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Today’s plan

(Hidden) Markov models

Optimal Bayesian filtering and smoothing

Linear state space models (Kalman filter/smoother)

Nonlinear state space models: deterministic versus statistical linearisation
(Extended Kalman filter/smoother, Sigma point filters/smoothers.)

Applications of particle filters

Guest speakers: Frank Wood (Gatsby unit)
Simon Julier (CS) on 05/02



Sequential data

We relax the iid assumption of the data, such that the likelihood is structured:

p(t1, . . . , tN ) =
NY

n=1

p(tn|tn−1 . . . , t1)| {z }
Conditionals!

.

Time series: speech, video, energy consumption, finance, ...

Spacial sequences: images, DNA sequences, handwritten digits, ...

(a) Energy price. (b) Text.

Figure: Examples of sequential data.



Markov models

A sequence of state variables {tn}n>0 is an Mth order Markov chain if, for all
n, state tn depends only on the values taken by the M previous state variables.

The Markov property tells us that tn (and in fact the future tn+1, tn+2, . . .) is
independent of the past when conditioning on {tn−1 . . . , tn−M}.

From the Markov property, the joint distribution of the observed state
variables up to time τN has the following form:

P(t1, . . . , tN ) =P(t1)P(t2|t1) . . .P(tM |tM−1, . . . , t1)

×
NY

n=M+1

P(tn|tn−1 . . . , tn−M ).

The Markov model is defined in terms of transition probabilities between
discrete states.

Figure: Graphical model of a 2nd order Markov chain.



Hidden Markov models (HMM)

A more flexible approach is to assume that the observations are noisy
realisations of latent state variables, which follow a Markov model.

The joint distribution for a (1st order) hidden Markov model is given by

P(y1, . . . , yN , t1, . . . , tN ) =P(y1)
NY

n=2

P(yn|yn−1)
N′Y

n′=1

P(tn′ |yn′),

where {tn}n>0 can be real-valued.

We are not only interested in the conditionals (for making predictions), but also
in the latent causes.

Figure: Graphical model of a 1st order hidden Markov model.



State space models (SMM)

The aim is to model time varying systems, which are indirectly observed
through noisy measurements:

A set of dynamic variables (e.g. position, velocity, acceleration,
orientation, etc.) describe the physical state of the system at any time.

To be realistic, both the time evolution of the system state and the
measurements are considered to be uncertain.

State space models (and optimal filtering) are commonly used in a wide range
of applications:

Navigation (e.g. GPS)

(Aero)space engineering

Remote surveillance

Telecommunications and signal processing

Control engineering

Finance

...



State space models (continued)

Let yn ∈ RD denote the continuous state variable at time τn and tn ∈ Rd the
associated observation (not necessarily of the same dimension).

We consider discrete-time state space models with additive noise:
yn = f(yn−1, un−1, τn−1) + rn−1,
tn = h(yn, un, τn) + qn,

where n is the time index and un is a deterministic control variable.

The noise vectors {rn}n>0 account for the random perturbations acting on the
system, including the unmodelled dynamics or unmeasured inputs.

The noise vectors {qn}n>0 correspond to measurement noise.

The noises at any time are mutually independent.They are also independent
from the noises or states at any other times.

For simplicity, we assume that there are no deterministic inputs and that the
system is time-invariant.



State space models (continued)

SSMs are equivalent to first order HMMs for continuous state variables:

The Markov property still holds and tells us that the state sequence is
non-anticipative (cannot look into the future).

The dynamical model is described by the transition density, which is
induced by the deterministic, nonlinear output function f(·) and the
process noise r:

p(yn|yn−1,θ),

where the parameter vector θ specifies f(·) and the noise distribution p(r).

The measurement model is described by the local likelihood, which is
induced by the observation operator h(·) and the observation noise q:

p(tn|yn,ϑ).

The parameter vector ϑ specifies h(·) and the noise distribution p(q).

Note that the prior distribution over the initial state needs to be specified.



