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Motivation

 Tackle continuous time continuous state dynamical system
 Can we gain something?
 What is the impact of the stochastic terms?

stochastic term



Today’s aim

 (Better) understand why there is need for stochastic calculus:

 Understand the fundamental difference with non-stochastic calculus?



Outline

 Basic concepts:
 Probability theory
 Stochastic processes

 Diffusion Processes
 Markov process
 Kolmogorov forward and backward equations

 Ito calculus
 Ito stochastic integral
 Ito formula (stochastic chain rule)

Running example: the Wiener Process!



Basic concepts on probability theory

 A collection A of subsets of Ω is a σ-algebra if A contains Ω and A is closed
under the set of operations of complementation and countable unions.

 The sequence {At , At ⊆ A with t ≥ 0} is an increasing family of σ- algebras of
A if As is a subset of At for any s ≤ t.

 A measure µ on the measurable space (Ω,A) is a nonnegative valued set
function on A such that µ(∅) = 0 and which is additive under the countable
union of disjoint sets.

 The probability measure P is a measure which is normalized with respect to
the measure on the certain event P(Ω).

 Let (Ω,A,P) be a probability space. A random variable is an A-measurable
function X : Ω → ℜ, that is the pre-image X -1(B) of any Borel (or Lebesgue)
subset B in the Borel σ-algebra B (or L) is a subset of A.



Basic concepts on stochastic processes

Let (Ω,A,P) be a common probability space and T the time set. A stochastic
process X = {Xt , t ∈T } is a function X : T × Ω → ℜ such that

X(t, . ) : Ω → ℜ is a random variable for each t ∈T,
X( . ,ω) : T → ℜ is a sample path for each ω ∈ Ω.

 A Gaussian process is a stochastic process for which any joint distribution is
Gaussian.

 A stochastic process is strictly stationary if it is invariant under time displacement
and it is wide-sense stationary if there exist a constant µ and a function c such that

for all s,t ∈T.

 A stochastic process is a martingale if

for any 0 ≤ s ≤ t.



Example: the Wiener process

The standard Wiener process W = {Wt , t ≥ 0} is a continuous time continuous
state stochastic process with independent Gaussian increments:

 
for all 0 ≤ s ≤ t.

(Proposed by Wiener as mathematical
 description of Brownian motion.)



 The Wiener process is not wide-sense stationary since its (two-time)
covariance is given by Cs,t = min{s,t }:

For s ≤ t, we have

 The Wiener process is a martingale:



Markov processes

The stochastic process X = {Xt , t ≥ 0} is a (continuous time continuous state)
Markov process if it satisfies the Markov property:

for all Borel subsets B of ℜ and time instants 0 ≤ r1 ≤ … ≤ rn ≤ s ≤ t.

 The transition probability is a (probability) measure on the Borel σ-algebra B of the
Borel subsets of ℜ:

 The Chapman-Kolmogorov equation follows from the Markov property:

for s ≤ τ ≤ t.

 The Markov process Xt is homogeneous if all the transition densities depend only
on the time difference.

 The Markov process Xt is ergodic if the time average on [0,T] for T → ∞ of any
function f(Xt) is equal to its space average with respect to (one of) its stationary
probability densities.



Example: the Wiener process

 The standard Wiener process is a homogenous Markov process since its
transition probability is given by

 The transition density of the standard Wiener process satisfies the Chapman-
Kolmogorov equation (convolution of two Gaussian densities).



Diffusion processes

The Markov process X = {Xt , t ≥ 0} is a diffusion process if the following limits
exist:

for all ε > 0, s ≥ 0 and x ∈ ℜ.

 Diffusion processes are almost surely continuous, but not necessarily differentiable.
 Parameter α(s,x)is the drift at time s and position x.
 Parameter β(s,x) is the diffusion coefficient at time s and position x.



Let X = {Xt , t ≥ 0} be a diffusion process.

The forward evolution of its transition density p(s,x;t,y) is given by the
Kolmogorov forward equation (or Fokker-Planck equation):

for a fixed initial state (s,x).

The backward evolution is given by the Kolmogorov backward equation:

 for a fixed final state (t,y).



Example: the Wiener process

 The standard Wiener process is a diffusion process with drift α(s,x) = 0 and
diffusion parameter β(s,x) = 1.

For Ws = x at a given time s, the transition density is given by N (y |x,t-s). Hence,
we get

 Kolmogorov forward and backward equation for the standard Wiener process
are given by



What makes the Wiener process so special?

 The sample paths of a Wiener process are almost surely continuous (see
Kolmogorov criterion).

 However, they are almost surely nowhere differentiable.
Consider the partition of a bounded time interval [s,t] into 2n sub-intervals of length
(t-s)/2n. For each sample path ω ∈ Ω, it can be shown that

Hence, can write

From the sample path continuity, we have

and thus

The sample paths do, almost surely, not have bounded variation on [s,t].



Why introducing stochastic calculus?

Consider the following stochastic differential:

Or interpreted as an integral along a sample path:

Problem: A Wiener process is almost surely nowhere differentiable!



Construction of the Ito integral

 Idea:

 The integral of a random function f (mean square integrable) on the unit time
interval is defined as

 Consider a partition of the unit time interval:

 Use properties of the standard Wiener process!



1. The function f  is a nonrandom step function:

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:



2.  f  is a random step function:

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:



3.  f  is a general random function:

where f(n) is a sequence of random step functions converging to f.

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:

Riemann sum!



Ito (stochastic) integral

for a (mean square integrable) random function f : T × Ω → ℜ.

 The equality is interpreted in mean square sense!
 Unique solution for any sequence of random step functions converging to f.
 The time-dependent solution process is a martingale:

 Linearity and additivity properties satisfied.
 Ito isometry:



Ito formula (stochastic chain rule)

 Consider

 Taylor expansion:

 Ito formula:

conventional calculus



Concluding example:

 Consider:

 The Ito formula leads to

 For m = 2:



Stratonovich stochastic calculus

 Consider different partition points:

 Mean square convergence with λ = 1/2:

 No stochastic chain rule, but martingale property is lost.



Next reading groups…

 Stochastic Differential Equations!!!

 Who?
 When?
 Where?

 How?
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