Lecture 1a: Basic Concepts and Recaps

Cédric Archambeau

Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

c.archambeau@cs.ucl.ac.uk

Advanced Topics in Machine Learning (MSc in Intelligent Systems)

January 2008

Outline

Lecture 1:

- Course info
- Notations, definitions, recaps ...
- Linear Models for regression
- Gaussian processes for regression

Lecture 2:

- Hidden Markov models and linear state space models
- Nonlinear state space models
- Applications of particle filters
- Guest speaker: Frank Wood (Gatsby unit)

Outline

Lecture 3:

- Dirichlet distribution and its representations
- Dirichlet processes and infinite mixtures
- Dirichlet process mixtures of regressors
- Guest speaker: Yee Whye Teh (Gatsby unit)

Lecture 4: (on Tuesday!)

- Unscented Kalman filters and extensions
- Dirichlet process mixtures of linear dynamical systems
- Guest speakers: Simon Julier (CS) and David Barber (CSML).

Lecture 5:

- Introduction to Ito calculus and stochastic differential equations
- Continuous-time stochastic processes
- Wiener process, Diffusion processes, Markov jump processes, ...

Practical info

Where, when?

- Week 1 to 5.
- Tuesdays 14:00-17:00: Malet Place room 1.04.
- Fridays 10:00-13:00: Rockefeller Building room 339.

What?

- Lectures
- Guest speakers
- Individual report

Exam:

- Written Examination (2.5 hours, 50%)
- Coursework (50%)

To pass you must obtain an average of at least 50% when the coursework (1 out of 2) and exam components (2 out of 4) are weighted together.

Practical info (continued)

Individual report:

- Project starts on Tuesday 05/02.
- Report is due before 9:00 on Monday 25/02: send an electronic copy to me via email and hand in a hard copy to the CS reception¹.
- Literature review, implementation and comparison.
- No longer than 10 pages (including figures), minimal font size 11pt, no less than 25 mm margins.
- Instructions will follow.

Reports that are handed in late will be penalised as follows: 25% penalty per day late. NO CREDIT will be given afterwards.

Questions: only by email (or after class).

¹Malet Place Engineering building, 5th floor.

Some notations, definitions, etc.

Bold symbols denote column vectors:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} = (x_1, \dots, x_D)^\top.$$

Capitalised bold symbols denote matrices:

$$\mathbf{X} = \begin{pmatrix} x_{11} & \dots & x_{1Q} \\ \vdots & \ddots & \vdots \\ x_{P1} & \dots & x_{PQ} \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{P1} \\ \vdots & \ddots & \vdots \\ x_{1Q} & \dots & x_{PQ} \end{pmatrix}^{\top}.$$

Some notations, definitions, etc.

If the function p(x) is the **probability density function** of a continuous random variable X, then

$$\forall \mathbf{x} \in \mathbb{R}^D : p(\mathbf{x}) \geqslant 0, \text{ and } \int p(\mathbf{x}) d\mathbf{x} = 1.$$

The **expectation** of f(x) is defined as

$$\langle f(\mathbf{x}) \rangle = \int f(\mathbf{x}) \ p(\mathbf{x}) d\mathbf{x}.$$

Examples:

- The mean: $\mu = \langle \mathbf{x} \rangle$.
- The covariance matrix: $\mathbf{\Sigma} = \langle (\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^{\top} \rangle$.

The covariance is symmetric and positive semi-definite, i.e. all its eigenvalues are non-negative.

Sum rule of probability (marginalisation): $p(x) = \int p(x, y) dy$.

Product rule of probability: p(x, y) = p(x|y)p(y).

Some notations, definitions, etc. (continued)

Bayes' rule allows us to update a prior belief on some y into a posterior belief, based on the observations x:

$$\underbrace{p(\mathbf{y}|\mathbf{x})}_{\textit{posterior}} = \underbrace{\frac{p(\mathbf{x}|\mathbf{y}) \ p(\mathbf{y})}{p(\mathbf{x})}}_{\textit{evidence}} \underbrace{\frac{p(\mathbf{x}|\mathbf{y}) \ p(\mathbf{y})}{p(\mathbf{y})}}_{\textit{evidence}}.$$

The normalising constant is known as the evidence, the marginal likelihood or the partition function.

