Data Assimilation

Juan M. Restrepo Department of Mathematics Physics Department University of Arizona

Three Estimation Problems:

Given a random time series {X(t): t < t₀} X(t) 2 R^N

- Prediction:
 - Estimate $\{x(t): t > t_0\}$
 - Filtering (Nudiction):
 - Estimate {x(t₀)}
 - Smoothing (Retrodiction):
 - Estimate {x(t): $t \cdot t_0$ }

Collaborators:

Gregory Eyink, Johns Hopkins University Frank Alexander, LANL

Turning a model into a state estimation problem Example:

 $\begin{array}{l} \partial_t u(z,t) = v \ \partial_{zz} u(z,t) + f(t) \\ u(z,0) = u_0(z) \\ u(0,t) = g(t) \quad u(1,t) = h(t) \end{array}$

Discretizing: $x(t) \quad [g(t), u_1(t), u_2(t)...u_N(t)]^T$ is the state variable, and it obeys $x(t+\delta t) = A x(t) + B q(t)$ $x(t) = A x(t-\delta t) + B q(t-\delta t)$

Which leads to: $L(x(0),...,x(t-\delta t),x(t),x(t+\delta t),...,x(t_{f}),...,t) = 0$ $Bq(t), Bq(t+\delta t),...,t) = 0$

 $x(t) 2 R^{N} B q 2 R^{N}$

Statement of the Problem

MODEL (Langevin Problem):

 $dx(t) = f(x(t), t)dt + [2D(x, t)]^{1/2}dW(t), \qquad t > t_0,$ $x(t_0) = x_0.$ $x, f, W \in \mathbb{R}^N,$

DATA:

$$y(t_m) = h(x_m) + [2R(x_m, t)]^{1/2} \epsilon_m$$

where $m = 1, 2, ..., M$
 $h, \epsilon : \mathbf{R}^N \to \mathbf{R}^{N_y}$

GOAL: estimate moments

(at least) find mean conditioned on data: $x_{s}(t) = E[x(t)|y_{1},...,y_{M}]$ and Covariance matrix (uncertainty) $C_{s}(t) = E[(x(t)-x_{s}(t))(x(t)-x_{s}(t))^{>}|y_{1},...,y_{M}]$

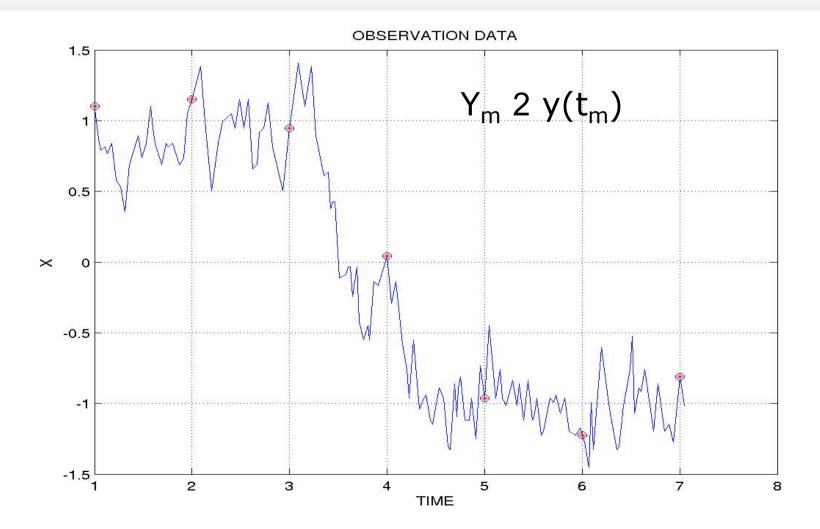
The conditional mean $x_S(t)$ minimizes tr $C_S(t) = E[|(x(t)-x_S(t))|^2|y_1,...,y_M].$ It is termed the smoother estimate.

