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Today’s plan

Least squares and ridge regression: a probabilistic view

Bayesian linear models for regression

Sparse extensions

Maximum likelihood, maximum a posteriori, type II ML, variational
inference



Regression problem

Given a finite number of noisy observations {tn}Nn=1 associated to some input
data {xn}Nn=1, we would like to predict the outcome of an unseen input xnew.

This process is called generalisation and the input-target pairs {xn, tn}Nn=1 are
the training data.
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(a) Target.
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f(xnew) = ?

(b) Generalisation.



Linear models for regression

The model y(x,w) is linear in the parameters w and is expressed as a weighted
sum of nonlinear basis functions {φm(·)}Mm=1 centred on M learning prototypes:

y(x,w) =
MX

m=1

wmφm(x) + w0 = w>φ(x).

Least squares regression

Partial least squares

Regularization networks

Support vector machines

Radial basis function networks

Splines

Lasso

...

The goal is to infer the parameters from a set of real valued input-target pairs
{xn, tn}Nn=1 which lead to the best prediction on unseen data.



Least squares regression

We consider the sum-of-squares error:

E(w) =
1

2

NX
n=1

(tn − yn)2 =
1

2
‖t− y‖2,

where yn ≡ y(xn,w), t = (t1, . . . , tN)> and y = (y1, . . . , yN)>.

Since this expression is quadratic in w, its minimisation leads to a unique
minimum:

wLS = (Φ>Φ)−1Φ>t = Φ†t,

where Φ† is the Moore-Penrose pseudo-inverse of Φ ∈ RN×(M+1).

In practice, Φ is often ill-conditioned and solving the linear system leads to
overfitting (low bias, but high variance; too much flexibility!).



The design matrix Φ is defined as follows:

Φ =

0B@ 1 φ1(x1) . . . φM(x1)
...

...
. . .

...
1 φ1(xN) . . . φM(xN)

1CA .

Using this definition we can write y = Φw.

Standard linear regression is recovered for Φ = X.



Example of overfitting

The target function is given by

f (x) =
sin x

x
, x ∈ [−10, 10] .

We choose the squared exponential basis function:

φm(x) = exp


−λm

2
(x − xm)2

ff
, λm > 0.
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Figure: The target sinc function (dashed line) and the least squares regression solution
(solid line) for λm = 1/36 for all m. The noisy observations are denoted by crosses.



Ridge regression (or weight decay)

The idea is to introduce regularisation, i.e. favour smooth regressors by
penalising large ‖w‖.

The error function for ridge regression is defined as follows:

eE(w) = E(w) +
α

2
‖w‖2,

where α > 0 is the complexity parameter.

The global optimum for w is given by

wR = (Φ>Φ + αIM)−1Φ>t.

Hence, α converts an ill-conditioned problem into a well-conditioned one.

The effective complexity of the model is reduced, avoiding overfitting.



Example revisited

The target function is still given by

f (x) =
sin x

x
, x ∈ [−10, 10] .

The amount of penalisation depends on the value of α.
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Figure: (a) The target sinc function (dashed line) and the least squares regression
solution (solid line) for λm = 1/36 for all m. The noisy observations are denoted by
crosses. (b) Penalised error as a function of α.



Parameter shrinkage and the LASSO

More general penalised error functions are of the following form:

argmin
w

E(w) subject to

MX
m=0

|wm|q 6 η,

where q defines the type of regulariser:

Ridge regression corresponds to the specific choice q = 2.

The LASSO corresponds to q = 1 and leads to sparse solutions for a
sufficiently small η as most weights are driven to zero.
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Why using a probabilistic formalism in regression problems?

Well-known least squares and ridge regression are special cases.

The approach provides additional insights in the solution by dealing with
the uncertainty in a principled way.

Various sources of uncertainty can be modelled.

Confidence measures are associated to the predictions that are made.

Intensive resampling techniques such as cross-validation and the bootstrap
are avoided.

What do we loose?

In practice, probabilistic and Bayesian inference require the computation of
intractable integrals (marginalisation and normalisation/partition function).

These integrals are either estimated by Markov Chain Monte Carlo (MCMC) or
by an approximate inference procedure (e.g. Laplace approximation, variational
Bayes, expectation-propagation).



