
Abstract. The well-known neural mass model described
by Lopes da Silva et al. (1976) and Zetterberg et al.
(1978) is ®tted to actual EEG data. This is achieved by
reformulating the original set of integral equations as a
continuous-discrete state space model. The local linear-
ization approach is then used to discretize the state
equation and to construct a nonlinear Kalman ®lter. On
this basis, a maximum likelihood procedure is used for
estimating the model parameters for several EEG
recordings. The analysis of the noise-free di�erential
equations of the estimated models suggests that there are
two di�erent types of alpha rhythms: those with a point
attractor and others with a limit cycle attractor. These
attractors are also found by means of a nonlinear time
series analysis of the EEG recordings. We conclude that
the Hopf bifurcation described by Zetterberg et al.
(1978) is present in actual brain dynamics.

1 Introduction

It has been recognized for some years (Wiener 1958) that
the electroencephalogram (EEG) re¯ects the activity of a
complex nonlinear dynamic system comprising a very
large numberof neurons (LopesdaSilva 1993).The role of
nonlinearity in the EEG is supported by recent studies
using statistical nonlinear time series analysis (Ozaki 1985;
Priestley 1988; Tong 1990)1. Indeed, Hernandez et al.
(1995a, b, 1996) have shown that nonlinear time series
models such as kernel nonlinear autoregression (Auestad
and Tjùstheim 1990) are able to describe limit cycle
behavior in EEG recordings of alpha rhythm, di�erent
types of slow wave activities and spike and waves.

A number of authors have attempted to model the
EEG at a macroscopic level by means of sets of di�er-
ential equations or integral-di�erential equations.
Wilson and Cowan (1972) showed that a set of two ®rst-
order di�erential equations exhibits limit cycle behavior
and hysteresis phenomena. They suggested that the
rhythmic activity generated by this model mimic the
EEG, a conclusion supported subsequently by Freeman
(1975). Lopes da Silva et al. (1974) showed that noise
passed through a nonlinear ®lter produces activity sim-
ilar to the alpha rhythm. In fact, this model was capable
of predicting changes in the spectrum with maturation
that have been documented statistically (compare the
®gure of Lopes da Silva et al. 1974, with that presented
in Szava et al. 1994). Further work with this type of
model suggested that phenomena such as epileptic spikes
and seizures could re¯ect instability of the dynamic
system (Lopes da Silva et al. 1976; Kaczmarek and Ba-
bloyantz 1977; Zetterberg et al. 1978). This line of work
is being notably developed by the construction of the
structural portrait of these models (Borisyuk and Kirilov
1992).

What has been lacking is a direct link between em-
pirical descriptions of the EEG as a nonlinear time series
and the theoretical predictions of neural mass models.
Consequently, there is little work in ®tting and validat-
ing theoretical models for actual EEG data. A basic
obstacle seems to be the general di�culty of translating
the continuous equations of the neural mass models into
discrete time series models. Recently, a ``bridge'' be-
tween nonlinear stochastic dynamic systems and non-
linear time series models has been developed based on
the ``local linearization'' (LL) approach (Ozaki 1985,
1992, 1993, 1994). This method allows construction of a
stable discretization of nonlinear stochastic di�erential
equations and an adequate identi®cation of state space
models from observed time series.

This paper focuses on the statistical ®tting of the
neural mass model described by Lopes da Silva et al.
(1976) and Zetterberg et al. (1978) to EEG data. This is
achieved by reformulating the original set of integral
equations as a continuous-discrete state space model.
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Thus, the LL approach is used to discretize the state
equation and to construct a nonlinear Kalman ®lter. On
this basis, a maximum likelihood procedure is used for
estimating the model parameters for several EEG re-
cordings. Then, the qualitative behavior of the noise-free
di�erential equation of estimated models and the noise-
free realization of a nonlinear time series model ®tted to
each EEG recording are compared.

The paper is organized as follows: the original neural
mass model is summarized in Sect. 2. Section 3 presents
the model in state space form. Section 4 summarizes the
LL technique for discretization and identi®cation of
models. Section 5 presents examples of the use of the LL
method in simulation, ®tting and analysis of the alpha
rhythm. Finally, Sect. 6 discusses the results and points
out areas that need further development.