A Nonlinear Example

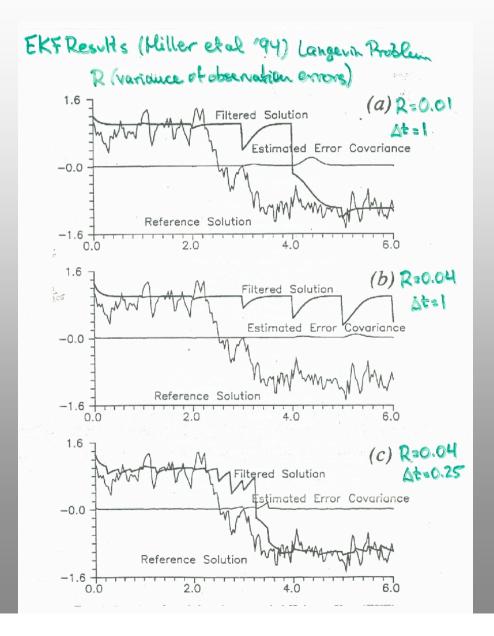
Stochastic Dynamics (Langevin Problem): $dx(t) = f(x(t)) dt + \kappa dW(t)$ with $V(x) = -2x^2 + x^4$ $f(x) = -V'(x) = 4x(1-x^2)$ $\kappa = 0.5$ -2 -1 Measurements:

at times m Δt , m=1,..., M one observes $y_m := X(t_m) + \rho N_m$ to have measured values Y_m , m=1,2,...,M

Observations



Extended Kalman Filter



Alternative Approaches

- KSP: optimal, but impractical
- ADJOINT/4D-VAR: optimal on linear/Gaussian

(Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

Mean Field Variational Method

(Eyink, Restrepo, Alexander, Physica D, 2003)

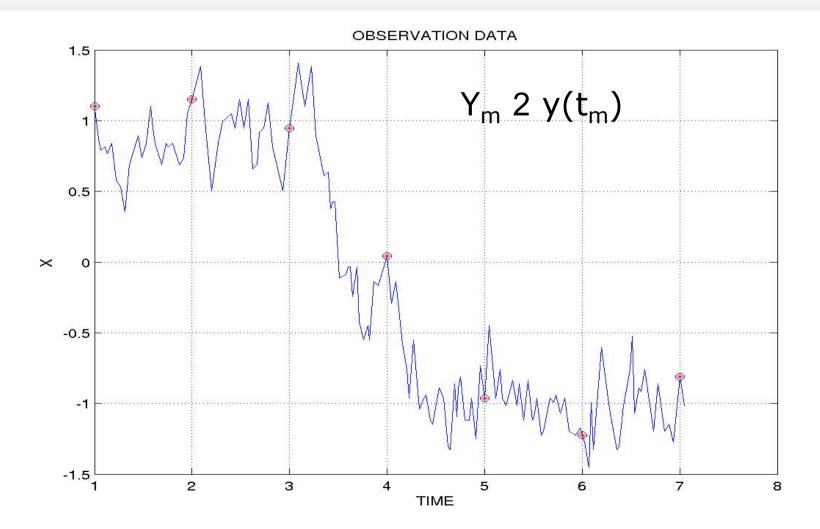
- enKF (ensemble Kalman Filter)
- Particle Method

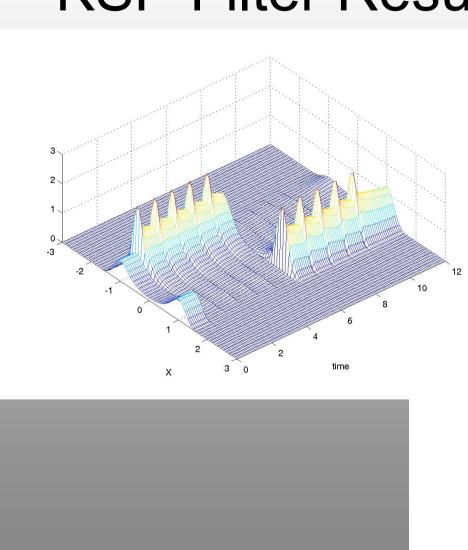
(Kim Eyink Restrepo Alexander Johnson, Mon. Wea. Rev. 2002)

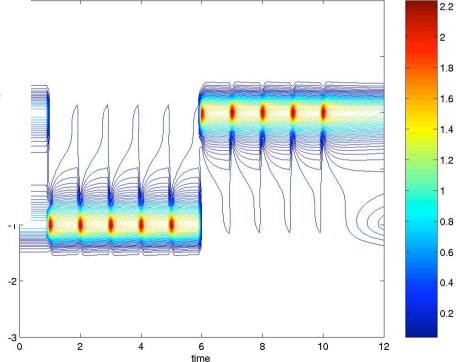
Path Integral Method

(Alexander Eyink Restrepo, J. Stat. Phys. 2005)

Observations







KSP Filter Results

Why not KSP?