A probabilistic view of least squares regression

We assume that the observations are noisy iid samples drawn from a
(univariate) Gaussian:

tn = yn + εn, εn ∼ N (0, σ2).

The likelihood of the observations is then given by a multivariate Gaussian:

(t1, . . . , tN)|w, σ ∼
NY

n=1

N (yn, σ
2) = N (y, σ2IN).

The maximum likelihood (ML) solution leads to a set of equations:

d ln p(t|w, σ)

dw
= 0 ⇒ wML = Φ†t,

d ln p(t|w, σ)

dσ2
= 0 ⇒ σ2

ML =
1

N
‖t− y‖2.

The ML solution for w is equal to the least squares solution. The ML estimate
for the noise variance is to the residual error or unexplained variance.



The log-likelihood is given by

ln p(t|w, σ) = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t− y)>(t− y)| {z }

=‖t−y‖2

.

Hence, this leads to

d ln p(t|w, σ)

dw
= 0 ⇒ 1

σ2
Φ>(t−Φw) = 0,

d ln p(t|w, σ)

dσ2
= 0 ⇒ − N

2σ2
+

1

2σ4
(t− y)>(t− y) = 0.



A probabilistic view of ridge regression

How to avoid overfitting?

We model the uncertainty on the value of the parameters by imposing some
prior distribution on them:

w ∼ N (0,A−1),

where A ≡ diag{α0, . . . , αM}.
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Figure: Zero-mean Gaussian prior with diagonal covariance matrix.



A probabilistic view of ridge regression (continued)

Applying Bayes’ rule leads to the posterior distribution of the parameters:

p(w|t) ∝ p(t|w)p(w).

The maximum a posteriori (MAP) solution is given by

d ln p(w|t)

dw
= 0 ⇒ wMAP = σ−2(σ−2Φ>Φ + A)−1Φ>t,

where the noise variance σ2 is assumed to be known.

In the particular case where αm = α0 for all m (and σ is fixed), the MAP
solution is equivalent to ridge regression, since we have α = α0σ

2.

In order to infer the amount of noise, one has to use the Expectation-
Maximisation algorithm as w and σ2 are coupled (see later).



The log-posterior is given by

ln p(w|t) = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t− y)>(t− y)

− M + 1

2
ln 2π +

1

2
ln |A| − 1

2
w>Aw − ln Z .

Hence, this leads to

d ln p(w|t)

dw
= 0 ⇒ 1

σ2
Φ>(t−Φw)− Aw = 0

⇔ 1

σ2
Φ>t =

1

σ2
Φ>Φw + Aw.



Is the MAP solution a good solution?

Overfitting and the model selection problem (i.e. the choice of the number
of prototypes) are solved by limiting the effective model complexity.

It might be difficult to deal with (very) large data sets.

The better (smoother) solution is at the cost of additional
hyperparameters, which can only be set by resampling.

MAP makes predictions based on point estimates as ML; the uncertainty
on the parameters is not taken into account when making predictions:

p(t|t) ≈ p(t|wMAP) = N (t|y(x,wMAP), σ2).

The MAP solution depends on the parametrisation of the prior.



Type II ML (or evidence maximisation)

We view some parameters as latent, i.e. unobserved, random variables.

In order to deal properly with the uncertainty, we want to integrate them out
before estimating the remaining parameters by ML or making predictions.

Assume the random variable x is observed and the variable z is unobserved. Let
us denote the (remaining) parameters by θ.

1 The full predictive distribution is approximated by

p(x∗|x) ≈
Z

p(x∗|z,θ) p(z|x,θ) dz.

where p(z|x,θ) = p(x|z,θ)p(z|θ)
p(x|θ)

is the posterior.

2 The parameters are estimated by maximising (e.g. by gradient descent)
the marginal likelihood (or evidence)1:

θML2 = argmax
θ

p(x|θ),

where p(x|θ) =
R

p(x, z|θ) dz.

1Type II ML might be more sensitive to model mis-specification than resampling techniques
based on the pseudo-likelihood (see Section 4.8 in Wahba, 1990).