2 Neural mass model

A general class of neural mass models was described
earlier by Freeman (1975) in terms of a hierarchical
classi®cation of interacting sets of neurons. In his
terminology, a KIe (KIi) set is a conglomerate of
interconnected excitatory (inhibitory) neurons with a
common input and output. The neural mass model
under discussion in this paper is an example of a model
introduced by Zetterberg et al. (1978), which in turn
belongs to the more general class of Freeman's models.
It comprises two KIe excitatory neural sets (KIe1 and
KIe2) interconnected with a KIi inhibitory neural set
[see Fig. 1, which is derived from Fig. 1b in Zetterberg
et al. (1978) by setting C5 � 0 and P1�t� � 0].

The model is formulated in terms of the following
variables: the proportion of cells ®ring per unit of time
at time t in each population (E1�t�; E2�t� and I�t� in
KIe1, KIe2 and KIi, respectively) and the average
membrane potentials of each population (V1e�t�; V2e�t�
and Vi�t� in KIe1, KIe2 and KIi, respectively). The for-

mer are related to the latter by the sigmoid shape
function g as initially described by Freeman (1975) and
modi®ed by Zetterberg et al. (1978). These relations are
formally expressed by

E1�t� � g V1e�t�� � ; �1�

E2�t� � g V2e�t�� � ; �2�

I�t� � g Vi�t�� � ; �3�
where:

g�V � � g0kec�VÿV0� V � V0

g0k 2ÿ eÿc�VÿV0�� �
V > V0 .

�
�4�

For the speci®cation of the constants g0k, c and V0 (see
Table 1).

The action potentials spreading through axons are
transformed into post-synaptic potentials (PSP) in syn-
aptic terminals. The latter propagating through the
dendrites reach other cells with a certain delay and at-
tenuation, then they are linearly summed to form the
average membrane potentials. This is expressed by the
equations:

V1e�t� �
Z 1
0

c4E2�t ÿ s� � P �t ÿ s�� �he�s�ds

ÿ
Z 1
0

c2I�t ÿ s�hi�s�ds ; �5�

V2e�t� �
Z 1
0

c3E1�t ÿ s�he�s�ds ; �6�

Vi�t� �
Z 1
0

c1E1�t ÿ s�he�s�ds ; �7�

where the parameters c1; c2; c3 and c4 denote the
synaptic e�ciency with which each neural set in¯uences
the others. Here, the impulse functions
hr�s� � Arbeÿars ÿ eÿbrsc, r � fe; ig, depend on constants
de®ned in Table 1. The external input to the whole
system is represented by P �t� which is assumed to be a
Gaussian white noise with mean P and variance r2

P.

Fig. 1. Block diagram of the neuronal populations involved in the
mass model, which comprises two excitatory neural sets (KIe1 and
KIe2) interconnected with an inhibitory neural set (KIi). The recording
system is also displayed

Table 1. Constants involved in the de®nition of the neural model

Symbol De®nition Units Value

g0k Maximum value of the function g s)1 25
c Scale parameter of the function g MV)1 0.34
Vo Voltage o�set of the function g MV 6
Ae Maximum of he MV 1.6
ae Time constant of he s)1 55
be Time constant of he s)1 605
Ai Maximum of hi MV 32
ai Time constant of hi s)1 27.5
bi Time constant of hi s)1 55
s Time constant of the high pass ®lter ha s 0.32
d Damping factor of the ®lter ha s 0.707
xn Angular high cut frequency

of the ®lter of ha

Hz 2p 30
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In this paper, time delays for transmission of activity
between di�erent neural sets are ignored. Such delays
would transform the system into an in®nite-dimensional
dynamic system (Gumowski 1981), a complication to be
avoided at this step, but certainly an aspect of great
physiological importance.

The model just presented includes as a special case the
model of Lopes da Silva et al. (1974). Moreover, it ex-
hibits a wide variety of electrical activities: from alpha-
like rhythms to recordings with spike-like wave forms
(Figs. 5±7 of Zetterberg et al. 1978). Only stationary
regimes of the system will be studied in this paper but
the analysis of transient behavior is also possible within
the general framework developed here.