Example: Gaussian random walk

The transition density and the noise are both Gaussian:

p(yn|yn−1) = N (yn−1, r
2),

p(tn|yn) = N (yn, q
2),
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r2 = 0.08
r2 = 0.16

Figure: Two Gaussian random walks starting at y1 = 1. The markers denote the
observations (q=0.04).



Estimation problem

Assume f(·), h(·) and the noise processes are known. The conditional mean is
a good candidate for estimating the latent state yn given t1:k ≡ {tk}k>0:

µ̄n = 〈yn|t1:k〉.

A suitable measure of the uncertainty is then given by the conditional
covariance

Σ̄n = 〈(yn − µ̄n)(yn − µ̄n)>|t1:k〉.

Depending on the value of k, we call the estimation problem:

Prediction if k < n.

Filtering if k = n.

Smoothing if k > n.

Solving the estimation problem in an optimal way involves a Bayesian
recursion algorithm.



Optimal (Bayesian) filtering

In order to estimate the conditional mean and the conditional covariance, we
need to compute the posterior or filtering density:

p(yn|t1:n) ∝ p(tn|yn, t1:n−1)p(yn|t1:n−1)

∝ p(tn|yn)| {z }
likelihood

p(yn|t1:n−1). (Markov property)

The predictive density or (projected) prior is given by

p(yn|t1:n−1) =

Z
p(yn, yn−1|t1:n−1)dyn−1

=

Z
p(yn|yn−1, t1:n−1)p(yn−1|t1:n−1)dyn−1

=

Z
p(yn|yn−1)| {z }

transition density

p(yn−1|t1:n−1)| {z }
filtering density !

dyn−1. (Markov property)

This integral is only tractable in the linear-Gaussian case (i.e. Kalman filter).

The extensions of KF propose different ways to approximate this integral in the
nonlinear case.



Sequential smoothing

For optimal Bayesian smoothing, we are interested in p(yn|t1:k ) for k > n:

1 The forward recursion consists in computing the filtering density up to
time τk .

2 The backward recursion corresponds to propagating back the messages
from future observations to time τn:

p(yn|t1:k ) =

Z
p(yn, yn+1|t1:k )dyn+1

=

Z
p(yn|yn+1, t1:k )p(yn+1|t1:k )dyn+1,

where p(yn|yn+1, t1:k ) = p(yn|yn+1, t1:n) by the Markov property.

Applying Bayes’ rule leads to

p(yn|yn+1, t1:n) =
p(yn+1|yn, t1:n)

filtering densityz }| {
p(yn|t1:n)

p(yn+1|t1:n)| {z }
predictive density

=

transition densityz }| {
p(yn+1|yn) p(yn|t1:n)

p(yn+1|t1:n)
.

Usually, the observations taken into account are in a time window of fixed size.



Linear dynamical systems

SMM with linear, time-invariant transition and output functions:

f(y) = Fy and h(t) = Hy,

where F ∈ RD×D and H ∈ Rd×D , i.e. the observations are a linear projection of
the latent states.

SMM with additive Gaussian noise distributions:

rn ∼ N (0,R) and qn ∼ N (0,Q)

for all n.

The linear-Gaussian state-space model can be reformulated as follows:

p(yn|yn−1) = N (Fyn−1,R),

p(tn|yn) = N (Hyn,Q).

The Kalman filter is exact for a linear-Gaussian state-space model.



Kalman filter (KF)

KF is only concerned with propagating the two first moments of the filtering
density:

0 Assume the filtering density at τn−1 is given by

yn−1|t1:n−1 ∼ N (µ̄n−1, Σ̄n−1).

1 The predictive density is then Gaussian:

p(yn|t1:n−1) =

Z
N (Fyn−1,R) N (µ̄n−1, Σ̄n−1) dyn−1

= N (Fµ̄n−1| {z }
≡µ̂n

,R + FΣ̄n−1F>| {z }
≡bΣn

).

