from distant context (Cricket and rugby)
impacts the distribution of the next word profoundly. Pro-
duction of natural language is but one example of such a
process; the real world is replete with other examples.

Employing models that capture long range contextual de-
pendencies will often improve one’s ability to predict what
comes next, as illustrated in the example above. Of course,
modeling the distribution of the next symbol emitted by
a process will only be improved by consideration of longer
contexts if the generating mechanism actually does exhibit



long range dependencies. Unfortunately, building models
that capture the information contained in longer contexts
can be difficult, both statistically and computationally. The
sequence memoizer captures such long range dependencies
in a way that is both statistically effective and scales well
computationally.

While the sequence memoizer and related models are use-
ful for predicting the continuation of sequences, prediction
is not the only application for these models. Automated
speech recognition and machine translation require assess-
ing the typicality of sequences of words (i.e. Is this sentence
a probable English sentence?). Speaker or writer identifi-
cation tasks require being able to distinguish typicality of
phrases under word sequence models of different writers’
styles. Classifying a sequence of machine instructions as
malicious or not requires establishing the typicality of the
sequence under each class. Models of sequences can be used
for predicting the continuation of sequences, clustering or
classifying sequences, detecting change points in sequences,
filling in gaps, compressing data, and more.

In this article we describe the sequence memoizer in terms
of general sequences over a discrete alphabet of symbols,
though often we will refer to sequences of words when giving
intuitive explanations.

2. PREDICTING SEQUENCES
To start, let Σ be the set of symbols that can occur in some

sequence. This set can consist of dictionary entries, ASCII
values, or {A,C,G, T} in case of DNA sequences. Suppose
that we are given a sequence1 x = x1, x2, . . . , xT of symbols
from Σ and would like to estimate the probability that the
next symbol takes on a particular value.

One way to estimate the probability that the next symbol
takes some value s ∈ Σ is to use the relative frequency of its
occurrence in x, i.e. if s occurs frequently in x we expect its
probability of appearing next to be high as well. Assuming
that x is long enough, doing this will be better than giving
equal probability to all symbols in Σ. Let us denote by
N(s) the number of occurrences of s in x. Our estimate of
the probability of s being the next symbol is then G(s) =
N(s)/T = N(s)/

∑
s′∈Σ N(s′). The function G is a discrete

distribution over the elements of Σ: it assigns a non-negative
number G(s) to each symbol s signifying the probability of
observing s, with the numbers summing to one over Σ.

Of course, this approach is only reasonable if the process
generating x has no history dependence (e.g. if x is produced
by a sequence of tosses of a biased coin). It is highly un-
satisfying if there are contextual dependencies which we can
exploit. If we start accounting for context, we can quickly
improve the quality of the predictions we make. For in-
stance why not take into account the preceding symbol? Let
u be another symbol. If the last symbol in x is u, then we
can estimate the probability of the next symbol being s by
counting the number of times s occurs after u in x. As
before, we can be more precise and define

Gu(s) =
N(us)∑

s′∈Σ N(us′)
(1)

to be the estimated probability of s occurring after u, where

1It is straightforward to consider multiple sequences in our
setting, we consider being given only one sequence in this
paper for simplicity.

N(us) is the number of occurrences of the subsequence us
in x. The function Gu is again a discrete distribution over
the symbols in Σ, but it is now a conditional distribution as
the probability assigned to each symbol s depends on the
context u.

In the hope of improving our predictions it is natural to
extend this counting procedure to contexts of length greater
than one. The extension of this procedure to longer con-
texts is notationally straightforward, requiring us only to
re-interpret u as a sequence of length n ≥ 1 (in fact, for the
remainder of this article boldface type variables will indicate
sequences, and we will use Σ∗ to denote the set of all finite
sequences). Unfortunately, using this exact procedure for
estimation with long contexts leads to difficulties which we
will consider next.