3 State space formulation of the neural mass model

In order to ®t of the neural mass model to the actual
EEG data, the neural model is reformulated as a
continuous-discrete state space model.

Using the change of variable u � t ÿ s, the system of
Eqs. (5)±(7) can be rewritten as

V1e�t� �
Z t

ÿ1
c4E2�u� � P �u�� �he�t ÿ u�du

ÿ
Z t

ÿ1
c2I�u�hi�t ÿ u�du ;

V2e�t� �
Z t

ÿ1
c3E1�u�he�t ÿ u�du ;

Vi�t� �
Z t

ÿ1
c1E1�u�he�t ÿ u�du :

Since

lim
t!1

Z 0

ÿ1
f �u�he�t ÿ u�du! 0

for any bounded function f , then the solution of the
above system of equations is asymptotically equivalent
to the solution of

V1e�t� �
Z t

0

c4E2�u� � P �u�� �he�t ÿ u�du

ÿ
Z t

0

c2I�u�hi�t ÿ u�du ;

V2e�t� �
Z t

0

c3E1�u�he�t ÿ u�du ;

Vi�t� �
Z t

0

c1E1�u�he�t ÿ u�du ;

when t !1.
Thus, applying the Laplace transformation to this

system of equations it follows that:

V1e�s� � c4E2�s� � P�s�� �He�s� ÿ c2I�s�Hi�s� ; �8�

V2e�s� � c3E1�s�He�s� ; �9�

Vi�s� � c1E1�s�He�s� ; �10�
where

Hr�s� � br ÿ ar� �Ar

s� ar� � s� br� �
is the Laplace transformation of hr.

Hr�s� can be rewritten as:

Hr�s� � er

Lr�s� ;

where Lr�s� � s2 ÿ arsÿ br, er � �br ÿ ar�Ar,
ar � ÿ�ar � br� and br � ÿarbr.

Multiplying Eqs. (8)±(10) by Lr�s�, they can be re-
written as

Le�s�V1e�s� � ee c4E2�s� � P �s�� � ÿ c2Le�s�If �s� ; �11�

Le�s�V2e�s� � eec3E1�s� ; �12�

Le�s�Vi�s� � eec1E1�s� ; �13�
where

Li�s�If �s� � eiI�s� : �14�
Applying the inverse Laplace transformation to Eqs.
(11)±(14):

�V 1e�t� � ae _V 1e�t� � beV1e�t� � ee c4E2�t� � P�t�� �

ÿ c2 �If �t� ÿ ae _If �t� ÿ beIf �t�
� �

;

�V 2e�t� � ae _V 2e�t� � beV2e�t� � eec3E1�t� ;

�V i�t� � ae _V i�t� � beVi�t� � eec1E1�t� ;

�If �t� � ai _If �t� � biIf �t� � eiI�t�
Substituting the relations (1)±(3) in the above equation it
follows that

�V 1e�t� � ae _V 1e�t� � beV1e�t� � eec4g V2e�t�� �

ÿ c2 ÿa _If �t� ÿ bIf �t� ÿ eig�Vi�t��
� 	� eeP �t� ;

�15�
�V 2e�t� � ae _V 2e�t� � beV2e�t� � eec3g V1e�t�� � ; �16�

�V i�t� � ae _V i�t� � beVi�t� � eec1g V1e�t�� � ; �17�

�If �t� � ai _If �t� � biIf �t� � eig Vi�t�� � ; �18�
where a � ae ÿ ai and b � be ÿ bi.
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In this model, such as it was originally introduced by
Zetterberg et al. (1978), the variable that resembled
EEG background activity is V1e. Hence, this is taken as
the output of the system. However, this variable does
not yet take into account the e�ect of the ampli®ers that
are used to record the EEG nor the distortions produced
by the di�erent tissue layers between the neural mass
and the recording electrode.

The e�ect of the ampli®ers of an EEG recording
system is ®ltering of the signal. For the purpose of this
paper, a Butterworth ®lter formed by a cascade of a
(second-order) low pass ®lter and a (®rst-order) high
pass ®lter will be considered. These are the ®lters of the
recording system ``Medicid-04'' (see Fundora et al.
1997), which was used to record the data analyzed in
Sect. 5. In addition, it has been shown (HernaÂ ndez et al.
1995c) that the intermediate tissues attenuate the EEG
signal with a subject-dependent gain factor. In our
model, the gain factor a is incorporated into the am-
pli®er transfer function ha.