2 The new filtering density is also Gaussian:

p(yn|t1:n) ∝ N (Hyn,Q) N (µ̂n,
bΣn)

= N (Σ̄n(bΣ−1

n µ̂n + H>Q−1tn)| {z }
≡µ̄n

, (bΣ−1

n + H>Q−1H)−1| {z }
≡Σ̄n

).

KF is attractive for online learning as there is no need to keep track of the
past conditional means and covariances.



Traditional view of the Kalman filter

KF is a linear filter which estimates the latent state by a linear combination of
the state prediction µ̂n and the innovation vector νn ≡ tn −Hµ̂n:

µ̄n = µ̂n + Knνn,

where the weighting matrix Kn ∈ RD×d is the Kalman gain at time τn.

1 Prediction step:

µ̂n = 〈yn|t1:n−1〉,bΣn = 〈(yn − µ̂n)(yn − µ̂n)>|t1:n−1〉.

2 Correction step:

µ̄n = 〈yn|t1:n〉 = µ̂n + Knνn,

Σ̄n = 〈(yn − µ̄n)(yn − µ̄n)>〉 = bΣn−KnPnK>n ,

where Pn ≡ 〈νnν
>
n 〉 = Q + HbΣnH>

The optimal Kalman gain (i.e. leading to a minimum variance estimator) is
given by

Kn = 〈(yn − µ̂n)ν>n 〉 〈νnν
>
n 〉−1 = (bΣnH>)P−1

n .



Are the two solutions equivalent?

Invoking the Woodbury identity we get

Σ̄n = (bΣ−1

n + H>Q−1H)−1

= bΣn − bΣnH>(Q + HbΣnH>)−1HbΣn

= bΣn −KnPn P−1
n HbΣn| {z }
=K>n

.

The posterior mean can also be rewritten in the desired form:

µ̄n = Σ̄n(bΣ−1

n µ̂n + H>Q−1tn)

= µ̂n−KnHµ̂n + bΣnH>Q−1tn−KnHbΣnH>Q−1tn

= µ̂n + Kn

`
−Hµ̂n + PnQ−1tn−HbΣnH>Q−1tn

´
= µ̂n + Kn

`
−Hµ̂n + QQ−1tn| {z }

=νn

´
.



Kalman smoother (KS)

Let p(yn+1|t1:k ) be equal to N (mn+1,Sn+1).

1 From the forward recursion (i.e. KF), we obtain the predictive and the
filltering density.

2 The backward recursion leads to

p(yn|t1:k ) =

Z
p(yn|yn+1, t1:n)p(yn+1|t1:k )dyn+1

=

Z
N (eAnyn+1 + b̃n, eΣn) N (mn+1,Sn+1)dyn+1

= N (eAnmn+1 + b̃n| {z }
≡mn

, eΣn + eAnSn+1
eA>n| {z }

≡Sn

),

which follows from

p(yn|yn+1, t1:n) ∝ p(yn+1|yn) p(yn|t1:n)

∝ N (Fyn,R) N (µ̄n, Σ̄n)

= N (eAnyn+1 + b̃n| {z }
≡µ̃n

, (Σ̄
−1
n + F>R−1F)−1| {z }

≡eΣn

),

where eAn ≡ Σ̄nF>bΣ−1

n+1 and b̃n ≡ µ̄n − eAnµ̂n+1.

The Kalman smoother is also known as the Rauch-Tung-Striebel smoother.



The posterior mean µ̃n follows form one of the Gaussian identities discussed in
Lecture 1a:

µ̃n = eΣn(Σ̄
−1
n µ̄n + F>R−1yn+1) (Woodbury)

= µ̄n − Σ̄nF>(R + FΣ̄nF>)−1Fµ̄n

+ Σ̄nF>R−1yn+1 − Σ̄nF>(R + FΣ̄nF>)−1FΣ̄nF>R−1yn+1

= µ̄n − Σ̄nF>(R + FΣ̄nF>)−1(Fµ̄n − (R + FΣ̄nF>)R−1yn+1 + FΣ̄nF>R−1yn+1)

= µ̄n + Σ̄nF>(R + FΣ̄nF>)−1(yn+1 − Fµ̄n).



