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Three Estimation Problems:

 Prediction:
  Estimate {x(t): t> t0}
 Filtering (Nudiction):
  Estimate {x(t0)}
 Smoothing (Retrodiction):
  Estimate {x(t): t · t0}

Given a random time series {X(t): t < t0}
       X(t) 2 RN



Collaborators:

 Gregory Eyink, Johns Hopkins University
 Frank Alexander, LANL



Turning a model into a state estimation problem
Example:
∂t u(z,t) = ν ∂zzu(z,t) + f(t)
u(z,0) = u0(z)
u(0,t) = g(t)   u(1,t) = h(t)

Discretizing:
x(t) ´ [g(t),u1(t),u2(t)…uN(t)]T

is the state variable, and it obeys
x(t+δt) = A x(t) + B q(t)
x(t)              = A x(t-δt) + B q(t-δt)
....
Which leads to:
L(x(0),…,x(t-δt),x(t),x(t+δt),…,x(tf),…,
                        Bq(t), Bq(t+δt),…,t) = 0
   
         x(t) 2 RN B q 2 RN



Statement of the ProblemStatement of the Problem

MODEL  (Langevin Problem):

DATA: 



GOAL: estimate moments

(at least) find  mean conditioned on data:
 xS(t) = E[ x(t)| y1,..., yM]
and 
Covariance matrix (uncertainty)  
CS(t) =E[(x(t)-xS(t))(x(t) -xS(t))>|y1,...,yM] 

The conditional mean xS(t) minimizes 
tr CS(t) = E[|(x(t)-xS(t))|2|y1,...,yM]. 
          It is termed the smoother estimate.



A Nonlinear ExampleA Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + κ dW(t)
        with
            V(x) = -2x2+x4

            f(x) = -V’(x)=4x(1-x2)
            κ = 0.5

Measurements: 
at times m Δt, m=1,…, M one observes   
         ym := X(tm) + ρ Nm
to have measured values Ym,   m=1,2,…,M



Observations

Ym 2 y(tm)



Extended Kalman Filter



Alternative Approaches
 KSP: optimal, but impractical
 ADJOINT/4D-VAR: optimal on

linear/Gaussian
  (Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

 Mean Field Variational Method
   (Eyink, Restrepo, Alexander, Physica D, 2003)

 enKF (ensemble Kalman Filter)
 Particle Method
    (Kim Eyink Restrepo Alexander Johnson, Mon. Wea. Rev. 2002)

 Path Integral Method
   (Alexander Eyink Restrepo, J. Stat. Phys. 2005)



Observations

Ym 2 y(tm)



KSP Filter Results



Why not KSP?
Impractical!

Very tiny example: a scalar PDE in 1-d space 
and time solved on a lattice of N points in space:
Dim(x(t))=N. Each component of x(t) requires
the solution of 2 stiff PDE’s 



A Statistical-Mechanical Digression

 Configuration probability for N particles
with (qi,pi) and fixed energy Ei

   Divide phase space into m cells thus
                 G= N!/(n1! n2!...nm!)
 ways of distributing N particles in m  energy

cells.
            THUS   P / G is a probability.



Fact: log n! ¼ n log n - n

Log P = N log N - ∑j (nj log nj – nj) + C

P / exp(-N ∑j pj log pj)

pj = nj/N



BAYESIAN STATEMENT

 P(X|D) / Prior £ Likelihood
 Use data for the likelihood
 Use model for the prior

         P(X|D) = exp(-Adata) exp(-Amodel)



Path  Integral Method
 Related to  simulated annealing
 It could be developed as a black box
 Simple to implement
 Can handle nonlinear/non-Gaussian

problems
 Calculates sample moments

PROBLEM: Relies on MC!!!



Discretized using explicit Euler-Maruyama scheme 



Let η (tk) = W(tk + δt)-W(tk), 
 at times tk,     k=0,1,2,…,

Suppose η(tk) is  Gaussian
                 Prob η(t) »exp(-1/2 ∑k | η (tk) |2). 

 Hence exp(-Adyn), for t = t0, t1, ...tT   

  
Adyn ´ ¼ ∑k = 0

T-1  [ [(xk+1- xk)/δt-f(xk,tk)]> D-1(xk, tk)
                           [(xk+1-xk)/δt-f(xk,tk)] ]



Adyn ´ ∑k = 0
T - 1 [ [(xk+1- xk)/δt –f(xk,tk)]> D-1(xk, tk)

 [(xk+1-xk)/δt -f(xk,tk)] ]/4

To include influence of observations
           use Bayes' rule.
 This modifies Action:

Aobs =∑m=1
M[h(x(tm)- y(tm)]>R-1[h(x(tm))-y(tm)]

The Total Action:

                        A = Adyn + Aobs

        The Action is like the log-likelihood. 