3. MAXIMUM LIKELIHOOD
Some readers may realize that the counting procedure de-

scribed above corresponds to an ubiquitous statistical esti-
mation technique called maximum likelihood (ML) estima-
tion. The general ML estimation set-up is as follows: we
observe some data x which is assumed to have been gener-
ated by some underlying stochastic process and wish to esti-
mate parameters Θ for a probabilistic model of this process.
A probabilistic model defines a distribution P (x|Θ) over x
parameterized by Θ, and the maximum likelihood estimator
is the value of Θ maximizing P (x|Θ). In our case the data
consists of the observed sequence, and the parameters are
the conditional distributions Gu for some set of u’s.

In a sense maximum likelihood is an optimistic procedure,
in that it assumes that x is an accurate reflection of the true
underlying process that generated it, so that the maximum
likelihood parameters will be an accurate estimate of the
true parameters. It is this very optimism that is its Achilles
heel, since it becomes overly confident about its estimates.
This situation is often referred to as overfitting. To elaborate
on this point, consider the situation in which we have long
contexts. The denominator of (1) counts the number of
times that the context u occurs in x. Since x is of finite
length, when u is reasonably long the chance that u never
occurs at all in x can be quite high, so (1) becomes undefined
with a zero denominator. More pernicious still is if we are
“lucky”and u did occur once or a few times in x. In this case
(1) will assign high probability to the few symbols that just
by chance did follow u in x, and zero probability to other
symbols. Does it mean that these are the only symbols we
expect to see in the future following u, or does it mean that
the amount of data we have in x is insufficient to characterize
the conditional distribution Gu? Given a complex process
with many parameters the latter is often the case, leading to
ML estimates that sharpen far too much around the exact
observations and don’t reflect our true uncertainty.

Obviously, if one uses models that consider only short con-
text lengths, this problem can largely be avoided if one has
enough data to estimate some (relatively) smaller number of
conditional distributions. This is precisely what is typically
done: one makes a fixed-order Markov assumption and re-
stricts oneself to estimating collections of distributions con-
ditioned on short contexts (for instance an nth-order Markov
model, or an m-gram language model). The consequence of
doing this is that maximum likelihood estimation becomes
feasible, but longer-range dependencies are discarded. By
assumption and design they cannot be accounted for by such
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Figure 1: Illustration of the power-law scaling of
word frequencies in English text. The relative word
frequency (estimated from a large corpus of writ-
ten text) is plotted against each word’s rank when
ordered according to frequency. One can see that
there are a few very common words and a large num-
ber of relatively rare words; in fact, the 200 most
common words account for over 50% of the observed
text. The rank/frequency relationship is very close
to a pure power law relationship which would be a
perfectly straight line on this log-log plot. Also plot-
ted are samples drawn from a Pitman-Yor process
(in blue) and a Dirichlet distribution (in red) fitted
to the data. The Pitman-Yor captures the power-
law statistics of the English text much better than
the Dirichlet.

restrictive models.
Even having imposed such a restriction, overfitting of-

ten remains an issue. This has led to the development of
creative approaches to its avoidance. The language model-
ing and text compression communities have generally called
these smoothing or back-off methodologies (see [3] and refer-
ences therein). In the following we will propose a Bayesian
approach that retains uncertainty in parameter estimation
and thus avoids over-confident estimates.

4. BAYESIAN MODELING
As opposed to maximum likelihood, the Bayesian approach

is inherently conservative. Rather than trusting the data
fully, Bayesian parameter estimation incorporates both ev-
idence from the data as well as from prior knowledge of
the underlying process. Furthermore, uncertainty in esti-
mation is taken into account by treating the parameters
Θ as random, endowed with a prior distribution P (Θ) re-
flecting the prior knowledge we have about the true data
generating process. The prior distribution is then com-
bined with the likelihood P (x|Θ) to yield, via Bayes’ Theo-
rem (the namesake of the approach), the posterior distribu-
tion P (Θ|x) = P (Θ)P (x|Θ)/P (x) which specifies the belief
about the parameter Θ after combining both sources of in-
formation. Computations such as prediction are then done
taking into account the a posteriori uncertainty about the
underlying parameters.

What kinds of prior knowledge about natural sequence
data might we wish to employ? We make use of two: that
natural sequence data often exhibits power-law properties,
and that conditional distributions of similar contexts tend to

be similar themselves, particularly in the sense that recency
matters. We will consider each of these in turn in the rest
of this section.

