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Motivation

 Tackle continuous time continuous state dynamical system
 Can we gain something?
 What is the impact of the stochastic terms?

stochastic term



Today’s aim

 (Better) understand why there is need for stochastic calculus:

 Understand the fundamental difference with non-stochastic calculus?



Outline

 Basic concepts:
 Probability theory
 Stochastic processes

 Diffusion Processes
 Markov process
 Kolmogorov forward and backward equations

 Ito calculus
 Ito stochastic integral
 Ito formula (stochastic chain rule)

Running example: the Wiener Process!



Basic concepts on probability theory

 A collection A of subsets of Ω is a σ-algebra if A contains Ω and A is closed
under the set of operations of complementation and countable unions.

 The sequence {At , At ⊆ A with t ≥ 0} is an increasing family of σ- algebras of
A if As is a subset of At for any s ≤ t.

 A measure µ on the measurable space (Ω,A) is a nonnegative valued set
function on A such that µ(∅) = 0 and which is additive under the countable
union of disjoint sets.

 The probability measure P is a measure which is normalized with respect to
the measure on the certain event P(Ω).

 Let (Ω,A,P) be a probability space. A random variable is an A-measurable
function X : Ω → ℜ, that is the pre-image X -1(B) of any Borel (or Lebesgue)
subset B in the Borel σ-algebra B (or L) is a subset of A.



Basic concepts on stochastic processes

Let (Ω,A,P) be a common probability space and T the time set. A stochastic
process X = {Xt , t ∈T } is a function X : T × Ω → ℜ such that

X(t, . ) : Ω → ℜ is a random variable for each t ∈T,
X( . ,ω) : T → ℜ is a sample path for each ω ∈ Ω.

 A Gaussian process is a stochastic process for which any joint distribution is
Gaussian.

 A stochastic process is strictly stationary if it is invariant under time displacement
and it is wide-sense stationary if there exist a constant µ and a function c such that

for all s,t ∈T.

 A stochastic process is a martingale if

for any 0 ≤ s ≤ t.



Example: the Wiener process

The standard Wiener process W = {Wt , t ≥ 0} is a continuous time continuous
state stochastic process with independent Gaussian increments:

 
for all 0 ≤ s ≤ t.

(Proposed by Wiener as mathematical
 description of Brownian motion.)



 The Wiener process is not wide-sense stationary since its (two-time)
covariance is given by Cs,t = min{s,t }:

For s ≤ t, we have

 The Wiener process is a martingale:



Markov processes

The stochastic process X = {Xt , t ≥ 0} is a (continuous time continuous state)
Markov process if it satisfies the Markov property:

for all Borel subsets B of ℜ and time instants 0 ≤ r1 ≤ … ≤ rn ≤ s ≤ t.

 The transition probability is a (probability) measure on the Borel σ-algebra B of the
Borel subsets of ℜ:

 The Chapman-Kolmogorov equation follows from the Markov property:

for s ≤ τ ≤ t.

 The Markov process Xt is homogeneous if all the transition densities depend only
on the time difference.

 The Markov process Xt is ergodic if the time average on [0,T] for T → ∞ of any
function f(Xt) is equal to its space average with respect to (one of) its stationary
probability densities.



Example: the Wiener process

 The standard Wiener process is a homogenous Markov process since its
transition probability is given by

 The transition density of the standard Wiener process satisfies the Chapman-
Kolmogorov equation (convolution of two Gaussian densities).



Diffusion processes

The Markov process X = {Xt , t ≥ 0} is a diffusion process if the following limits
exist:

for all ε > 0, s ≥ 0 and x ∈ ℜ.

 Diffusion processes are almost surely continuous, but not necessarily differentiable.
 Parameter α(s,x)is the drift at time s and position x.
 Parameter β(s,x) is the diffusion coefficient at time s and position x.



Let X = {Xt , t ≥ 0} be a diffusion process.

The forward evolution of its transition density p(s,x;t,y) is given by the
Kolmogorov forward equation (or Fokker-Planck equation):

for a fixed initial state (s,x).

The backward evolution is given by the Kolmogorov backward equation:

 for a fixed final state (t,y).



Example: the Wiener process

 The standard Wiener process is a diffusion process with drift α(s,x) = 0 and
diffusion parameter β(s,x) = 1.

For Ws = x at a given time s, the transition density is given by N (y |x,t-s). Hence,
we get

 Kolmogorov forward and backward equation for the standard Wiener process
are given by



What makes the Wiener process so special?

 The sample paths of a Wiener process are almost surely continuous (see
Kolmogorov criterion).

 However, they are almost surely nowhere differentiable.
Consider the partition of a bounded time interval [s,t] into 2n sub-intervals of length
(t-s)/2n. For each sample path ω ∈ Ω, it can be shown that

Hence, can write

From the sample path continuity, we have

and thus

The sample paths do, almost surely, not have bounded variation on [s,t].



Why introducing stochastic calculus?

Consider the following stochastic differential:

Or interpreted as an integral along a sample path:

Problem: A Wiener process is almost surely nowhere differentiable!



Construction of the Ito integral

 Idea:

 The integral of a random function f (mean square integrable) on the unit time
interval is defined as

 Consider a partition of the unit time interval:

 Use properties of the standard Wiener process!



1. The function f  is a nonrandom step function:

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:



2.  f  is a random step function:

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:



3.  f  is a general random function:

where f(n) is a sequence of random step functions converging to f.

 The mean of the stochastic integral:

 The mean square fluctuation of the stochastic integral:

Riemann sum!



Ito (stochastic) integral

for a (mean square integrable) random function f : T × Ω → ℜ.

 The equality is interpreted in mean square sense!
 Unique solution for any sequence of random step functions converging to f.
 The time-dependent solution process is a martingale:

 Linearity and additivity properties satisfied.
 Ito isometry:



Ito formula (stochastic chain rule)

 Consider

 Taylor expansion:

 Ito formula:

conventional calculus



Concluding example:

 Consider:

 The Ito formula leads to

 For m = 2:



Stratonovich stochastic calculus

 Consider different partition points:

 Mean square convergence with λ = 1/2:

 No stochastic chain rule, but martingale property is lost.



Next reading groups…

 Stochastic Differential Equations!!!

 Who?
 When?
 Where?

 How?
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