If it is known that A is convex and has a
unique extremizer: use principle of least
action:

      get Euler Lagrange equations to solve
                 OR
      use a minimization scheme



Otherwise use sampling:
 Hybrid Monte Carlo (HMC)
 Unigrid  Monte Carlo (UMC)
 Generalized Monte Carlo (GHMC)
 Shadow Monte Carlo (SHMC)



Hybrid Monte Carlo
 molecular dynamics: used to propose a

new system configuration
 Metropolis MC: accept/reject based  on

the energy

        Configuration is specified by
                degrees of freedom q0, q1, ... , qT.
                qi 2  RN



The HMC algorithm:  

To each  qi, a conjugate generalized 
momemtum, pi, is assigned. 
The momenta pi give rise to a kinetic 
energy HK = ∑i pi

2/2 .
The total Hamiltonian of the system
H = A + HK.
The dynamics are:
dqi/dτ = pi 
dpi/dτ= Fi  where 
Fi=-∂ A/∂ qi

 is the force on the ith degree of freedom.



What’s going on?
Write Probability P(x) = exp(-E(x))/Z

E(x) and  grad(E(x)) are easily evaluated:

Gradient indicates which direction one should go 
to find states with higher probability!

Note: H(q,p) = A(q) + HK

PH(q,p)=exp(-H(q,p))/Z=exp(-A(q))exp(HK(p))/Z 

separable 
        then marginal distribution exp(-A(q))/Zq  



1) A chain of states is generated: 
(qi’,pi’)       i=0,1,2,…,T, by  J steps (ficticious time).

2) Detailed balance achieved if new configuration 
is accepted with probability min[1, exp ΔH], 
where ΔH = H(q',p')-H(q,p). 

 The Metropolis step corrects for time 
 discretization errors.  

3) p’ refreshed after each acceptance/rejection 
taken from  Gaussian distribution of independent 
variables exp(-HK).



Unigrid Monte  Carlo
Updates system by taking coherent moves on a 
number of length'' scales. 

Decompose system into blocks of contiguous 
lattice points.  
B=Block sizes 1, 2, 4, ..., 2s.
     B=1 the standard local Metropolis.
 
Update: to each site in B  local value has a 
random  (Gaussian) δφ added to it. 

Metropolis accept/reject as before. 



Generalized HMC
Dynamics  replaced by: 
dqi/dt = A pi    dpi/dt = [A]T Fi 
          
                 A is an N£ N matrix. 
             when A =I we obtain HMC. 

Discretize:
q' = q + δτ Ap + ½ δτ A AT F([q])
p' = p + ½ δτ AT(F[q]+F[q'])
Challenge: find A that leads to a significant reduction 
of the correlation time. 
Used the circulant matrix on example:
         A =circ(1,exp(-α ),exp(-2 α ),…, exp(-Tα ))



A Nonlinear ExampleA Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + κ dW(t)
        with
            V(x) = -2x2+x4

            f(x) = -V’(x)=4x(1-x2)
            κ = 0.5

Measurements: 
at times m Δt, m=1,…, M one observes   
         ym := x(tm) + ρ Nm
to have measured values Ym,   m=1,2,…,M



PIMC Results
mean and variance consistent
with the KSP results.

In general the issue is not
whether the estimate is good.
It’s whether the computational
cost is justified.



RESULTS:
       decorrelation time

T+1 number of  (time steps X dimension)
J number of Hamiltonian solve steps per sweep
(standard deviation)
[α] in A



Conclusions (Sampling)
 GHMC could affect a  speedup
 No clear way to produce the matrix
 Cost of matrix/vector multiply can be significant
 Path  Integral can be used as  a  black box data

assimilator (if several sampling options are
available). Faster samplers needed.



OVERALL CONCLUSIONSOVERALL CONCLUSIONS
•(BAYESIAN) DATA ASSIMILATION:
  USES MODEL AND DATA AS A FORWARD PROBLEM
 REQUIRES KNOWLEDGE OF NOISE STATISTICS
 
•PIMC IS SUITABLE IN HIGHLY NONLINEAR 
AND/OR NON-GAUSSIAN DISCRETIZED PROBLEMS
Computational cost is the issue:
Order is (D T MC) Dimension, Time steps, MC trials

•IF GAUSSIAN/LINEAR: Least-squares is optimal
(Kalman filter/smoother is sequential variant)
•IF MILDLY NONLINEAR/NEAR-GAUSSIAN:
  Extended KF, ensemble KF



Further Information:

http://www.physics.arizona.edu/~restrepo