4.1 Power-Law Scaling
As with many other natural phenomena like social net-

works and earthquakes, occurrences of words in a language
follow a power-law scaling [23]. This means that there are
a small number of words that occur disproportionately fre-
quently (e.g. the, to, of), and a very large number of rare
words that, although each occurs rarely, when taken to-
gether make up a large proportion of the language. The
power-law scaling in written English is illustrated in Fig-
ure 1. In this subsection we will describe how to incorpo-
rate prior knowledge about power-law scaling in the true
generative process into our Bayesian approach. To keep the
exposition simple, we will start by ignoring contextual de-
pendencies and instead focus only on one way of estimating
probability distributions that exhibit power-law scaling.

To see why it is important to incorporate knowledge about
power-law scaling, consider again the maximum likelihood
estimate given by the relative frequency of symbol occur-
rences G(s) = N(s)/

∑
s′∈Σ N(s′). For the frequently oc-

curring symbols, their corresponding probabilities will be
well estimated since they are based on many observations of
the symbols. On the other hand, our estimates of the rare
symbol probabilities will not be good at all. In particular,
if a rare symbol did not occur in our sequence (which is
likely), our estimate of its probability will be zero, while the
probability of a rare symbol that did occur just by chance in
our sequence will be overestimated. Since most symbols in
Σ will occur quite rarely under a power-law, our estimates
of G(s) will often be inaccurate.

To encode our prior knowledge about power-law scaling,
we use a prior distribution called the Pitman-Yor process
(PYP) [15], which is a distribution over the discrete proba-
bility distribution G = {G(s)}s∈Σ. It has three parameters:
a base distribution G0 = {G0(s)}s∈Σ which is the mean of
the PYP and reflects our prior belief about the frequencies
of each symbol, a discount parameter α between 0 and 1
which governs the exponent of the power-law, and a con-
centration parameter c which governs the variability around
the mean G0. When α = 0 the Pitman-Yor process loses its
power-law properties and reduces to the more well-known
Dirichlet process. In this paper we assume c = 0 instead for
simplicity; see [6] for the more general case when c is allowed
to be positive. When we write G ∼ PY(α,G0) it means that
G has a prior given by a Pitman-Yor process with the given
parameters. Figure 1 illustrates the power-law scaling pro-
duced by Pitman-Yor processes.

To convey more intuition about the Pitman-Yor process
we can consider how using it affects our estimate of sym-
bol frequencies. Note that in our Bayesian framework G is
random, and one of the standard steps in a procedure called
inference is to estimate a posterior distribution P (G|x) from
data. The probability that symbol s ∈ Σ occurs next is then:

P (xT+1 = s|x) =

∫
P (xT+1 = s|G)P (G|x)dG = E[G(s)],

(2)

where E in this case stands for expectation with respect to
the posterior distribution P (G|x). This integral is a stan-
dard Bayesian computation that sometimes has an analytic



solution but often does not. When it does not, like in this sit-
uation, it is often necessary to turn to numerical integration
approaches, including sampling and Monte Carlo integration
[16].

In the case of the Pitman-Yor process, E[G(s)] can be
computed as described at a high level in the following way.
In addition to the counts {N(s′)}s′∈Σ, assume there is an-
other set of random “counts” {M(s′)}s′∈Σ satisfying 1 ≤
M(s′) ≤ N(s′) if N(s′) > 0 and M(s′) = 0 otherwise. The
probability of symbol s ∈ Σ occurring next is then given by:

E[G(s)] = E
[
N(s)− αM(s) +

∑
s′∈Σ αM(s′)G0(s)∑

s′∈Σ N(s′)

]
. (3)

Given this, it is natural to ask what purpose these M(s)’s
serve? By studying (3) it can be seen that eachM(s) reduces
the count N(s) by αM(s) and that the total amount sub-
tracted is then redistributed across all symbols in Σ propor-
tionally according to the symbols’ probability under the base
distribution G0. Thus non-zero counts are usually reduced,
with larger counts typically reduced by a larger amount. Do-
ing this mitigates the overestimation of probabilities of rare
symbols that happen to appear by chance. On the other
hand, for symbols that did not appear at all, the estimates
of their probabilities are pulled upwards from zero, mitigat-
ing underestimation of their probability. We describe this
effect as “stealing from the rich and giving to the poor.”
This is precisely how the Pitman-Yor process manifests a
power-law characteristic. If one thinks of the M(s)’s and α
as parameters then one could imagine ways to set them to
best describe the data. Intuitively this is not at all far from
what is done, except that the M(s)’s and α are themselves
treated in a Bayesian way, i.e. we average over them under
the posterior distribution in (3).