Thus, the observed signal V1f is the result of band-
pass ®ltering of V1e (see Fig. 1), that is

V1f �t� �
Z 1
0

V1e�t ÿ s�ha�s�ds ;

where the function ha has the Laplace transform:

ha�s� � ass
ss� 1

� x2
n

s2 � 2dxns� x2
n
:

The constants involved in this expression are speci®ed in
Table 1.

As is well known, ®lters with rational transfer func-
tions are characterized by linear ordinary di�erential
equations. Speci®cally for V1f , the third-order equation
is obtained:

d3V1f

dt3
� j2

d2V1f

dt2
� j1

dV1f

dt
� j0V1f � ax2

n
dV1e

dt
: �19�

where j0 � ÿx2
n

s , j1 � ÿ2dxn
s ÿ x2

n and j2 � ÿ2dxn ÿ 1
s.

By introducing new variables, the high order system
of di�erential Eqs. (15)±(19) can be transformed into the
®rst-order system of di�erential equations:

_V 1
1e�t� �aeV 1

1e�t� � beV1e�t� � eec4g�V2e�t�� � c2aI1f �t�

� c2bIf �t� � c2eig�Vi�t�� � eeP� x�t� ;

_V 1
2e�t� � aeV 1

2e�t� � beV2e�t� � eec3g�V1e�t�� ;

_V
1

i �t� � aeV 1
i �t� � beVi�t� � eec1g�V1e�t�� ;

_I
1

f �t� � aiI1f �t� � biIf �t� � eig�Vi�t�� ;

_V 1e�t� � V 1
1e�t� ;

_V 2e�t� � V 1
2e�t� ;

_V i�t� � V 1
i �t� ;

_If �t� � I1f �t� ;

_V
2

1f � j2V 2
1f � j1V 1

1f � j0V1f � ax2
nV 1

1e ;

_V 1f �t� � V 1
1f �t� ;

_V
1

1f �t� � V 2
1f �t� :

where x is a white noise process with zero mean and
variance e2er

2
P .

This can be expressed most succinctly as the following
stochastic di�erential equation (SDE):

_x � f�x; h� � w ; �20�
where

x � V 1
1e; V

1
2e; V

1
i ; I

1
f ; V1e; V2e; Vi; If ; V 2

1f ; V1f ; V 1
1f

� �T

is the state vector,

w � x; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0� �T

is a random vector with zero mean and a 11 � 11
covariance matrix of the form:

R � e2er
2
P 0

0 0

� �
;

and h � �c1 c2 c3 c4 P r2
P a� is the set of state parameters.

In practice, only the state variable V1f of Eq. (20),
contaminated with measurement noise, is observed at
the discrete times tn. This may be modeled as:

ztn � Cxtn � etn ; �21�
with C � �0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0�. The measurement
noise e is assumed to be a random Gaussian process with
zero mean and variance Ree.

Thus, ®nally, the state space form for the neural mass
model is given by the state Eq. (20) and the observation
Eq. (21).

4 LL method

Ozaki (1985, 1993, 1994) has introduced the technique of
LL for the integration of SDEs such as Eq. (20) as well
as for nonlinear ®ltering problems and model identi®-
cation from observed time series. This section summa-
rizes the more recent advances of this technique (Biscay
et al. 1996; Jimenez 1996; Ozaki et al. 1996) which will
be used in this paper.

Consider the discrete times tn � t0 � nDt (for
n � 0; 1; 2; . . . ;N and Dt > 0). Assuming that the system
is approximately linear on each interval �tn; tn�1�, the LL
discretization of Eq. (20) results in the following non-
linear auto-regressive model:
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xtn�1 � xtn � R J�xtn�;Dt� �f�xtn ; h� � ntn�xtn� ; �22�
where R�J�xtn�;Dt� is the matrix function:

R�J�xtn�;Dt� �
Z Dt

0

eJ�xtn �sds �23�

and ntn�1 is a white noise process with zero mean and
covariance matrix:

Qtn�1�xtn� �
Z Dt

0

eJ�xtn �sReJ
T �xtn �sds : �24�

Here, J denotes the Jacobian matrix of f and JT denotes
the transpose of J. For details of the computation of
expressions (23) and (24), see Biscay et al. (1996) and
Jimenez et al. (1998), respectively.