Impractical!

Very tiny example: a scalar PDE in 1-d space and time solved on a lattice of N points in space: Dim(x(t))=N. Each component of x(t) requires the solution of 2 stiff PDE's

A Statistical-Mechanical Digression

 Configuration probability for N particles with (q_i,p_i) and fixed energy E_i
 Divide phase space into m cells thus G= N!/(n₁! n₂!...n_m!)
 ways of distributing N particles in m energy cells.

THUS P / G is a probability.

Fact: log n! ¼ n log n - n

$$Log P = N \log N - \sum_{j} (n_{j} \log n_{j} - n_{j}) + C$$

P / exp(-N $\sum_{j} p_{j} \log p_{j}$)

 $p_j = n_j/N$

BAYESIAN STATEMENT

P(X|D) / Prior £ Likelihood
Use data for the likelihood
Use model for the prior

 $P(X|D) = exp(-A_{data}) exp(-A_{model})$

Path Integral Method

- Related to simulated annealing
- It could be developed as a black box
- Simple to implement
- Can handle nonlinear/non-Gaussian problems
- Calculates sample moments

PROBLEM: Relies on MC!!!

$$dx(t) = f(x(t), t)dt + [2D(x, t)]^{1/2}dW(t), \qquad t > t_0,$$

$$x(t_0) = x_0.$$

Discretized using explicit Euler-Maruyama scheme

$$x_{k+1} = x_k + f(x_k, t_k)\delta t + (2D)^{1/2}(x_k, t_k)(W(t_k + \delta t) - W(t_k)),$$

$$k = 0, 1, 2, \dots$$

 $x_{k=0} = x_0.$

Let
$$\eta$$
 (t_k) = W(t_k + δ t)-W(t_k),
at times t_k, k=0,1,2,...,

Suppose $\eta(t_k)$ is Gaussian Prob $\eta(t) \approx \exp(-1/2 \sum_k | \eta(t_k) |^2)$.

Hence $exp(-A_{dyn})$, for $t = t_0, t_1, ..., t_T$

 $\begin{array}{l} A_{dyn} \stackrel{\prime}{} \frac{1}{4} \sum_{k = 0}^{T-1} \left[\begin{array}{c} [(x_{k+1} - x_k) / \delta t - f(x_k, t_k)]^{>} D^{-1}(x_k, t_k) \\ [(x_{k+1} - x_k) / \delta t - f(x_k, t_k)] \end{array} \right] \end{array}$

 $\begin{array}{l} A_{dyn} \; \sum_{k = 0}^{T-1} \left[\; \left[(x_{k+1} - x_k) / \delta t - f(x_k, t_k) \right]^{>} D^{-1}(x_k, t_k) \\ \left[(x_{k+1} - x_k) / \delta t - f(x_k, t_k) \right] \; \right] / 4 \end{array}$

To include influence of observations use Bayes' rule. This modifies Action:

 $A_{obs} = \sum_{m=1}^{M} [h(x(t_m) - y(t_m))] R^{-1}[h(x(t_m)) - y(t_m)]$

The Total Action:

$$A = A_{dyn} + A_{obs}$$

The Action is like the log-likelihood.

If it is known that A is convex and has a unique extremizer: use principle of least action:

get Euler Lagrange equations to solve OR use a minimization scheme

Otherwise use sampling:

- Hybrid Monte Carlo (HMC)
- Unigrid Monte Carlo (UMC)
- Generalized Monte Carlo (GHMC)
- Shadow Monte Carlo (SHMC)

Hybrid Monte Carlo

- molecular dynamics: used to propose a new system configuration
- Metropolis MC: accept/reject based on the energy

Configuration is specified by degrees of freedom q_0 , q_1 , ..., q_T . $q_i 2 R^N$

The HMC algorithm:

To each q_i, a conjugate generalized momentum, p_i , is assigned. The momenta p_i give rise to a kinetic energy $H_{K} = \sum_{i} p_{i}^{2}/2$. The total Hamiltonian of the system $H = A + H_{\kappa}$. The dynamics are: $dq_i/d\tau = p_i$ $dp_i/d\tau = F_i$ where $F_i = -\partial A / \partial q_i$ is the force on the ith degree of freedom. What's going on? Write Probability P(x) = exp(-E(x))/Z

E(x) and grad(E(x)) are easily evaluated:

Gradient indicates which direction one should go to find states with higher probability!