4.2 Context Trees
We now return to making use of the contextual dependen-

cies in x and to estimating all of the conditional distribu-
tions Gu relevant to predicting symbols following a general
context u. The assumption we make is that if two contexts
are similar, then the corresponding conditional distributions
over the symbols that follow those contexts will tend to be
similar as well. A simple and natural way of defining sim-
ilarity between contexts is that of overlapping contextual
suffixes. This is easy to see in a concrete example from lan-
guage modeling. Consider the distribution over words that
would follow u = in the United States of. The assumption
we make is that this distribution will be similar to the dis-
tribution following the shorter context, the United States of,
which we in turn expect to be similar to the distribution fol-
lowing United States of. These contexts all share the same
length three suffix.

In this section and the following one, we will discuss how
this assumption can be codified using a hierarchical Bayesian
model [11, 8]. To start we will only consider fixed, finite
length contexts. When we do this we say that we are making
an nth order Markov assumption. This means that each
symbol only depends on the last n observed symbols. Note
that this assumption dictates that distributions are not only
similar but equal among contexts whose suffixes overlap in
their last n symbols. This equality constraint is a strong
assumption that we will relax in Section 5.

We can visualize the similarity assumption we make by
constructing a context tree: Arrange the contexts u (and

the associated distributions Gu) in a tree where the parent
of a node u, denoted σ(u), is given by its longest proper
suffix (i.e. u with its first symbol from the left removed).
Figure 2 gives an example of a context tree with n = 3
and Σ = {0, 1}. Since for now we are making an nth or-
der Markov assumption, it is sufficient to consider only the
contexts u ∈ Σ∗n = {u′ ∈ Σ∗ : |u′| ≤ n} of length at most
n. The resulting context tree has height n+ 1 and the total
number of nodes in the tree grows exponentially in n. The
memory complexity of models built on such context trees
usually grows too large too quickly for reasonable values of
n and |Σ|. This makes it nearly impossible to estimate
all of the distributions Gu in the näıve way described in
Section 2. This estimation problem led us to hierarchical
Bayesian modeling using Pitman-Yor processes.

4.3 Hierarchical Pitman-Yor Processes
Having defined a context tree and shown that the Pitman-

Yor prior over distributions exhibits power-law characteris-
tics, it remains to integrate the two.

Recall that G ∼ PY(α,G0) means that G is a random
distribution with a Pitman-Yor process prior parameterized
by a discount parameter α and a base distribution G0. The
expected value of G under repeated draws from the Pitman-
Yor process is the base distribution G0. Because of this
fact we can use this process to encode any assumption that
states that on average G should be similar to G0. To be
clear, this is just a prior assumption. As always, observing
data may lead to a change in our belief. We can use this
mechanism to formalize the context tree notion of similarity.
In particular, to encode the belief that Gu should be similar
to Gσ(u), we can use a Pitman-Yor process prior for Gu with
base distribution Gσ(u). We can apply the same mechanism
at each node of the context tree, leading to the following
model specification:

Gε ∼ PY(α0, G0) (4)

Gu|Gσ(u) ∼ PY(α|u|, Gσ(u)) for all u ∈ Σ∗n\ε
xi|xi−n:i−1 = u, Gu ∼ Gu for i = 1, . . . , T