Linearised dynamical system

When f(·) is nonlinear, the transition probability p(yn|yn−1) is non-Gaussian
and the predictive distribution p(yn|t1:n−1) is in general intractable.

A similar problem arises when h(·) is nonlinear.

A possible approach is to consider a linearised dynamical system around the
estimate µ̄n−1 (or µ̂n) of the current state yn−1 (or yn):(

yn ≈ f
`
µ̄n−1

´
+∇f

˛̨
µ̄n−1

(yn−1 − µ̄n−1) + . . .+ rn−1,

tn ≈ h (µ̂n) +∇h
˛̨
µ̂n

(yn − µ̂n) + . . .+ qn,

where ∇f ∈ RD×D and ∇h ∈ Rd×D are the Jacobians of respectively f(·) and
h(·) wrt y.

Hence, approximate transition density and likelihood are again Gaussian:

q(yn|yn−1) = N (F̄n−1yn−1 + an−1,R),

q(tn|yn) = N (bHnyn + bn,Q),

where an−1 ≡ f(µ̄n−1)− F̄n−1µ̄n−1 and bn ≡ h (µ̂n)− bHnµ̂n.



Extended Kalman filter (EKF)

Assume that the filtering density is equal to N (µ̄n−1, Σ̄n−1) at time τn−1.

1 The predictive density is Gaussian:

p(yn|t1:n−1) =

Z
q(yn|yn−1)p(yn−1|t1:n−1)dyn−1

= N (f(µ̄n−1)| {z }
≡µ̂n

,R + F̄n−1Σ̄n−1F̄>n−1| {z }
≡bΣn

).

2 The filtering density is also Gaussian:

p(yn|t1:n) ∝ q(tn|yn)p(yn|t1:n−1)

= N (µ̄n, Σ̄n),

where

µ̄n = Σ̄n

nbΣ−1

n µ̂n + bH>n Q−1(tn − bn)
o
,

Σ̄n = (bΣ−1

n + bH>n Q−1bHn)−1.

The filtered state estimate µ̄n is also given by µ̂n + Kn(tn − h(µ̂n)), with Kn

being the Kalman gain.



Extended Kalman smoother (EKS)

Let p(yn+1|t1:k ) be equal to N (mn+1,Sn+1).

1 From the forward recursion (i.e. EKF), we obtain the predictive and the
filltering density.

2 The backward recursion is similar to that of KS:

p(yn|t1:k ) = N (eAnmn+1 + b̃n| {z }
≡mn

, eΣn + eAnSn+1
eA>n| {z }

≡Sn

),

where eAn = Σ̄nF̄>n bΣ−1

n+1,

b̃n = µ̄n − eAnf(µ̄n),eΣn = (Σ̄
−1
n + F̄>n R−1F̄n)−1.

In practice, EKF and EKS work well for quasi linear dynamical systems or when
the rate at which observations arrive is sufficiently high.



Example
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(a) EKF.
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(b) EKS.

Figure: Bi-stable system f (yn) = yn + 4(yn − y3
n )∆t, with additive Gaussian noise.



Flaws of EKF/EKS

The second and higher order terms in the Taylor expansion are not
negligible for highly nonlinear functions.
The EKF/EKS do not take the uncertainty on the latent states into
account when linearising.
The functions f(·) and h(·) are not necessarily differentiable analytically.
Implementation difficulties may arise when the system is composed of
many states.
Where should we linearise?

(a) Gaussian prior. (b) Nonlinear transformation.

Figure: First and second order moments when applying a nonlinear transformation to
a Gaussian random variable. The blue curve is exact and the red curve is obtained
when linearising around the prior mean.



Statistical linearisation

Let Y be a continuous random variable to which we apply a nonlinear
transformation f(·).

We would like to take the uncertainty on a specific value y into account when
linearising f(·) at that point.

Consider the following linear approximation:

f(y) ≈ Ay + b.