Note: $H(q,p) = A(q) + H_{K}$

 $P_H(q,p) = \exp(-H(q,p))/Z = \exp(-A(q))\exp(H_K(p))/Z$

separable then marginal distribution exp(-A(q))/Z_a 1) A chain of states is generated: (q_i',p_i') i=0,1,2,...,T, by J steps (ficticious time).

2) Detailed balance achieved if new configuration is accepted with probability min[1, exp Δ H], where Δ H = H(q',p')-H(q,p).

The Metropolis step corrects for time discretization errors.

3) p' refreshed after each acceptance/rejection taken from Gaussian distribution of independent variables $exp(-H_K)$.

Unigrid Monte Carlo

Updates system by taking coherent moves on a number of length'' scales.

Decompose system into blocks of contiguous lattice points. B=Block sizes 1, 2, 4, ..., 2^s. B=1 the standard local Metropolis.

Update: to each site in B local value has a random (Gaussian) $\delta \phi$ added to it.

Metropolis accept/reject as before.

Generalized HMC

Dynamics replaced by: $dq_i/dt = A p_i \quad dp_i/dt = [A]^T F_i$

> A is an N£ N matrix. when A = I we obtain HMC.

Discretize: $q' = q + \delta \tau Ap + \frac{1}{2} \delta \tau A A^{T} F([q])$ $p' = p + \frac{1}{2} \delta \tau A^{T}(F[q]+F[q'])$ Challenge: find A that leads to a significant reduction of the correlation time. Used the circulant matrix on example: $A = circ(1, exp(-\alpha), exp(-2\alpha), ..., exp(-T\alpha))$

A Nonlinear Example

Stochastic Dynamics (Langevin Problem): $dx(t) = f(x(t)) dt + \kappa dW(t)$ with $V(x) = -2x^2 + x^4$ $f(x) = -V'(x) = 4x(1-x^2)$ $\kappa = 0.5$

at times m Δt , m=1,..., M one observes $y_m := x(t_m) + \rho N_m$ to have measured values Y_m , m=1,2,...,M

PIMC Results

mean and variance consistent with the KSP results.

In general the issue is not whether the estimate is good. It's whether the computational cost is justified.

RESULTS: decorrelation time

T+1	HMC $(J=1)$	HMC $(J=8)$	UMC	GHMC (J=1)
8	900(125)	170(7)	800(40)	40(8) [0.20]
16	5300(1600)	560(20)	1040(60)	60(10) [0.10]
32	13300(8300)	2700 (140)	1430(100)	200(30) [0.05]
64	30000(7800)	2800(400)	1570(100)	420(70) [0.0245]

T+1 number of (time steps X dimension) J number of Hamiltonian solve steps per sweep (standard deviation) $[\alpha]$ in A

Conclusions (Sampling)

- GHMC could affect a speedup
- No clear way to produce the matrix
- Cost of matrix/vector multiply can be significant
- Path Integral can be used as a black box data assimilator (if several sampling options are available). Faster samplers needed.

OVERALL CONCLUSIONS

•(BAYESIAN) DATA ASSIMILATION: USES MODEL AND DATA AS A FORWARD PROBLEM REQUIRES KNOWLEDGE OF NOISE STATISTICS

•PIMC IS SUITABLE IN HIGHLY NONLINEAR AND/OR NON-GAUSSIAN DISCRETIZED PROBLEMS Computational cost is the issue: Order is (D T MC) Dimension, Time steps, MC trials

IF GAUSSIAN/LINEAR: Least-squares is optimal (Kalman filter/smoother is sequential variant)
IF MILDLY NONLINEAR/NEAR-GAUSSIAN: Extended KF, ensemble KF

Further Information:

http://www.physics.arizona.edu/~restrepo