The second line says that a priori the conditional distribu-
tion Gu should be similar to Gσ(u), its parent in the con-
text tree. The variation of Gu around its mean Gσ(u) is
described by a Pitman-Yor process with a context length-
dependent discount parameter α|u|. At the top of the tree
the distribution Gε for the empty context ε is similar to an
overall base distribution G0, which specifies our prior belief
that each symbol s will appear with probability G0(s). The
third line describes the nth order Markov model for x: It
says that the distribution over each symbol xi in x, given
that its context consisting of the previous n symbols xi−n:i−1

is u, is simply Gu.
The hierarchical Bayesian model in (4) is called the hi-

erarchical Pitman-Yor process [18]. It formally encodes our
context tree similarity assumption about the conditional dis-
tributions using dependence among them induced by the hi-
erarchy, with more similar distributions being more depen-
dent. It is this dependence which allows the model to share
information across the different contexts, and subsequently
improve the estimation of all conditional distributions. It is
worth noting that there is a well known connection between
the hierarchical PYP and a type of smoothing for m-gram
language models called interpolated Kneser-Ney [10, 18].
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Figure 2: (a) Full context tree containing all contexts up to length 3 over symbol set Σ = {0, 1}. (b) Context
tree actually needed for the string 0110. Observations in the context in which they were observed are denoted
in gray below the corresponding context. (c) Compact context tree for the same string, with non-branching
chains marginalized out.

5. SEQUENCE MEMOIZER
The name sequence memoizer (SM) refers to both an ex-

tension of the hierarchical PYP model presented in the pre-
vious section, as well as to the set of techniques required to
make practical use of the extended model. We first describe
how the SM model extends the hierarchical PYP model and
then discuss how to reduce the complexity of the model to
make it computationally tractable. Finally, we sketch how
inference is done in the SM.

5.1 The Model
The SM model is a notationally subtle but important ex-

tension to the hierarchical PYP model (4) described in the
previous section. Instead of limiting the context lengths to
n, the model is extended to include the set of distributions
in all contexts of any (finite) length. This means that the
distribution over each symbol is now conditioned on all pre-
vious symbols, not just the previous n.

Formally, the sequence memoizer model is defined ex-
actly as the hierarchical PYP model in equation (4), but
with two differences. First, the contexts range over all fi-
nite non-empty strings, u ∈ Σ∗\ε. Second, in the third
line of (4), instead of conditioning only on the previous
n symbols, we condition on all previous symbols, so that
xi|x1:i−1 = u, Gu ∼ Gu. The assumptions embodied in the
resulting model remain the same as that for the hierarchi-
cal PYP model: power-law scaling and similarity between
related contexts.

The sequence memoizer model can be interpreted as the
limit of a hierarchical PYP model as the Markov order n
tends to infinity. One’s first impression of such a model
might be that it would be impossible to handle, both statis-
tically because of overfitting and other problems, and com-
putationally because the model as described so far cannot
even be represented in a computer with finite memory! For-
tunately the Bayesian approach, where we compute the pos-
terior distribution and marginalize over the parameters as
in (2) to obtain estimators of interest, prevents overfitting.
Additionally, the techniques we develop in the next subsec-
tion make computation in this model practical.

5.2 Compacting the Context Tree
While lifting the finite restriction on context lengths seems

very desirable from a modeling perspective, the resulting SM
model is a prior over an infinite number of parameters (con-

ditional distributions) {Gu}u∈Σ∗ . In order to compute in
this model, the number of conditional distributions that are
accessed must be reduced to a finite number. The key to
realizing that this is possible is that given a finite length
sequence of symbols x we only need access to a finite num-
ber of conditional distributions. In particular, we only need
Gx1:i where i = 0 . . . T and all the ancestors of each Gx1:i in
the context tree. The ancestors are needed because each Gu

has a prior that depends on its parent Gσ(u). The resulting
set of conditional distributions that the sequence x actually
depends on consists of Gu where u ranges over all contigu-
ous substrings of x, a finite set of O(T 2) contexts. All other
contexts in the tree can effectively be ignored. We denote
this subtree of the context tree that x actually depends on
by T (x); Figure 2b shows an example with x = 0110.

Computation with such a quadratically sized context tree
is possible but inefficient, especially if the sequence length is
large. A second step reduces the tree down to a linear num-
ber of nodes. The key observation underlying this reduction
is that many of the contexts that appear in T (x) only appear
in non-branching chains, i.e. each node on the chain only has
one child in T (x). For example, in Figure 2b, the context
11 only occurs as a suffix of the longer context 011, and is

part of the non-branching chain G1
1→ G11

0→ G011. In such
a situation, G11 serves no purpose except to relate G011 with
G1. If we can directly express the prior of G011 in terms of
G1, then we can effectively ignore G11 and marginalize it
out from the model.