We would like to obtain the best (i.e. in the minimum squared error sense)
linearised approximation on average:

{A, b} ← argmin
A,b

〈(f(y)− Ay − b)>(f(y)− Ay − b)〉.

This leads to

A =
D

(f(y)− 〈f(y)〉) (y − µ)>
E

Σ−1,

b = 〈f(y)〉 − Aµ,

where µ and Σ are the mean and the covariance of Y .



The expected squared error is given by

E(A, b) = 〈(f(y)− Ay − b)>(f(y)− Ay − b)〉.

Taking the derivative wrt b and setting to zero leads to

0 = 〈f(y)− Ay − b〉 ⇔ b = 〈f(y)〉 − A〈y〉.

Substituting this expression in E(A, b), taking the derivative wrt A and setting
to zero leads to

0 = 〈(f(y)− 〈f(y)〉 − A(y − 〈y〉) (y − 〈y〉)>〉

⇔ A〈(y − 〈y〉)(y − 〈y〉)>〉 = 〈(f(y)− 〈f(y)〉)(y − 〈y〉)>〉

⇔ A = 〈(f(y)− 〈f(y)〉)(y − 〈y〉)>〉 〈(y − 〈y〉)(y − 〈y〉)>〉−1.



Effect of nonlinear transformations to random variables with Gaussian prior
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Figure: The first and second order moments are more accurate after statistical
linearisation than when using a first order truncated Taylor-series expansion of the
function around a single point, e.g. the prior mean.



Statistical linearisation using sigma points

Let us call sigma points a set of weighted points {yl}L
l=0 chosen determini-

stically, which capture the mean and covariance1 of the random variable Y :

µ ≈
LX

l=0

wl yl ,

Σ ≈
LX

l=0

wl (yl − µn)(yl − µn)>,

where {wl}L
l=0 is the set of weights, with

P
l wl = 1.

The pairs of weights and sigma points allow us to approximate any
expectation wrt the distribution of Y , such that

E(A, b) ≈
LX

l=0

wl (f(yl )− Ayl − b)>(f(yl )− Ayl − b)

and

A ≈
“P

lwl (f(yl )− f̄) (yl − µ)>
”

Σ−1,

b ≈ f̄ − Aµ, f̄ ≡
P

lwl f(yl ).

1This can be generalised to higher order moments of Y .



Unscented transform (UT)

Let µ and Σ be the mean and the covariance of Y .

The 2D + 1 sigma points and weights are defined as follows:

y0 = µ, w0 = κ
D+κ

, l = 0,

yl = µ+
hp

(D + κ)Σ
i

l
, wl = 1

2(D+κ)
, l = 1, . . . ,D,

yl = µ−
hp

(D + κ)Σ
i

l
, wl = 1

2(D+κ)
, l = D + 1, . . . , 2D,

where (·)l denotes the lth column of matrix square root
p

(D + κ)Σ and κ is a
scale parameter (determining the radius of the sigma points from the mean).

The matrix square root can be computed by Cholesky factorisation (lower
triangular factor).

The matrix square root is not unique, so any orthonormal rotation of the
sigma-point set is again a valid set.

The sigma points capture the true mean and covariance of Y .

When propagated through any nonlinear system, the transformed sigma
points capture the posterior mean and covariance up to the 2nd order.

The errors introduced in the 3rd and higher orders can be minimised by
optimising κ.



Example revisited

(a) Gaussian prior. (b) Nonlinear transformation.

Figure: First and second order moments when applying a nonlinear transformation to
a Gaussian random variable. The blue curve is exact and the green curve is obtained
when using UT. The sigma points are indicated by small circles.



Comments

When directly linearising the nonlinear transformation (e.g. in EKF), the
posterior mean and covariance are only accurate up to the first order.

By contrast, a suitable choice of sigma points results in being accurate up to
higher orders.

Other methods for determining the sigma points and their weights include:

The Scaled UT, which prevents the covariance to be negative-definite
after transformation. This can happen when κ is chosen too negative.

Sterling’s polynomial interpolation formula, which replaces the analytical
derivatives in the Taylor series expansion by central divided differences.

