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Outline

Lecture 1:

Course info

Notations, definitions, recaps ...

Linear Models for regression

Gaussian processes for regression

Lecture 2:

Hidden Markov models and linear state space models

Nonlinear state space models

Applications of particle filters

Guest speaker: Frank Wood (Gatsby unit)



Outline

Lecture 3:

Dirichlet distribution and its representations

Dirichlet processes and infinite mixtures

Dirichlet process mixtures of regressors

Guest speaker: Yee Whye Teh (Gatsby unit)

Lecture 4: (on Tuesday!)

Unscented Kalman filters and extensions

Dirichlet process mixtures of linear dynamical systems

Guest speakers: Simon Julier (CS) and David Barber (CSML).

Lecture 5:

Introduction to Ito calculus and stochastic differential equations

Continuous-time stochastic processes

Wiener process, Diffusion processes, Markov jump processes, ...



Practical info

Where, when?

Week 1 to 5.

Tuesdays 14:00-17:00: Malet Place room 1.04.

Fridays 10:00-13:00: Rockefeller Building room 339.

What?

Lectures

Guest speakers

Individual report

Exam:

Written Examination (2.5 hours, 50%)

Coursework (50%)

To pass you must obtain an average of at least 50% when the coursework (1
out of 2) and exam components (2 out of 4) are weighted together.



Practical info (continued)

Individual report:

Project starts on Tuesday 05/02.

Report is due before 9:00 on Monday 25/02: send an electronic copy to
me via email and hand in a hard copy to the CS reception1.

Literature review, implementation and comparison.

No longer than 10 pages (including figures), minimal font size 11pt, no
less than 25 mm margins.

Instructions will follow.

Reports that are handed in late will be penalised as follows: 25% penalty per
day late. NO CREDIT will be given afterwards.

Questions: only by email (or after class).

1Malet Place Engineering building, 5th floor.



Some notations, definitions, etc.

Bold symbols denote column vectors:

x =

0B@ x1

...
xD

1CA = (x1, . . . , xD)>.

Capitalised bold symbols denote matrices:

X =

0B@ x11 . . . x1Q

...
. . .

...
xP1 . . . xPQ

1CA =

0B@ x11 . . . xP1

...
. . .

...
x1Q . . . xPQ

1CA
>

.



Some notations, definitions, etc.

If the function p(x) is the probability density function of a continuous random
variable X , then

∀x ∈ RD : p(x) > 0, and

Z
p(x)dx = 1.

The expectation of f (x) is defined as

〈f (x)〉 =

Z
f (x) p(x)dx.

Examples:

The mean: µ = 〈x〉.
The covariance matrix: Σ =

˙
(x− µ)(x− µ)>

¸
.

The covariance is symmetric and positive semi-definite, i.e. all its eigenvalues
are non-negative.

Sum rule of probability (marginalisation): p(x) =
R

p(x, y)dy.

Product rule of probability: p(x, y) = p(x|y)p(y).



Some notations, definitions, etc. (continued)

Bayes’ rule allows us to update a prior belief on some y into a posterior belief,
based on the observations x:

p(y|x)| {z }
posterior

=

likelihoodz }| {
p(x|y)

priorz}|{
p(y)

p(x)|{z}
evidence

.

The normalising constant is known as the evidence, the marginal likelihood or
the partition function.

Proof
Bayes’ rule follows from the product rule:

p(x, y) = p(x|y)p(y) = p(y|x)p(x).



Multivariate Gaussian distribution

Let X be a D-dimensional Gaussian random vector. Its density is defined as

N (µ,Σ) = (2π)−D/2|Σ|−1/2 exp


−1

2
(x− µ)>Σ−1(x− µ)

ff
,

where µ ∈ RD×1 is the mean and Σ ∈ RD×D is the covariance matrix.
The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ Σ) = N(µ Σ) = (2π)−D/2|Σ|−1/2 exp
(

− 1
2 (x − µ)!Σ−1(x − µ)

)

where µ is the mean vector and Σ the covariance matrix.
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Figure: 2-dimensional Gaussian.



Gaussian identities

Let X and Y be jointly Gaussian:

p(x, y) = N
„»

µx

µy

–
,

»
Σxx Σxy

Σ>xy Σyy

–«
.

The marginal p(x) is Gaussian with mean µx and covariance Σxx .

The conditional p(x|y) is Gaussian with mean and covariance equal to

µx|y = µx + ΣxyΣ−1
yy (y − µy),

Σx|y = Σxx −ΣxyΣ−1
yy Σ>xy.Conditionals and Marginals of a Gaussian

 

 

joint Gaussian

conditional

 

 

joint Gaussian

marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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(a) Marginal.