Fortunately, a remarkable property related to an opera-
tion on Pitman-Yor processes called coagulation allows us to
perform this marginalization exactly [14]. Specifically in the
case of G11|G1 ∼ PY(α2, G1) and G011|G11 ∼ PY(α3, G11),
the property states simply that G011|G1 ∼ PY(α2α3, G1)
where G11 has been marginalized out. In other words, the
prior for G011 is another Pitman-Yor process whose discount
parameter is simply the product of the discount parameters
along the chain leading into it on the tree T (x), while the
base distribution is simply the head of the chain G1.

In general, applying the same marginalization procedure
to all the non-branching chains of T (x), we obtain a compact

context tree T̂ (x) where all internal nodes have at least two
children (all others have been integrated out). This is illus-
trated in Figure 2c, where each chain is replaced by an edge
labeled by the sequence of symbols on the original edges of

the chain (in the example only G1
1→ G11

0→ G011 is replaced



by G1
01→ G011). One can easily show that the number nodes

in the compact context tree T̂ (x) is at most twice the length
of the sequence x (independent of |Σ|).

At this point some readers may notice that the compact
context tree has a structure reminiscent of a data structure
for efficient string operations called a suffix tree [9]. In fact
the structure of the compact context tree is given by the
suffix tree for the reverse sequence xT , xT−1, . . . , x1. Similar
extensions from fixed-length to unbounded-length contexts,
followed by reductions in the context trees have also been
developed in the compression literature [4, 19].

5.3 Inference and Prediction
As a consequence of the two marginalization steps de-

scribed in the previous subsection, inference in the full se-
quence memoizer model with an infinite number of param-
eters is equivalent to inference in the compact context tree
T̂ (x) with a linear number of parameters. Further, the prior

over the conditional distributions on T̂ (x) still retains the
form of a hierarchical Pitman-Yor process: each node still
has a Pitman-Yor process prior with its parent as the base
distribution. This means that inference algorithms devel-
oped for the finite-order hierarchical PYP model can be
easily adapted to the sequence memoizer. We will briefly
describe the inference algorithms we employ.

In the SM model we are mainly interested in the pre-
dictive distribution of the next symbol being some s ∈ Σ
given some context u, conditioned on an observed sequence
x. As in (2), this predictive distribution is expressed as
an expectation E[Gu(s)] over the posterior distribution of
{Gu′}u′∈T̂ (x). Just as in (3) as well, it is possible to ex-

press E[Gu(s)] as an expectation over a set of random counts
{N(u′s′),M(u′s′)}u′∈T̂ (x),s′∈Σ:

E[Gu(s)] (5)

= E
[
N(us)− αuM(us) +

∑
s′∈Σ αuM(us′)Gσ(u)(s)∑

s′∈Σ N(us′)

]
Again, the first term in the numerator can be interpreted as
a count of the number of times s occurs in the context u, the
second term is the reduction applied to the count, while the
third term spreads the total reduction across Σ according to
the base distribution Gσ(u)(s). Each context u now has its
own discount parameter αu which is the product of discounts
on the non-branching chain leading to u on T (x), while the
parent σ(u) is the head of the chain. Notice that (5) is
defined recursively, with the predictive distribution Gu in
context u being a function of the same in the parent σ(u)
and so on up the tree.

The astute reader might notice that the above does not
quite work if the context u does not occur in the compact
context tree T̂ (x). Fortunately the properties of the hi-
erarchical PYP work out in our favor, and the predictive
distribution is simply the one given by the longest suffix of
u that is in T (x). If this is still not in T̂ (x), then a converse
of the coagulation property (called fragmentation) allows us
to re-introduce the node back into the tree.