Gauss-Hermite quadrature, which is specifically designed to approximate
Gaussian integrals, but is O(LD ), the accuracy being dependent on L.

The ensemble heuristic, which picks L + 1 samples at random and weights
them by 1/(L + 1).



Statistically linearised dynamical system

When the state variable at time τn is uncertain, statistical linearisation is more
suitable than directly linearising the nonlinear functions f(·) and h(·):

yn ≈ An−1yn−1 + bn−1 + rn−1,
tn ≈ Cnyn + dn + qn,

where

An−1, bn−1 and f̄n−1 are computed with sigma points from the filtering
density p(yn−1|t1:n−1).

Cn, dn and h̄n use sigma points from the predictive density p(yn|t1:n−1).

The approximate transition density and likelihood are again Gaussian:

q(yn|yn−1) = N (An−1yn−1 + bn−1,R),

q(tn|yn) = N (Cnyn + dn,Q).



Sigma point Kalman filter (SPKF)

The idea is to only propagate approximate first and second order moments,
which are more accurate than the ones obtained for the EKF.

Assume that the filtering density is equal to N (µ̄n−1, Σ̄n−1) at time τn−1.

1 The predictive density is Gaussian:

p(yn|t1:n−1) = N (f̄n−1|{z}
≡µ̂n

,R + An−1Σ̄n−1A>n−1| {z }
≡bΣn

).

2 The filtering density is Gaussian:

p(yn|t1:n) = N (µ̄n, Σ̄n),

where

µ̄n = Σ̄n

nbΣ−1

n µ̂n + C>n Q−1(tn − dn)
o
,

Σ̄n = (bΣ−1

n + C>n Q−1Cn)−1.



Sigma point Kalman filter (continued)

SPKF is attractive in practice:

Derivativeless

Based on deterministic sampling

Gaussian approximate filter with exact nonlinear models:

1 Prediction:

µ̂n =
P

l vl f(y
(l)
n−1),bΣn = R +

P
l vl (f(y

(l)
n−1)− µ̂n)(f(y

(l)
n−1)− µ̂n)>,

where {y(l)
n−1}L

l=0 are sigma points of the filtering density p(yn−1|t1:n−1) and

{vl}L
l=0 the corresponding weights.

2 Correction:

µ̄n = µ̂n + Kn(tn − h̄n), Kn =
`P

l wl (h(ỹ
(l)
n )− h̄n)(ỹ

(l)
n − µ̂n)>

´
P−1

n ,

Σ̄n = bΣn − KnPnK>n , Pn = Q +
P

l wl (h(ỹ
(l)
n−1)− h̄n)(h(ỹ

(l)
n−1)− h̄n)>,

where {ỹ(l)
n }L

l=0 are sigma points of the predictive density p(yn|t1:n−1) and

{wl}L
l=0 the corresponding weights.



Consider the sigma points {y(l)
n−1}

L
l=0 and the weights {vl}L

l=0. The covariance
of the filtering density at time τn−1 is approximated by

Σ̄n−1 ≈
LX

l=0

vl (y(l)
n−1 − µ̄n−1)(y(l)

n−1 − µ̄n−1)>.

Hence, the covariance of the predictive density at time τn−1 is given bybΣn = R + An−1Σ̄n−1A>n−1

= R +
“P

lvl (f(y(l)
n−1)− µ̂n)(y(l)

n−1 − µ̄n−1)>
”

Σ̄
−1
n−1Σ̄n−1A>n−1

= R +
P

lvl (f(y(l)
n−1)− µ̂n)(f(y(l)

n−1)− µ̂n)>.

The proof is analogue for Pn and the Kalman gain is given by

Kn ≈

 
LX

l=0

wl (h(ỹ(l)
n )− h̄n)(ỹ(l)

n − µ̂n)>
!

P−1
n ,

where {ỹ(l)
n }L

l=0 and {wl}L
l=0 are the sigma points and the weights.



Types of SPKFs

The (scaled) UT and the central difference approximation lead respectively to
the unscented KF (UKF) and the central difference KF (CDKF):

The sigma points of both filters have a similar form.

