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Three Estimation Problems:

 Prediction:
  Estimate {x(t): t> t0}
 Filtering (Nudiction):
  Estimate {x(t0)}
 Smoothing (Retrodiction):
  Estimate {x(t): t · t0}

Given a random time series {X(t): t < t0}
       X(t) 2 RN
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Turning a model into a state estimation problem
Example:
∂t u(z,t) = ν ∂zzu(z,t) + f(t)
u(z,0) = u0(z)
u(0,t) = g(t)   u(1,t) = h(t)

Discretizing:
x(t) ´ [g(t),u1(t),u2(t)…uN(t)]T

is the state variable, and it obeys
x(t+δt) = A x(t) + B q(t)
x(t)              = A x(t-δt) + B q(t-δt)
....
Which leads to:
L(x(0),…,x(t-δt),x(t),x(t+δt),…,x(tf),…,
                        Bq(t), Bq(t+δt),…,t) = 0
   
         x(t) 2 RN B q 2 RN



Statement of the ProblemStatement of the Problem

MODEL  (Langevin Problem):

DATA: 



GOAL: estimate moments

(at least) find  mean conditioned on data:
 xS(t) = E[ x(t)| y1,..., yM]
and 
Covariance matrix (uncertainty)  
CS(t) =E[(x(t)-xS(t))(x(t) -xS(t))>|y1,...,yM] 

The conditional mean xS(t) minimizes 
tr CS(t) = E[|(x(t)-xS(t))|2|y1,...,yM]. 
          It is termed the smoother estimate.



A Nonlinear ExampleA Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + κ dW(t)
        with
            V(x) = -2x2+x4

            f(x) = -V’(x)=4x(1-x2)
            κ = 0.5

Measurements: 
at times m Δt, m=1,…, M one observes   
         ym := X(tm) + ρ Nm
to have measured values Ym,   m=1,2,…,M



Observations

Ym 2 y(tm)



Extended Kalman Filter



Alternative Approaches
 KSP: optimal, but impractical
 ADJOINT/4D-VAR: optimal on

linear/Gaussian
  (Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

 Mean Field Variational Method
   (Eyink, Restrepo, Alexander, Physica D, 2003)

 enKF (ensemble Kalman Filter)
 Particle Method
    (Kim Eyink Restrepo Alexander Johnson, Mon. Wea. Rev. 2002)

 Path Integral Method
   (Alexander Eyink Restrepo, J. Stat. Phys. 2005)



Observations

Ym 2 y(tm)



KSP Filter Results



Why not KSP?
Impractical!

Very tiny example: a scalar PDE in 1-d space 
and time solved on a lattice of N points in space:
Dim(x(t))=N. Each component of x(t) requires
the solution of 2 stiff PDE’s 



A Statistical-Mechanical Digression

 Configuration probability for N particles
with (qi,pi) and fixed energy Ei

   Divide phase space into m cells thus
                 G= N!/(n1! n2!...nm!)
 ways of distributing N particles in m  energy

cells.
            THUS   P / G is a probability.



Fact: log n! ¼ n log n - n

Log P = N log N - ∑j (nj log nj – nj) + C

P / exp(-N ∑j pj log pj)

pj = nj/N



BAYESIAN STATEMENT

 P(X|D) / Prior £ Likelihood
 Use data for the likelihood
 Use model for the prior

         P(X|D) = exp(-Adata) exp(-Amodel)



Path  Integral Method
 Related to  simulated annealing
 It could be developed as a black box
 Simple to implement
 Can handle nonlinear/non-Gaussian

problems
 Calculates sample moments

PROBLEM: Relies on MC!!!



Discretized using explicit Euler-Maruyama scheme 



Let η (tk) = W(tk + δt)-W(tk), 
 at times tk,     k=0,1,2,…,

Suppose η(tk) is  Gaussian
                 Prob η(t) »exp(-1/2 ∑k | η (tk) |2). 

 Hence exp(-Adyn), for t = t0, t1, ...tT   

  
Adyn ´ ¼ ∑k = 0

T-1  [ [(xk+1- xk)/δt-f(xk,tk)]> D-1(xk, tk)
                           [(xk+1-xk)/δt-f(xk,tk)] ]



Adyn ´ ∑k = 0
T - 1 [ [(xk+1- xk)/δt –f(xk,tk)]> D-1(xk, tk)

 [(xk+1-xk)/δt -f(xk,tk)] ]/4

To include influence of observations
           use Bayes' rule.
 This modifies Action:

Aobs =∑m=1
M[h(x(tm)- y(tm)]>R-1[h(x(tm))-y(tm)]

The Total Action:

                        A = Adyn + Aobs

        The Action is like the log-likelihood. 