To evaluate the expectation (5), we use stochastic (Monte
Carlo) approximations where the expectation is approxi-
mated using samples from the posterior distribution. The
samples are obtained using Gibbs sampling [16] as in [18,
21], which repeatedly makes local changes to the counts,
and using sequential Monte Carlo [5] as in [7], which iter-

Source Perplexity

Bengio et al. [2] 109.0
Mnih et al. [13] 83.9
4-gram Interpolated Kneser-Ney [3, 18] 106.1
4-gram Modified Kneser-Ney [3, 18] 102.4
4-gram Hierarchical PYP [18] 101.9
Sequence Memoizer [21] 96.9

Table 1: Language modeling performance for a num-
ber of models on an Associated Press news corpus
(lower perplexity is better). Interpolated and mod-
ified Kneser-Ney are state-of-the-art language mod-
els. Along with hierarchical PYP and the sequence
memoizer, these models do not model relationships
among words in the vocabulary. Provided for com-
parison are the results for the models of Bengio et al.
and Mnih et al. which belong to a different class of
models that learn word representations from data.

ates through the sequence x1, x2, . . . , xT , keeping track of
a set of samples at each step, and updating the samples as
each symbol xi is incorporated into the model.

6. DEMONSTRATION
We now consider two target applications: language mod-

elling and data compression. It is demonstrated that the SM
model is able achieve better performance than most state-
of-the-art techniques by capturing long-range dependencies.

6.1 Language Modeling
Language modeling is the task of fitting probabilistic mod-

els to sentences (sequences of words), which can then be
used to judge the plausibility of new sequences being sen-
tences in the language. For instance, “God save the Queen”
should be given a higher score than “Queen the God save”
and certainly more than “glad slave the spleen” under any
model of English. Language models are mainly used as
building blocks in natural language processing applications
such as statistical machine translation and automatic speech
recognition. In the former, for example, a translation algo-
rithm might propose multiple sequences of English words, at
least one of which is hoped to correspond to a good transla-
tion of a foreign language source. Usually only one or a few
of these suggested sequences are plausible English language
constructions. The role of the language model is to judge
which English construction is best. Better language models
generally lead to better translators.

Language model performances are reported in terms of a
standard measure called perplexity. This is defined as 2`(x)

where `(x) = − 1
|x|
∑|x|
i=1 log2 P (xi|x1:i−1) is the average log-

loss on a sequence x and the average number of bits per word
required to encode the sequence using an optimal code. An-
other interpretation of perplexity is that it is the average
number of guesses the model would have to make before it
guessed each word correctly (if it makes these guesses by
drawing samples from its estimate of the conditional distri-
bution). For the SM model P (xi|x1:i−1) is computed as in
(5). Both lower log-loss and lower perplexity are better.

Figure 3 compares the SM model against nth order Markov
models with hierarchical PYP priors, for various values of
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Figure 3: In blue is the performance of the SM
model (dashed line) versus nth order Markov models
with hierarchical PYP priors (solid line) as n varies
(test data perplexity, lower is better). In red is the
computational complexity of the SM model (dashed
line) versus the Markov models (solid line) in terms
of the number of nodes in the context tree/trie. For
this four million word New York Times corpus, as
n passes 4, the memory complexity of the Markov
models grows larger than that of the sequence mem-
oizer, yet, the SM model yields modeling perfor-
mance that is better than all Markov models regard-
less of their order. This suggests that for n ≥ 4 the
SM model is to be preferred: it requires less space
to store yet results in a comparable if not better
model.

n, on a four million word New York Times corpus3 . Table 1
compares the hierarchical PYP Markov model and the SM
model against other state-of-the-art models, on a fourteen
million word Associated Press news article corpus. The AP
corpus is a benchmark corpus for which the performance of
many models is available. It is important to note that it was
processed by [2] to remove low frequency words. Note that
this is to the detriment of the sequence memoizer, which is
explicitly designed to improve modeling of low word frequen-
cies due to power-law scaling. It is also a relatively small
corpus, limiting the benefits of the SM model at capturing
longer range dependencies.

Our results show that the SM model is a competitive lan-
guage model. However, perplexity results alone do not tell
the whole story. As more data is used to estimate a language
model, typically its performance improves. This means that
computational considerations such as memory and runtime
must enter into the discussion about what constitutes a good
language model. In many applications fast prediction is im-
perative, in others, particularly in online settings, incorpo-
ration of new data into the model must be fast. In com-
parison to more complex language models, prediction in the
sequence memoizer has real-world time complexity that is es-
sentially the same as that of a smoothed finite-order Markov
model, while its memory complexity is linear in the amount
of data. The computational complexity of Markov models
theoretically does not depend on the amount of data but is
exponential in the Markov order, rendering straightforward

3Note that an nth order Markov model is an m-gram model
where m = n+ 1.