The Expectation-Maximisation (EM) algorithm in a nutshell

The EM algorithm maximises a lower bound of the log-marginal likelihood in
presence of latent variables.

Using Jensen’s inequality, we get for a distribution q(z) within a tractable
family:

ln p(x|θ) = ln

Z
p(x, z|θ)dz

>
Z

q(z) ln
p(x, z|θ)

q(z)
dz

≡ −F(q,θ).

The variational free energy F(q,θ) can be decomposed in two different ways:

−F(q,θ) = ln p(x|θ)−KL[q(z)‖p(z|x,θ)], (E step)

−F(q,θ) = 〈ln p(x, z|θ)〉q(z) + H[q(z)]. (M step)

The EM algorithm maximises the lower bound by alternatively minimising the
KL for fixed parameters (E step) and maximising the expected complete log-
likelihood for a fixed q(z) (M step).

By construction, the EM algorithm ensures a monotonic increase of the bound.



EM for linear regressors

We view w as a latent (unobserved) variable on which an isotropic Gaussian
prior is imposed:

w|α ∼ N (0, α−1IM+1).

The goal is to learn the noise variance σ2 and the scale parameter α.

The E step is exact as the posterior on w is tractable (conjugate prior):

w|t, σ, α ∼ N (µw,Σw),

where µw ≡ σ−2ΣwΦ>t and Σw ≡ (σ−2Φ>Φ + αIM+1)−1.

For a Gaussian distribution the mode is equal to the mean. Hence, the
estimate for w is equal to the one obtained before, i.e. 〈w〉 = µw = wMAP.

The M step is given by

σ2
ML2 ← argmax

σ2

〈ln p(t,w|σ, α)〉 =
‖t−Φµw‖2 + tr{ΦΣwΦ>}

N
,

αML2 ← argmax
α

〈ln p(t,w|σ, α)〉 =
M + 1

µ>w µw + tr{Σw}
.



The posterior is given by (completing the square)

p(w|t, σ, α) ∝ e
− 1

2σ2 (t−Φw)>(t−Φw)
e−

α
2

w>w

∝ e−
1
2

(w>(σ−2Φ>Φ+αIM+1)w−2σ−2t>Φw)

∝ e−
1
2

(w>Σ−1
w w−2µ>w Σ−1

w w)

∝ e−
1
2

(w−µw)>Σ−1
w (w−µw).

The expected complete log-likelihood is given by

〈ln p(t,w|σ, α)〉 = −N

2
ln 2π − N

2
lnσ2 − 1

2σ2

˙
(t− y)>(t− y)

¸
− M + 1

2
ln 2π +

M + 1

2
lnα− α

2
〈w>w〉

= −N

2
ln 2π − N

2
lnσ2 − 1

2σ2
(t−Φ〈w〉)>(t−Φ〈w〉)

− 1

2σ2
tr{ΦΣwΦ>} − M + 1

2
ln 2π +

M + 1

2
lnα− α

2
〈w>w〉.

Taking the derivative wrt σ2 and α, and equating to zero leads to the desired
updates.



Predictive distributions

We are not only interested in the optimal predictions, but also in the best
approximation of the full predictive distribution.

The predictive distributions for the ML and the type II ML solutions are given
by

p(t|t) ≈ p(t|wML, σML) = N (w>MLφ(x), σ2
ML),

p(t|t) ≈ p(t|t, σML2, αML2) = N (µ>w φ(x), σ2
ML2+φ>(x)Σwφ(x)).

In the case of type II ML, the predictive variance has two components:

The noise on the data.

The uncertainty associated to the parameters.



Example revisited

We compare the solutions on the sinc example with N = 25, σ = 0.1 and
λm = 1/9 for all m. We show the mean and the error bars (±3 std):

!10 !8 !6 !4 !2 0 2 4 6 8 10
!0.5

0

0.5

1

1.5

x

t

(a) ML.
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Figure: (a) ML solution: σML = 0.05. (b) Type II ML solution: σML2 = 0.08 and
αML2 = 1.15. (Target function: dashed; observations: crosses.)



Is the type II ML solution a good solution?

The solution avoids overfitting by taking some uncertainty into account.