If it is known that A is convex and has a
unique extremizer: use principle of least
action:

      get Euler Lagrange equations to solve
                 OR
      use a minimization scheme



Otherwise use sampling:
 Hybrid Monte Carlo (HMC)
 Unigrid  Monte Carlo (UMC)
 Generalized Monte Carlo (GHMC)
 Shadow Monte Carlo (SHMC)



Hybrid Monte Carlo
 molecular dynamics: used to propose a

new system configuration
 Metropolis MC: accept/reject based  on

the energy

        Configuration is specified by
                degrees of freedom q0, q1, ... , qT.
                qi 2  RN



The HMC algorithm:  

To each  qi, a conjugate generalized 
momemtum, pi, is assigned. 
The momenta pi give rise to a kinetic 
energy HK = ∑i pi

2/2 .
The total Hamiltonian of the system
H = A + HK.
The dynamics are:
dqi/dτ = pi 
dpi/dτ= Fi  where 
Fi=-∂ A/∂ qi

 is the force on the ith degree of freedom.



What’s going on?
Write Probability P(x) = exp(-E(x))/Z

E(x) and  grad(E(x)) are easily evaluated:

Gradient indicates which direction one should go 
to find states with higher probability!

Note: H(q,p) = A(q) + HK

PH(q,p)=exp(-H(q,p))/Z=exp(-A(q))exp(HK(p))/Z 

separable 
        then marginal distribution exp(-A(q))/Zq  



1) A chain of states is generated: 
(qi’,pi’)       i=0,1,2,…,T, by  J steps (ficticious time).

2) Detailed balance achieved if new configuration 
is accepted with probability min[1, exp ΔH], 
where ΔH = H(q',p')-H(q,p). 

 The Metropolis step corrects for time 
 discretization errors.  

3) p’ refreshed after each acceptance/rejection 
taken from  Gaussian distribution of independent 
variables exp(-HK).



Unigrid Monte  Carlo
Updates system by taking coherent moves on a 
number of length'' scales. 

Decompose system into blocks of contiguous 
lattice points.  
B=Block sizes 1, 2, 4, ..., 2s.
     B=1 the standard local Metropolis.
 
Update: to each site in B  local value has a 
random  (Gaussian) δφ added to it. 

Metropolis accept/reject as before. 



Generalized HMC
Dynamics  replaced by: 
dqi/dt = A pi    dpi/dt = [A]T Fi 
          
                 A is an N£ N matrix. 
             when A =I we obtain HMC. 

Discretize:
q' = q + δτ Ap + ½ δτ A AT F([q])
p' = p + ½ δτ AT(F[q]+F[q'])
Challenge: find A that leads to a significant reduction 
of the correlation time. 
Used the circulant matrix on example:
         A =circ(1,exp(-α ),exp(-2 α ),…, exp(-Tα ))



A Nonlinear ExampleA Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + κ dW(t)
        with
            V(x) = -2x2+x4

            f(x) = -V’(x)=4x(1-x2)
            κ = 0.5

Measurements: 
at times m Δt, m=1,…, M one observes   
         ym := x(tm) + ρ Nm
to have measured values Ym,   m=1,2,…,M



PIMC Results
mean and variance consistent
with the KSP results.

In general the issue is not
whether the estimate is good.
It’s whether the computational
cost is justified.



RESULTS:
       decorrelation time

T+1 number of  (time steps X dimension)
J number of Hamiltonian solve steps per sweep
(standard deviation)
[α] in A



Conclusions (Sampling)
 GHMC could affect a  speedup
 No clear way to produce the matrix
 Cost of matrix/vector multiply can be significant
 Path  Integral can be used as  a  black box data

assimilator (if several sampling options are
available). Faster samplers needed.



OVERALL CONCLUSIONSOVERALL CONCLUSIONS
•(BAYESIAN) DATA ASSIMILATION:
  USES MODEL AND DATA AS A FORWARD PROBLEM
 REQUIRES KNOWLEDGE OF NOISE STATISTICS
 
•PIMC IS SUITABLE IN HIGHLY NONLINEAR 
AND/OR NON-GAUSSIAN DISCRETIZED PROBLEMS
Computational cost is the issue:
Order is (D T MC) Dimension, Time steps, MC trials

•IF GAUSSIAN/LINEAR: Least-squares is optimal
(Kalman filter/smoother is sequential variant)
•IF MILDLY NONLINEAR/NEAR-GAUSSIAN:
  Extended KF, ensemble KF



Further Information:

http://www.physics.arizona.edu/~restrepo


