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Outline

Lecture 1:

@ Course info

@ Notations, definitions, recaps ...
@ Linear Models for regression
°

Gaussian processes for regression

Lecture 2:
@ Hidden Markov models and linear state space models
@ Nonlinear state space models
@ Applications of particle filters
@ Guest speaker: Frank Wood (Gatsby unit)



Outline

Lecture 3:
@ Dirichlet distribution and its representations
@ Dirichlet processes and infinite mixtures
@ Dirichlet process mixtures of regressors
o Guest speaker: Yee Whye Teh (Gatsby unit)

Lecture 4: (on Tuesday!)
@ Unscented Kalman filters and extensions
@ Dirichlet process mixtures of linear dynamical systems
@ Guest speakers: Simon Julier (CS) and David Barber (CSML).

Lecture 5:
@ Introduction to Ito calculus and stochastic differential equations
@ Continuous-time stochastic processes

@ Wiener process, Diffusion processes, Markov jump processes, ...



Practical info

Where, when?

o Week 1 to 5.
@ Tuesdays 14:00-17:00: Malet Place room 1.04.
o Fridays 10:00-13:00: Rockefeller Building room 339.

What?

o Lectures
@ Guest speakers

@ Individual report

Exam:
@ Written Examination (2.5 hours, 50%)
@ Coursework (50%)

To pass you must obtain an average of at least 50% when the coursework (1
out of 2) and exam components (2 out of 4) are weighted together.



Practical info (continued)

Individual report:
@ Project starts on Tuesday 05/02.

@ Report is due before 9:00 on Monday 25/02: send an electronic copy to
me via email and hand in a hard copy to the CS reception®.

o Literature review, implementation and comparison.

@ No longer than 10 pages (including figures), minimal font size 11pt, no
less than 25 mm margins.

@ Instructions will follow.

Reports that are handed in late will be penalised as follows: 25% penalty per
day late. NO CREDIT will be given afterwards.

Questions: only by email (or after class).

!Malet Place Engineering building, 5th floor.



Some notations, definitions, etc.

Bold symbols denote column vectors:

X1

X = :(Xl,...,XD)T.

XD

Capitalised bold symbols denote matrices:

X11 e X1Q X11

XpP1 N XPQ X1Q



Some notations, definitions, etc.

If the function p(x) is the probability density function of a continuous random
variable X, then

vx € R® : p(x) >0, and /p(x)dx =1

The expectation of f(x) is defined as

(760) = [ £(x) plx)ax

Examples:
@ The mean: p = (x).
o The covariance matrix: ¥ = {(x — p)(x —p) ") .

The covariance is symmetric and positive semi-definite, i.e. all its eigenvalues
are non-negative.

Sum rule of probability (marginalisation): p(x) = [ p(x,y)dy.

Product rule of probability: p(x,y) = p(x|]y)p(y).



Some notations, definitions, etc. (continued)

Bayes’ rule allows us to update a prior belief on some y into a posterior belief,
based on the observations x:

likelihood prior

p(xly) p
plylx) = PO PLY).
S~~~ p(X)
posterior \;F/

The normalising constant is known as the evidence, the marginal likelihood or
the partition function.

Proof
Bayes' rule follows from the product rule:

p(x,y) = p(xly)p(y) = p(y[x)p(x).



Multivariate Gaussian distribution

Let X be a D-dimensional Gaussian random vector. Its density is defined as
N, E) = 2r) P e { - L x - ) E - )}

where p € RP*! is the mean and X € RP*? is the covariance matrix.

Figure: 2-dimensional Gaussian.



Gaussian identities

Let X and Y be jointly Gaussian:

p(X7y):N<{ " ][ EB §yi D

The marginal p(x) is Gaussian with mean p, and covariance X4 .
The conditional p(x|y) is Gaussian with mean and covariance equal to

l‘l'x|y = My + zxy):y_yl(y - IJ’y)7
Ty = Tax — Ty Xy T

— joint Gaussian — joint Gaussian
— marginal — conditional

/\

(a) Marginal. (b) Conditional.



Gaussian identities (continued)

Consider the following two Gaussian distributions:

(X) = N(N)U ZXX)7
(y|x) = N(Ax + b, A).

P
P
The marginal p(y) is Gaussian with mean and covariance given by
py = Ap, +b,
T, =NAZ A"
The posterior p(x|y) is Gaussian with mean and covariance equal to
Nx|y = ZX\Y{Z;}’LX + ATI\_I(y - b)}7
Ty = (Zo +ATATTA) L



Gamma distribution

For x € RT, the Gamma density is defined as follows:

G(o B) = 1

where (u) = [°

o, >0,
v'"le™Vdv is the gamma function. We have

(x)=a/b and (Inx)=1(a)—Inb.
The function ¥ (-) = (InT)’(-) is the digamma function.

PO)

Figure: Gamma distribution for two values of a and b.



Multivariate Student-t distribution

The Student-t density? is defined as follows:

r(22) v

F(5)(m)P/2 |22

S(u, X, v) =

(14l =)

Parameter v > 0 is the shape parameter:
@ The Cauchy density is recovered for v = 1.

@ The Gaussian density is recovered when v — oco.

The Student-t density can be reformulated as an infinite mixture of scaled
Gaussians:

S(”vzvl/) = /OOON(Hvz/U) g(% %) du,

where u is a (latent) scale parameter.

2Student's t density was published in 1908 by William S. Gosset, while he worked at Guinness
Brewery in Dublin and was not allowed to publish under his own name.



Multivariate Student-t distribution (continued)

pix)

Figure: (a) Student-t distribution for two values of the shape parameter and the
corresponding (b) Gamma distribution.



Some notations, definitions, etc. (continued)

The differential entropy is defined as
HIp()] = — [ p(x) I p(x) dx.

The entropy of a Gaussian is given by % In2me + % In|X|.

If the continuous random variable Y has the same mean and covariance as the
Gaussian random variable X, then H[p(y)] < H[p(x)].

The Kullback-Leibler divergence measures the difference between two
densities:

KL[q||p] = /q(x) In % dx > 0.

The KL is asymmetric (thus not a distance) and only zero if g(x) = p(x) for all
X.



Some notations, definitions, etc. (continued)

Jensens’s inequality
For a convex function f(-), we have (f(x)) > f({x)).

Proof
We proof Jensen’s inequality for x € R. Consider the Taylor expansion of f(x)
around X = (x):

ﬂ@:fﬁ%ﬂx—ﬂf@y+;xfﬂ%%ﬂ+n.
A function f is convex if f” > 0 for all x. Hence,
f(x) = (%) + (x — x)f'(x)

in a small neighbourhood around X, which is fixed. Taking the expectation
leads to

(F(x)) = f(%) + ({x) = %) '(%).
—_———

=0



Matrix identities

Woodbury identity:
(W+Vow) ' =w ' —wilve '+ ww lv) 'we

where W € RVNV & € RM*M vy ¢ RVXM and W e RMXV,

@ When W1 is known and N >> M, this speeds up the matrix inversion.
o For determinants we have |W 4+ VOW| = |W| |®| [¢~ + WWTV|,

Cholesky decomposition:
When A € RP*P is symmetric, positive definite, it can decomposed as follows:

A=Q'Q,
where the cholesky factor Q € RP*P is upper triangular.

@ Solving the linear system Qx = b by backward substitution is O(N).
o Computing the inverse of A by backward-forward substitution is O(N?).
@ The determinant of A is given by [], Q3.
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