Predictions provide error bars by integrating out w.

The lower bound is moderately suitable for selecting the kernel width:
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Figure: (a) Root mean square error (RMSE) and normalised lower bound
(−F/c) versus the kernel width λ. (b) Noise standard deviation versus λ.

Will we gain something if we take the uncertainty of the hyperparameters
into acount and be agnostic at a higher level?



Variational Bayes (VEM) in a nutshell

Variational Bayes generalises EM by viewing all parameters as random
variables.

Using Jensen’s inequality, we obtain a lower bound on the log-marginal
likelihood:

ln p(x) = ln

ZZ
p(x, z,θ) dz dθ

>
ZZ

q(z)q(θ) ln
p(x, z,θ)

q(z)q(θ)
dz dθ

= ln p(x)−KL[q(z)q(θ)‖p(z,θ|x)]

≡ −F(q(z), q(θ)).

For tractability it is assumed that the variational posterior factorises (at least)
between the latent variables and the parameters given the observations.

When a fully factorised posterior is assumed, one talks about mean field.

Assuming a factorised form corresponds to neglecting the correlations
between dependent variables and thus prevents transmitting uncertainty.

Considering KL[q‖p] leads a more compact posterior as it is zero forcing.



Variational Bayes in a nutshell (continued)

The variational bound can be maximised by alternating between the following
updates:

q(z) ∝ e〈 ln p(x,z|θ|)〉q(θ) , (VE step)

q(θ) ∝ e〈 ln p(x,z|θ)〉q(z) p(θ), (VM step)

In practice, the priors are chosen to be conjugate to the likelihood such that
updating the posterior simply consists in updating the hyperparameters.

By construction, VEM ensures a monotonic increase of the bound.

The variational lower bound can be evaluated using

−F(q(z), q(θ)) = 〈ln p(x, z,θ)〉q(z)q(θ) + H[q(z)] + H[q(θ)].

The predictive distribution is approximated as follows:

p(x∗|x) ≈
Z

p(x∗|z,θ)q(z)q(θ)dzdθ.



First, we show that VE maximises the lower bound (i.e. minimises the free
energy) for fixed q(θ):

F = −
Z

q(z) 〈ln p(x, z|θ)〉q(θ) dz−H[q(z)] + const.

= −
Z

q(z) ln
e〈ln p(x,z|θ)〉q(θ)

q(z)
dz + const.

= KL
h
q(z)

‚‚ 1
Z

e〈ln p(x,z|θ)〉q(θ)

i
+ const.

Second, we show that VM maximises the lower bound for fixed q(z):

F = −
Z

q(θ) 〈ln p(x, z,θ)〉q(z) dθ −H[q(θ)] + const.

= −
Z

q(θ) ln
e〈ln p(x,z,θ)〉q(z)

q(θ)
dθ + const.

= KL
h
q(θ)

‚‚ 1
Z

e〈ln p(x,z|θ)〉q(z) p(θ)
i

+ const.



Bayesian linear models for regression

For simplicity, the prior on the weights is assumed to be isotropic Gaussian:

w|α ∼ N (0, α−1IM+1),

To force non-negative value, we impose Gamma priors on α and τ = σ−2:

α ∼ G(a0, b0),

τ ∼ G(c0, d0).

The Gamma is conjugate to the Gaussian.
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Figure: Gamma distribution for various values of the scale and the shape parameter.



Variational inference for Bayesian linear regressors

The complete log-likelihood is given by

p(t,w, τ, α) = p(t|w, τ)p(w|α)p(α)p(τ).

It is assumed that the variational posterior fully factorises, such that

q(w, α, τ) = q(w)q(α)q(τ).

Applying the variational framework leads to

q(w) = N (µ̄w, Σ̄w),

q(α) = G(a, b),

q(τ) = G(c, b),

where the special quantities are defined as

µ̄w ≡ 〈τ〉Σ̄wΦ>t, Σ̄w ≡ (〈τ〉Φ>Φ + 〈α〉IM+1)−1,

a ≡ M + 1

2
+ a0, b ≡ µ̄>w µ̄w + tr{Σ̄w}

2
+ b0,

c ≡ N

2
+ c0, d ≡ ‖t−Φµ̄w‖2 + tr{ΦΣ̄wΦ>}

2
+ d0,

where 〈τ〉 = c/d and 〈α〉 = a/b.