The reconstruction of the complete trajectory xtn of
the state space model (20)±(21), given the observed time
series ztn , is realized by means of the following nonlinear
Kalman ®ltering algorithm:

xtn�1jtn � xtnjtn � R J�xtnjtn�;Dt
� �

f�xtnjtn� ; �25�

Ptn�1jtn � eJ�xtn�1 jtn �DtVtne
JT �xtn�1 jtn �Dt �Qtn�1�xtnjtn�;

ttn�1 � ztn�1 ÿ Cxtn�1jtn ; �26�

Rmm
tn�1 � CPtn�1jtn�1C

T � Ree ; �27�

Ktn�1 � Ptn�1jtnC
T Rmm

tn�1

� �ÿ1
; �28�

xtn�1jtn�1 � xtn�1jtn � Ktn�1ttn�1 ; �29�

Vtn � Ptn�1jtn ÿ Ktn�1CPtn�1jtn ; �30�
where the vector x0j0 and the matrix V0 are assumed to
be given. This algorithm calculates the ®ltered values
xtn�1jtn�1 of the state variable x and the innovation
function ttn�1 at the N time instants tn�n � 0; 1; 2; . . . ;N�
where the actual EEG signal z has been observed. This
nonlinear ®ltering technique is the basis for a maximum
likelihood procedure that ®ts the model to data.

The maximum likelihood (ML) estimators of the
unknown parameters h and x0j0 are obtained by mini-
mizing the negative log likelihood

ÿln l z; h; x0j0
ÿ � �ÿ ln�2p�N

�
XN

k�1
�lnjRmm

tk j � tT
tk
�Rmm

tk �ÿ1ttk � ; �31�

according to the following steps:
1. Selecting some initial values for the parameters h

and x0j0. The initial value of h is chosen from the set of
possible values reported by Zetterberg et al. (1978). The
initial value of the nonobserved variables of x0j0 is
chosen according to Eq. (20), with the initial value of h
being numerically integrated in a large time interval

[0, T] starting with xt0 � 0. After that, x0j0 is set equal to
xT .

2. Selecting an instant of time tm after which the initial
transients in the innovation function t0tn�1 disappear. The
innovation function t0tn�1 is that obtained from the
nonlinear Kalman ®ltering algorithm [Eqs. (25)±(30)]
with the initial values of h and x0j0.

3. Minimizing the expression

ÿln l z; h; x0j0
ÿ � �ÿ ln�2p�N

�
XN

k�m

lnjRmm
tk
j � tT

tk �Rmm
tk �ÿ1ttk

h i
;

with respect to the parameter h by a numerical
optimization procedure.

4. Minimizing Eq. (31) with respect to the parameter
x0j0 by a numerical optimization procedure.
The variance V0 of x0j0 is, in general, a constant diagonal
matrix with numbers in the range 10ÿ3±10ÿ9. These are
selected by trial and error in such a way as to guarantee
a large transient in the innovation function ttn�1 in step 2
above. In this work, V0 was set to 10ÿ6I. The minimi-
zation of functions in steps 3 and 4 is carried out under
the constraint that the mean and variance of the inno-
vation ttn�1 are smaller than the mean and variance
of t0tn�1 .

5 Results

5.1 Simulations of EEG recordings

The numerical integration scheme for SDE, the nonlin-
ear Kalman ®lter, and the ML estimation procedure
discussed above were implemented in Matlab. The
results of testing this implementation of the LL method
with well-known ``benchmark'' nonlinear oscillators has
been reported elsewhere (Biscay et al. 1996; Jimenez
1996; Ozaki et al. 1996). Additional Matlab modules
were coded for the nonlinear state function of the neural
mass model.