They perform equally well (i.e. with negligible difference) in estimation
accuracy, but CDKF only needs to set a single parameter.

Inaccuracies arise when the posterior is multi-modal.

SPKFs are different from particle filters as they work with a small number of
particles, which are chosen deterministically.

The ensemble approach leads to the Ensemble KF (EnsKF):

Degenerate solution

Able to deal with very high dimensional state space, popular in Data
Assimilation (e.g. numerical weather prediction).

Use of heuristics to deal with practical problems such as rank deficiency,
ensemble update, ensemble perturbation, etc.

EnsKF is different from particle filters as it works with a small number particles
with same weight and assumes everything is Gaussian.



Sigma point Kalman smoother (SPKS)

Let p(yn+1|t1:k ) be equal to N (mn+1,Sn+1).

1 From the forward recursion (i.e. SPKF), we obtain the predictive and the
filltering density.

2 The backward recursion is similar to that of KS:

p(yn|t1:k ) = N (eAnmn+1 + b̃n| {z }
≡mn

, eΣn + eAnSn+1
eA>n| {z }

≡Sn

),

where eAn = Σ̄nA>n bΣ−1

n+1,

b̃n = µ̄n − eAn f̄n,eΣn = (Σ̄
−1
n + A>n R−1An)−1.

These quantities can be reformulated in terms of the weighted sigma points.



Parameter inference by latent state augmentation

Let us denote the parameters of f(·) and h(·) by θ and ϑ.

1 Joint filtering (or smoothing):
Consider the augmented state variable:24 yn

θn

ϑn

35 =

24 f(yn−1,θn−1) + rn−1

θn−1 + σn−1

ϑn−1 + ςn−1

35 .

where {σn, ςn}n>0 reflects the (prior) uncertainty on the parameters.

Use EKF/S or SPKF/S to jointly estimate the latent states and the
parameters.

2 Dual filtering:
Alternate between a filter to estimate the latent states for fixed parameters:

yn = f(yn−1, θ̄n−1) + rn−1,

tn = h(yn, ϑ̄n−1) + qn,

And a filter to estimate the parameters for fixed latent states:

θn = θn−1 + σn−1,

ϑn = ϑn−1 + ςn−1,

tn = h(µ̄n,ϑn) + qn.

A priori, the joint approach is to be preferred in practice as it models the cross-
correlations between y and θ. However, it can lead to slow convergence.



Parameter inference by EM

The lower bound to the marginal log-likelihood is given by

−F(q,θ,ϑ) = ln p(t1:N |θ,ϑ)−KL[q(y1:N )‖p(y1:N |t1:N ,θ,ϑ)],

= 〈ln p(t1:N , y1:N |θ,ϑ)〉q(y1:N ) + H[q(y1:N )].

The E step consists in estimating the latent states for fixed {θ,ϑ}:

q(y1:N ) =
NY

n=1

p(yn|t1:N ),

where p(yn|t1:N ) are the local posterior marginals obtained by the
smoothing algorithm.

The M step maximises the complete log-likelihood for fixed q:

{θ,ϑ} ← argmax
θ,ϑ

〈ln p(t1:N , y1:N |θ,ϑ)〉q(y1:N ) .

The M step for initial state distribution is ok as well.

For nonlinear state space models, the M step is performed by gradient ascent
techniques (see e.g. Nocedal and Wright, 2000).



References

Christopher M. Bishop: Pattern Recognition and Machine Learning.
Springer, 2006.

Geir Evensen: Data assimilation : The ensemble Kalman filter. Springer,
2007.

Simon J. Julier and Jeffrey K. Uhlmann, A general method of
approximating nonlinear transformations of probability distributions.
Technical report, Department of Engineering Science (Robotics Research
Group), University of Oxford, 1995.

Rudolph E. Kalman, A new approach to linear filtering and prediction
problems, Transactions of the ASME, Journal of Basic Engineering, 82,
34-45, 1960.
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