Conditionals and Marginals of a Gaussian

 

 

joint Gaussian

conditional

 

 

joint Gaussian

marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Rasmussen (MPI for Biological Cybernetics) Advances in Gaussian Processes December 4th, 2006 9 / 55

(b) Conditional.



Gaussian identities (continued)

Consider the following two Gaussian distributions:

p(x) = N (µx,Σxx),

p(y|x) = N (Ax + b,Λ).

The marginal p(y) is Gaussian with mean and covariance given by

µy = Aµx + b,

Σyy = Λ+AΣxxA>.

The posterior p(x|y) is Gaussian with mean and covariance equal to

µx|y = Σx|y{Σ−1
xx µx + A>Λ−1(y − b)},

Σx|y = (Σ−1
xx + A>Λ−1A)−1.



Gamma distribution

For x ∈ R+, the Gamma density is defined as follows:

G(α, β) =
βα

Γ(α)
xα−1 exp{−βx}, α, β > 0,

where Γ(u) ≡
R∞

0
vu−1e−vdv is the gamma function. We have

〈x〉 = a/b and 〈ln x〉 = ψ(a)− ln b.

The function ψ(·) ≡ (ln Γ)′(·) is the digamma function.
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Figure: Gamma distribution for two values of a and b.



Multivariate Student-t distribution

The Student-t density2 is defined as follows:

S(µ,Σ, ν) =
Γ( ν+D

2
)

Γ( ν
2

)(νπ)D/2|Σ|1/2

„
1 +

1

ν
(x− µ)>Σ−1(x− µ)

«− ν+D
2

.

Parameter ν > 0 is the shape parameter:

The Cauchy density is recovered for ν = 1.

The Gaussian density is recovered when ν →∞.

The Student-t density can be reformulated as an infinite mixture of scaled
Gaussians:

S(µ,Σ, ν) =

Z ∞
0

N (µ,Σ/u) G( ν
2
, ν

2
) du,

where u is a (latent) scale parameter.

2Student’s t density was published in 1908 by William S. Gosset, while he worked at Guinness
Brewery in Dublin and was not allowed to publish under his own name.



Multivariate Student-t distribution (continued)
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Figure: (a) Student-t distribution for two values of the shape parameter and the
corresponding (b) Gamma distribution.



Some notations, definitions, etc. (continued)

The differential entropy is defined as

H[p(x)] = −
Z

p(x) ln p(x) dx.

The entropy of a Gaussian is given by D
2

ln 2πe + 1
2

ln |Σ|.

If the continuous random variable Y has the same mean and covariance as the
Gaussian random variable X , then H[p(y)] 6 H[p(x)].

The Kullback-Leibler divergence measures the difference between two
densities:

KL[q‖p] =

Z
q(x) ln

q(x)

p(x)
dx > 0.

The KL is asymmetric (thus not a distance) and only zero if q(x) = p(x) for all
x.



Some notations, definitions, etc. (continued)

Jensens’s inequality
For a convex function f (·), we have 〈f (x)〉 > f (〈x〉).

Proof
We proof Jensen’s inequality for x ∈ R. Consider the Taylor expansion of f (x)
around x̄ = 〈x〉:

f (x) = f (x̄) + (x − x̄)f ′(x̄) +
1

2
(x − x̄)2f ′′(x̄) + . . .

A function f is convex if f ′′ ≥ 0 for all x . Hence,

f (x) > f (x̄) + (x − x̄)f ′(x̄)

in a small neighbourhood around x̄ , which is fixed. Taking the expectation
leads to

〈f (x)〉 > f (x̄) + (〈x〉 − x̄)| {z }
=0

f ′(x̄).



Matrix identities

Woodbury identity:

(Ψ + VΦW)−1 = Ψ−1 −Ψ−1V(Φ−1 + WΨ−1V)−1WΨ−1,

where Ψ ∈ RN×N , Φ ∈ RM×M , V ∈ RN×M and W ∈ RM×N .

When Ψ−1 is known and N � M, this speeds up the matrix inversion.

For determinants we have |Ψ + VΦW| = |Ψ| |Φ| |Φ−1 + WΨ−1V|.

Cholesky decomposition:
When Λ ∈ RD×D is symmetric, positive definite, it can decomposed as follows:

Λ = Q>Q,

where the cholesky factor Q ∈ RD×D is upper triangular.

Solving the linear system Qx = b by backward substitution is O(N).

Computing the inverse of Λ by backward-forward substitution is O(N2).

The determinant of Λ is given by
Q

d Q2
dd .
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