Realizations of the trajectories of the SDE (Eq. 20)
for di�erent sets of state parameters were obtained by
numerical integration. The state parameters covered the
complete parameter range suggested by Zetterberg et al.
(1978). Figures 2 (top left) and 3 (right) show examples
of the time evolution of the observed variable V1f for
di�erent parameter values. These ``simulated EEG''
tracings are quite similar in appearance and spectral
content to actual EEG recordings (see, e.g., Fig. 2, top
right). They are also similar to the recordings presented
by Zetterberg et al. (1978), which were obtained by
means of an analog electronic device. In fact, it was
possible to reconstruct all the ®gures in Zetterberg et al.
(1978), except for Fig. 6a of that paper. In addition,
Fig. 2 shows examples of the time evolution of the
nonobserved variable V1e (middle left) and V2e (bottom
left) and their corresponding spectra.

The LL ®lter also allows a successful reconstruction
of the nonobservable state variables given only obser-
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vations of V1f . This is illustrated in Fig. 2 (middle and
bottom left) which superimposes the trajectories of the
state space variables estimated by ®ltering upon the true
trajectories.

5.2 Nonlinear behavior of actual EEG alpha recordings

A set of nine 1.28-s EEG recordings with alpha rhythm
was selected at random from the normative database at
the Cuban Neuroscience Center. These recordings, from
the derivation O1, were obtained using the Medicid-04
system with a sampling rate of 2000 Hz and a band pass
®lter of 0.05±30 Hz.

Empirical estimates of the deterministic attractor of
each EEG recording were estimated as described in
Hernandez et al. (1995a,b, 1996). Nonparametric kernel
auto-regressive estimates of the nonlinear state function
were applied repeatedly to randomly chosen initial val-
ues to produce empirical noise-free realizations (E-NFR)
typical of each recording. These, in turn, were used to
determine the nonstochastic attractors of the system.
The dynamics of E-NFR of alpha-rhythm recordings
corresponded to either point attractors (recordings 1±3)
or limit cycles (recordings 4±9). This is in correspon-
dence with the results reported in Hernandez et al.

(1995a, b). Examples of E-NFR trajectories are shown
in Fig. 6 (dashed lines).

5.3 Estimation of neural mass model parameters

The neural mass model was ®tted to each recording
using the nonlinear Kalman ®lter and ML estimation
procedure described above. The parameters estimated
for each recording and the likelihood of the model are
shown in Table 2. These parameter values are in the
range reported by Zetterberg et al. (1978). The variance
of the innovation was, in all cases, less than 1% of the
total signal power. However, these criteria were not used
as a conclusive measure of the degree to which the model
described the actual data correctly.

Rather, the quality of the ®t should be measured by
the degree to which the estimated model reproduces
empirically observed dynamics of each recording. For
this purpose, a model-based simulation for each re-
cording was obtained by integrating the state equation
(20) with the corresponding estimated parameters.
Figure 3 (right) shows examples of simulated data. On
the left are the actual EEG recordings. In all cases, the
simulations are similar to the real recordings.

A bootstrap con®dence interval for the spectrum of
each actual EEG data was calculated by ®tting a linear
auto-regressive model and generating time series by
bootstrapping the residuals of the linear ®t. Each spec-
trum estimated from the model-based simulation was
then compared against the corresponding con®dence
interval. For all recordings except numbers 8 and 9, the
model-based EEG spectra fell well within the con®dence
regions obtained from the real data. For these two re-
cordings, the global shapes of the model-based spectra
are similar to the real one. The di�erence seems to be a
multiplication by a scale factor. This is illustrated in
Fig. 4 for the recordings shown in Fig. 3.

The adequacy of the model was further examined by
checking the innovation time series obtained by the use
of the nonlinear Kalman ®lter. Examples of the inno-
vation series are shown in Fig. 5 (left). On the right, the
histogram of the innovation series is shown together
with the ®tted Gaussian distribution. A Gaussian dis-
tribution of the innovation series was only rejected for
recordings 8 and 9.