Model SM PPM CTW bzip2 gzip
Average bits / byte 1.89 1.93 1.99 2.11 2.61

Table 2: Compression performance in terms of
weighted average log-loss (average bits per byte un-
der optimal entropy encoding, lower is better) for
the Calgary corpus, a standard benchmark collec-
tion of diverse filetypes. The results for unbounded-
length context PPM is from [4]. The results for
CTW is from [20]. The bzip2 and gzip results come
from running the corresponding standard unix com-
mand line tools with no extra arguments.

extensions to higher orders impractical. The SM model di-
rectly fixes this problem while remaining computationally
tractable. Constant space, constant time extensions to the
SM model [1] have been developed which show great promise
for language modeling and other applications.

6.2 Compression
Shannon’s celebrated results in information theory [17]

has led to lossless compression technology that, given a cod-
ing distribution, nearly optimally achieves the theoretical
lower limit (given by the log-loss) on the number of bits
needed to encode a sequence. Lossless compression is closely
related to sequence modeling: an incrementally constructed
probabilistic sequence model such as the sequence memo-
izer can be used to adaptively construct coding distributions
which can then be directly used for compression based on
entropy coding.

We demonstrate the theoretical performance of a lossless
compressor based on the SM model on a number of standard
compression corpora. Table 2 summarizes a comparison of
our lossless compressor against other state-of-the-art com-
pressors on the Calgary corpus, a well-known compression
benchmark consisting of fourteen files of different types and
varying lengths.

In addition to the experiments on the Calgary corpus,
SM compression performance was also evaluated on a 100
MB excerpt of the English version of Wikipedia (XML text
dump) [12]. On this excerpt, the SM model achieved a log-
loss of 1.66 bits/symbol amounting to a compressed file size
of 20.80 MB. While this is worse than 16.23 MB achieved
by the best demonstrated Wikipedia compressor, it demon-
strates that the SM model can scale to sequences of this
length. We have also explored the performance of the SM
model when using a larger symbol set (Σ). In particular, we
used the SM model to compress UTF-16 encoded Chinese
text using a 16-bit alphabet. On a representative text file,
the Chinese Union version of the bible, we achieved a log-
loss of 4.91 bits per Chinese character, which is significantly
better than the best results in the literature (5.44 bits) [22].

7. CONCLUSIONS
The sequence memoizer achieves improved compression

and language modeling performance. These application spe-
cific performance improvements are arguably by themselves
worthwhile scientific achievements. Both have the potential
to be tremendously useful, and may yield practical conse-
quences of societal and commercial value.

We encourage the reader, however, not to mentally cate-



gorize the sequence memoizer as a compressor or language
model. Nature is replete with discrete sequence data that
exhibit long-range dependencies and power-law characteris-
tics. The need to model the processes that generate such
data is likely to grow in prevalence. The sequence memoizer
is a general purpose model for discrete sequence data that
remains computationally tractable despite its power and de-
spite the fact that it makes only very general assumptions
about the data generating process.

Our aim in communicating the sequence memoizer is also
to encourage readers to explore the fields of probabilistic
and Bayesian modeling in greater detail. Expanding com-
putational capacity along with significant increases in the
amount and variety of data to be analyzed across many sci-
entific and engineering disciplines is rapidly enlarging the
class of probabilistic models that one can imagine and em-
ploy. Over the coming decades hierarchical Bayesian models
are likely to become increasingly prevalent in data analysis
oriented fields like applied statistics, machine learning, and
computer science. It is our belief that the sequence mem-
oizer and its ilk will come to be seen as relatively simple
building blocks for the enormous and powerful hierarchical
models of tomorrow.

Source code and example usages of the sequence memoizer
are available at http://www.sequencememoizer.com/.
A lossless compressor built using the sequence memoizer can
be explored at http://www.deplump.com/.
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