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Motivation

dr = a(t,z) dt

X, = a(t, X,) dt

stochastic term

Q Tackle continuous time continuous state dynamical system
a Can we gain something?
O What is the impact of the stochastic terms?



Today’s aim

O (Better) understand why there is need for stochastic calculus:

t
/ W, dW, =7
0

O Understand the fundamental difference with non-stochastic calculus?

[) w(s) dw(s) = ;wQ(t) if w(0) = 0.

t
/ W, dW, = ;Wtz @ w.p. 1, (Wy =0,w.p. 1).
0



Outline

O Basic concepts:
= Probability theory
= Stochastic processes

Q Diffusion Processes
= Markov process
= Kolmogorov forward and backward equations

Q Ito calculus
= [to stochastic integral
» [to formula (stochastic chain rule)



Basic concepts on probability theory

Q

A collection A of subsets of Q is a o-algebra if ‘A contains Q and ‘A is closed
under the set of operations of complementation and countable unions.

The sequence {A4,, A,C A with t= 0} is an increasing family of o- algebras of
Aif A, is asubset of A,forany s<t

A measure u on the measurable space (2, A) is a nonnegative valued set
function on A such that u(J) = 0 and which is additive under the countable
union of disjoint sets.

The probability measure P is a measure which is normalized with respect to
the measure on the certain event P(Q2).

Let (2, A,P) be a probability space. A random variable is an “A-measurable
function X : Q — R, that is the pre-image X -1(B) of any Borel (or Lebesgue)

subset B in the Borel o-algebra B (or L) is a subset of A.



Basic concepts on stochastic processes

Let (R, A,P) be a common probability space and T the time set. A stochastic
process X={X,, tET}is afunction X: T x Q — N such that

X(t .): Q— Nis arandom variable for each t €T,
X(.,w): T— N is asample path for each w € Q.

» A Gaussian process is a stochastic process for which any joint distribution is
Gaussian.

= A stochastic process is strictly stationary if it is invariant under time displacement
and it is wide-sense stationary if there exist a constant u and a function ¢ such that

pe=p, o2=c(0) and C,,;=c(t—s),
for all s,t€T.

= A stochastic process is a martingale if
E{X;|A;} =X, wp.1,

foranyO=ss<t



Example: the Wiener process

The standard Wiener process W={W,, t= 0} is a continuous time continuous
state stochastic process with independent Gaussian increments:

WO =0 w.p. 1, 1
E{W,} =0,
Wt—WsNN(O,t—S),

forallO0<ss<t

(Proposed by Wiener as mathematical
description of Brownian motion.)




O The Wiener process is not wide-sense stationary since its (two-time)
covariance is given by C, ;= min{s,t }.

Fors<twehave C,; = E{(W;— pu:)(Ws— )}
- E{Wtwe}
- E{(Wt - Ws + WG)WQ}
= E{W, - W }E{W,} + E{W?}
=0-0+ s.

aQ The Wiener process is a martingale:

E{Wt - WelAs} =0

= E{thA,} =W, w.p. 1l
E{WslAS} = Ws



Markov processes

The stochastic process X={X,, t= 0} is a (continuous time continuous state)
Markov process if it satisfies the Markov property:

P(X; € BlX; =z)=P(X; € BlX,, =z1,...,X,, =z,,X, = 1)

for all Borel subsets Bof h and time instantsO<r,<...<r,<s<t

n =

The transition probability is a (probability) measure on the Borel o-algebra B of the

Borel subsets of
P(X: € B|X;=z) = / p(s,z;t,y) dy
B
The Chapman-Kolmogorov equation follows from the Markov property:

oC

p(s,z;t,y) = / p(s,z;7,2)p(T,2;t,y) dz forssrtst
— O

The Markov process X, is homogeneous if all the transition densities depend only

on the time difference.

The Markov process X is ergodic if the time average on [0, 7] for T — « of any
function A X)) is equal to its space average with respect to (one of) its stationary
probability densities.



Example: the Wiener process

Q The standard Wiener process is a homogenous Markov process since its
transition probability is given by

oy ] (y — =)’
pls, 2it,y) = V2 (t — s) exp{—2(t_s)}_

Q The transition density of the standard Wiener process satisfies the Chapman-
Kolmogorov equation (convolution of two Gaussian densities).



Diffusion processes

The Markov process X ={X,, t= 0} is a diffusion process if the following limits
exist:

limg |, P p(s,z;t,y) dy = 0,

jly —z|>eP
limy |, ;2 jly__w'(e(y — z)p(s,z;t,y) dy = a(s, ),

hmtls {—g jly .1:|<e(y - $)2p(S,CB;t, y) dy = ﬁQ(S,.’E),
forall e>0, s=0and xe .

» Diffusion processes are almost surely continuous, but not necessarily differentiable.
= Parameter ofs,x)is the drift at time s and position x.
= Parameter f(s,x) is the diffusion coefficient at time s and position x.



Let X={X,, t= 0} be a diffusion process.

The forward evolution of its transition density p(s,x;t,y) is given by the
Kolmogorov forward equation (or Fokker-Planck equation):

o 0 10?2, , B
5t + 8y{a(tay)P — 56—312{5 (t,y)p} =0

for a fixed initial state (s,x).