Fig. 2. Left Three state variables for one simulation of the alpha
rhythm obtained by integration of the neural mass model (top V1f ,
middle V1e, and bottom V2e). Superimposed on each simulated state
variable trajectory is that estimated by the local linearization ®lter
from the observed values of V1f . Right Frequency spectra of each state
variable

Table 2. Parameters estimated from the ®t of the neural model to
the EEG recordings

Recording c1 c2 c3 c4 P a
(´10)4)

r2
p l(z;h)

(´103)

1 9.99 1.91 52.52 10)6 607 3.2 13.50 4.29
2 10.0 2.29 60.85 7.5 320 2.1 26.7 5.03
3 10.0 2.56 89.68 11.58 181 3.9 16.77 4.2
4 10.04 2.12 44.68 9.11 209 3.5 15.73 4.39
5 10.03 2.16 42.57 8.95 229 4.7 18.81 4.22
6 10.01 2.55 62.29 10.2 247 3.3 21.64 6.03
7 10.04 2.19 38.52 7.9 292 2.5 11.0 5.85
8 10.04 2.43 37.87 3.53 560 1.8 9.07 5.87
9 10.08 5.67 36.49 1.69 863 5.8 2.12 4.16
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5.4 Neural mass model dynamics

Hopf bifurcations have been described for the noise-free
neural mass model (Zetterberg et al. 1978). The exis-
tence of these bifurcations in brain dynamics has been
empirically supported by the appearance of either limit
cycles or point attractors in the E-NFR. In order to
check whether the neural mass model can explain the
dynamics of individual EEG time series, the following
procedure was followed. Model NFRs (M-NFR) were
obtained by the numerical integration of the ordinary
di�erential equation (ODE) resulting from setting
r2 � 0 in the state Eq. (20). The rest of the parameters
were taken from Table 2. Then, the dynamics of the M-
NFRs were compared with that of the E-NFRs. For the
recordings 1±7, the qualitative behaviors of the E-NFR
and M-NFR were similar. For the recordings 8 and 9,
the E-NFR was a limit cycle and the M-NFR was a
point attractor. Figure 6 shows examples of E-NFR and
M-NFR for three recordings.

Though a complete analysis of the bifurcation be-
havior of the neural mass model is a formidable task, a
preliminary exploration was undertaken. Changes in the
behavior of the noise-free model ®tted to each recording
were evaluated by changing only parameter c3. It was
found that for some values of c3 a Hopf bifurcation
occurs. Moreover, it was found that a Hopf bifurcation
occurs for some values of the parameter c4, when the rest

Fig. 3. Left Real EEG recordings 1, 5 and 9. Right Recordings
simulated by integrating the state equation (20) using the estimated
parameter values shown in Table 2

Fig. 4. Con®dence interval (0.96) for the spectrum of the real data
(solid lines) and spectrum estimated from model-based simulated EEG
recording (thin line) shown in Fig. 3. Top Recordings 1, middle
recording 5, and bottom recording 9

Fig. 5. Left Innovations obtained by local linearization ®ltering of the
EEG recordings in Fig. 3 using, for each case, the estimated
parameter values shown in Table 2 (recording 1, 5, 9). Right
Histograms of innovations and estimated Gaussian distributions.
The distribution of the innovation of recording 9 di�ers from the
Gaussian at the 0.02 level (follows Kolmogorov-Smirnov test)
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of the estimated parameters are left ®xed. In Table 3 are
shown the values of the parameters c3 and c4 for which
Hopf bifurcation occurs. It should be noted that the
estimated model parameters in Table 2 for recordings 8
and 9 are near the bifurcation parameters described in
Table 3.

6 Discussion

This paper presents, to our knowledge, the ®rst attempt
to ®t a continuous-time neural model to EEG data. The
general statistical procedure described here allows the
conversion of any neural mass models into nonlinear
time series descriptions that can be directly ®tted to the
data. Moreover, since the estimation technique is based
on the likelihood, the addition of penalty terms for
model complexity (such as present in AIC, BIC, MLD,
etc.) would allow the statistical comparison of di�erent
models.

Speci®cally, the neural mass model analyzed in this
work is that proposed by Zetterberg et al. (1978) for the

generation of alpha rhythms. This model is reformulated
in the state space formalism and ®tted to a set of alpha-
rhythm recordings by means of the LL method. For all
recordings, the variance of the residuals of the ®tted
model was less than 1% of the total signal power. In
seven recordings, the residuals have a Gaussian distri-
bution and the spectrum of the signal generated by the
estimated model is not statistically di�erent from that of
the actual recording. Such a good ®t is not achieved in
only two recordings. This may be due to the fact that
time delays are not included in the model, which mod-
ulate the shape of the spectral peak of the simulated
EEG and may provide the extra ¯exibility necessary for
®tting these recordings.