The variational posterior for w is given by

q(w) ∝ e〈ln p(t,w|α,τ)〉q(α)q(τ)

= e−
1
2

(w−µ̄w)>Σ̄−1
w (w−µ̄w).

The variational posterior for α is given by

q(α) ∝ e〈ln p(t,w|α,τ)〉q(w)q(τ) p(α)

∝ e(a−1) lnα−bα,

where a ≡ M+1
2

+ a0 and b ≡ 〈w
>w〉
2

+ b0.

The variational posterior for α is given by

q(τ) ∝ e〈ln p(t,w|α,τ)〉q(w)q(α) p(τ)

∝ e(c−1) ln τ−dτ .

where c ≡ N
2

+ c0 and d ≡ 〈(t−Φw)>(t−Φw)〉
2

+ d0.



Variational vs type II ML

In practice, the variational approach consists in updating the parameters of the
posteriors in turn.

The updates for the posterior mean and the posterior covariance of w have a
similar form as before.

The estimates of σ2 and α are replaced by their expectation:

〈τ〉−1 =
‖t−Φµ̄w‖2 + tr{ΦΣ̄wΦ>}+2d0

N+2c0
,

〈α〉 =
M + 1+2a0

µ̄>w µ̄w + tr{Σ̄w}+2b0

.

For flat priors, these estimates will give very similar results as type II ML.

The predictive distribution is also very similar in form:

p(t|t) ≈
Z

p(t|w, 〈τ〉−1) q(w) dw = N (µ̄>w φ(x), 〈τ〉−1 + φ>(x)Σ̄wφ(x)).



Variational vs type II ML (continued)

The variational approach does not provide a better selection criterion for the
kernel width, but leads to a better estimate of the observation noise!
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Figure: Comparison of the quality of the type II ML solution and the variational
solution. (a) Normalised root mean square error (RMSE) and normalised lower bound
(−F) versus the kernel width λ. (b) Noise standard deviation σ versus λ. Note that
the true value of σ is 0.1.



Selecting the number of the basis functions

Why seeking sparse solutions?

Placing a basis function on each training data (M = N) rapidly becomes
infeasible in practice:

Training becomes slow (cf. matrix Σw ∈ R(M+1)×(M+1) to invert).

Even if training off-line making predictions may be too expensive.

Excessive memory usage as the design matrix grows quadratically with M.

Sparse solutions lead to better generalisation and are fast (e.g. SVM).

Simple heuristics based on resampling:

Subset selection (randomly or based on an information theoretic criterion).

Vector quantisation or clustering.

...

These approaches are unsupervised and thus suboptimal.



Sparse Bayesian linear models for regression

A systematic approach is to build a hierarchical model such that the effective
prior on w is sparsity inducing, i.e. most weights are driven to zero:

Sparse Bayesian learning and the relevance vector machines (Tipping,
2001)

Adaptive sparseness for supervised learning (Figueiredo, 2003)

Comparing the effects of different weight distributions on finding sparse
representations (Wipf and Rao, 2006)

Bayesian adaptive lassos with non-convex penalization (Griffin and Brown,
2007)

...

These methods lead to very sparse solutions (more sparse than standard SVMs).



Relevance vector machines

Consider a Gaussian prior with a different scale parameter αm for each wm,
along with a different hyperprior:

w|α0, . . . , αM ∼ N (0,A−1) =
MY

m=0

N (0, α−1
m ),

(α0, . . . , αM) ∼
MY

m=0

G(am, bm).

Integrating out αm leads to an effective prior on wm which corresponds to a
Student-t:

p(wm) =

Z
N (0, α−1

m ) G(am, bm) dαm

= S(0, am/bm, 2am),

for all m. The Student-t distribution approximates the Laplace distribution (or
double exponential), which corresponds to L1-regularisation (LASSO).

The Student-t prior is peaked around zero and has fat tails.



Sparsity inducing priors
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Figure: Two sparsity inducing priors compared to the Gaussian.
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