The backward evolution is given by the Kolmogorov backward equation:

Op op 1 , *p
9e 95 T d(sx) =0

+ a(s,z) 52

for a fixed final state (¢,y).



Example: the Wiener process

O The standard Wiener process is a diffusion process with drift a(s,x) = 0 and
diffusion parameter S(s,x) = 1.

For W, = x at a given time s, the transition density is given by N (y Ix,-s). Hence,
we get
E{y—z|z} _ =0,

{—s

a(z,s) = limy 4

B%(z, s) = lim, |, E{(” J’) 2} = lim, =8 =1,

S

O Kolmogorov forward and backward equation for the standard Wiener process
are given by

Qe_lﬁe_o
ot — 28y — U

_13 18%
+2().L _O



What makes the Wiener process so special?

O The sample paths of a Wiener process are almost surely continuous (see
Kolmogorov criterion).

O However, they are almost surely nowhere differentiable.

Consider the partition of a bounded time interval [s,f] into 27 sub-intervals of length
(t-s)/2". For each sample path w € Q, it can be shown that
2" —1

I W W 2
Jim ;U ( () (w) — () (w)) =t—s, w.p. L
Hence, can write
2" —1
t—s < li?Izn_’sz}clp max |WT£‘2~.l (w) — VV,r (w)] ,;0 |WTL:.¢:.1 (w) — WTL. (w)].

From the sample path continuity, we have

max |W~‘-“5' (W) =W ) (Wv)| — 0, w.p. 1 when n — o0,
: Y41 k

and thus
2" —1
Z |WT£.~;~.1 (w) — WT (w)| = 00, w.p.lasn — oo.
k=0

The sample paths do, almost surely, not have bounded variation on [s,{].



Why introducing stochastic calculus?

Consider the following stochastic differential:

dX, = a(t, X,) dt + B(t, X, )@ dt
&t ’\‘N(O-l)

Or interpreted as an integral along a sample path:

Xi(w) = X, (w) + ft a(s, Xa(w)) ds + /t | B(s, Xo(w))Es(w) 3

~ th

Problem: A Wiener process is almost surely nowhere differentiable!

/: B(s, Xs(w))dWy(w) =7



Construction of the Ito integral

O Idea:
¢

B dWi(w) = BiWi(w) — Wiy (w)}

O The integral of a random function f(mean square integrable) on the unit time
interval is defined as

1

Iflw) = | f(s,w) dW,(w).

0

O Consider a partition of the unit time interval:

O Use properties of the standard Wiener process!



ft,w) =

1. The function f is a nonrandom step function:

n—1

I[fl(w) = ZfJ{WtJ+1 w) — Wy, (w)}, w.p. L

= The mean of the stochastic integral:

E{I[f]} =0

» The mean square fluctuation of the stochastic integral:

n—1

E{I*[f]} = fo(tﬁl —t;)



f(tsw) - fj (“))
2. [ is arandom step function:

n—1

I[f}(w) = ij (WHWy,, (W) = Wy (W)}, wep. 1.

= The mean of the stochastic integral:

E{I[f]} =0

» The mean square fluctuation of the stochastic integral:

n—1

E{I*[f]} = ) B{f}(ti1 — ;)



f(t,w)

3. fis ageneral random function: \ ,
g f(”-"(t,w) _ f(t& 1’],1.0')
n—1

I[f](w Zf(t(“) w{Wy,,, (W) — Wy, (W)}, w.p. 1.

where 1) is a sequence of random step functions converging to f£.

= The mean of the stochastic integral:

B{I[f]} =0

» The mean square fluctuation of the stochastic integral:
n—1

E{I*[f]} = Y B{f*(t;", w)}ts41 — 1)

Riemann sum!



Ito (stochastic) integral

n—1

I[f](w) = m.s.lim ) | FE™ W)W, (w) — Wy, (@)}, w.p. L.

i=1

for a (mean square integrable) random function f: T x Q — N.

= The equality is interpreted in mean square sense!
= Unique solution for any sequence of random step functions converging to f.
= The time-dependent solution process is a martingale:

Xi(w) = f(s,w) dWg(w)

ty

» Linearity and additivity properties satisfied.
= [to isometry:

E{I’[f]} = / E{f(r,")} dr



Ito formula (stochastic chain rule)
O Consider

Y, =U(t, X¢) dX; = f dW;

Q Taylor expansion:

o*U 5 09U 09U
572 At + Bt&cAtAm )

U oU
AY"'—{BtAt_*_B Az ) + {

conventional calculus

a Ito formula:

rou o*U L oU
Yt—}’s—l{at fua£2}du+/s py dX,, w.p.L.



Concluding example:

O Consider:
U(.E) — .’Bm Xt — Wt

O The lto formula leads to

t t
- 1 ‘ '
Wm — W — / ""(""2 )W,(m-z) dr + / mW m=1 dw,

O Form=2;

1

¢ ¢
Wt2=t+2/ W, dW, =>/ W, dW, = W2 — 14
0 0 2 2



Stratonovich stochastic calculus

O Consider different partition points:

i = (1= Mt + (1 - N

O Mean square convergence with A = 1/2:

t
/ ft o dW;

a No stochastic chain rule, but martingale property is lost.

f(t,w)

£ (tw) = f(r

(n) | ;



Next reading groups...

O Stochastic Differential Equations!!!

o Who?
When?
o Where?

(]

o How?
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