A relevant ®nding is the concordance of the dynamic
behavior of the estimated model for each recording with
that deduced by means of an empirical analysis of the
EEG data. Nonparametric kernel estimates of alpha
activity (Hernandez et al. 1995b) have shown that the
alpha rhythm was heterogeneous with respect to its dy-
namic behavior. In many instances, alpha activity could
be modeled as the output of linearly ®ltered white noise.
In other cases, tests for linear behavior were clearly re-
jected. Nonparametric estimates of the attractors of
these recordings were either point sets or limit cycles
with no intermediate cases. We interpreted this as a type
of ``empirical bifurcation''. This dichotomy was also
found for the set of recordings analyzed in the present
paper. A possible explanation for this observation is the
Hopf bifurcation described by Zetterberg et al. (1978)
for their model. Evidence for this hypothesis is provided
by the correspondence between empirical and model
noise-free realizations in all recordings for which there
was a good ®t.

Nevertheless, it is pertinent to remark that the
Zetterberg model is only one of the simplest of contin-
uous-time neural mass models. It is well known that this
class of ``lumped'' models does not take into consider-
ation important aspects of physiology and anatomy, i.e.,
the spatial distribution of neural masses (Van Rotter-
dam et al. 1982), intrinsic properties of neurons medi-
ated by nonclassical ion currents (Wang 1994), etc. The
relevance of the results is that such a simple model does
indeed provide insight into some empirically observed
nonlinear properties.

A number of prospective models (e.g., Nunez 1989;
Wright et al. 1994; Zhadin 1994; Jirsa and Haken 1996;
Robinson et al. 1997) for the alpha rhythms are cur-
rently available which di�er in regard to physiological
assumptions and computational complexity. Of special
interest are the newer classes of models that extend the
earlier neural mass models to consider spatially extended
sets of neurons, thus involving partial di�erential
equations (e.g., Jirsa and Haken 1996; Robinson et al.
1997). It will certainly be of interest to compare them
with respect to their capability to predict EEG dynamic
properties. For this purpose, the LL methodology used
in this paper should be extended to the case of an evo-
lution equation, a subject of current research.

Finally, it is to be hoped that the results presented
here might be of some use in addressing the issue of

Table 3. Hopf bifurcation points. *Bifurcation point that could
not be clearly identi®ed

Recording c3 c4

1 83 2.9
2 * *
3 * *
4 25.9 7.41
5 25.7 7.05
6 25.3 7.9
7 22.03 6.17
8 37.89 3.7
9 81 1.79

Fig. 6. Noise-free realizations corresponding to EEG recordings 1, 5,
and 9. Solid line Simulation obtained by the numerical integration of
the di�erential equation resulting in set r2 � 0 in the neural mass
model and ®xing the rest of the parameters with the values shown in
Table 2 (model noise-free realization). Thin line Simulation obtained
by suppressing noise in the nonparametric kernel auto-regressive
estimator of each recording (empirical noise-free realization)
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stochastic dynamics versus chaos in the nervous system.
In recent years, there has been a tendency to view the
EEG as the output of a low dimensional dynamic system
with chaotic behavior (Elbert et al. 1994). An extreme
point of view even banishes stochastic e�ects as an ex-
planation for the EEG. The availability of parametric
nonlinear models may be of assistance in assessing the
role of stochastic e�ects in the EEG as well as to char-
acterize the multiple dynamical attractors of the nervous
system, some of which may or not be chaotic (cf.
Achermann et al. 1994; Hernandez et al. 1996; Palus
1996; Valdes 1999). In the speci®c case of alpha rhythm,
Soong and Stuart (1989) described the presence of cha-
otic dynamics. Our ®ndings obtained by both empiri-
cally observed and model-derived dynamics are in
disagreement with this observation.

However, the preferred model would be the one able
to predict some real EEG property not trivially explicit
in its formulation.
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