Proof

Bayes' rule follows from the product rule:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x}).$$

Multivariate Gaussian distribution

Let X be a D-dimensional Gaussian random vector. Its density is defined as

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-D/2} |\boldsymbol{\Sigma}|^{-1/2} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\},$$

where $\mu \in \mathbb{R}^{D imes 1}$ is the mean and $\mathbf{\Sigma} \in \mathbb{R}^{D imes D}$ is the covariance matrix.

Figure: 2-dimensional Gaussian.

Gaussian identities

Let X and Y be **jointly Gaussian**:

$$\rho(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\left[\begin{array}{c} \boldsymbol{\mu}_{\mathbf{x}} \\ \boldsymbol{\mu}_{\mathbf{y}} \end{array}\right], \left[\begin{array}{cc} \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} & \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} \\ \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}}^{\top} & \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} \end{array}\right]\right).$$

The marginal $p(\mathbf{x})$ is Gaussian with mean $\mu_{\mathbf{x}}$ and covariance $\mathbf{\Sigma}_{\mathbf{x}\mathbf{x}}$.

The **conditional** $p(\mathbf{x}|\mathbf{y})$ is Gaussian with mean and covariance equal to

$$egin{aligned} \mu_{\mathsf{x}|\mathsf{y}} &= \mu_{\mathsf{x}} + \mathbf{\Sigma}_{\mathsf{x}\mathsf{y}}\mathbf{\Sigma}_{\mathsf{y}\mathsf{y}}^{-1}(\mathbf{y} - \mathbf{\mu}_{\mathsf{y}}), \ \mathbf{\Sigma}_{\mathsf{x}|\mathsf{y}} &= \mathbf{\Sigma}_{\mathsf{x}\mathsf{x}} - \mathbf{\Sigma}_{\mathsf{x}\mathsf{y}}\mathbf{\Sigma}_{\mathsf{y}\mathsf{y}}^{-1}\mathbf{\Sigma}_{\mathsf{x}\mathsf{y}}^{\mathsf{T}}. \end{aligned}$$

Gaussian identities (continued)

Consider the following two Gaussian distributions:

$$\begin{split} & \rho(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}}), \\ & \rho(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{A}\mathbf{x} + \mathbf{b}, \boldsymbol{\Lambda}). \end{split}$$

The marginal p(y) is Gaussian with mean and covariance given by

$$egin{aligned} oldsymbol{\mu}_{\mathbf{y}} &= \mathbf{A} oldsymbol{\mu}_{\mathbf{x}} + \mathbf{b}, \ oldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} &= oldsymbol{\Lambda} + oldsymbol{A} oldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} oldsymbol{A}^{ op}. \end{aligned}$$

The **posterior** $p(\mathbf{x}|\mathbf{y})$ is Gaussian with mean and covariance equal to

$$\begin{split} & \boldsymbol{\mu}_{\mathbf{x}|\mathbf{y}} = \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}} \{ \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{A}^{\top} \boldsymbol{\Lambda}^{-1} (\mathbf{y} - \mathbf{b}) \}, \\ & \boldsymbol{\Sigma}_{\mathbf{x}|\mathbf{y}} = (\boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}}^{-1} + \boldsymbol{A}^{\top} \boldsymbol{\Lambda}^{-1} \boldsymbol{A})^{-1}. \end{split}$$

Gamma distribution

For $x \in \mathbb{R}^+$, the **Gamma** density is defined as follows:

$$\mathcal{G}(\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\}, \quad \alpha,\beta > 0,$$

where $\Gamma(u) \equiv \int_0^\infty v^{u-1} e^{-v} dv$ is the gamma function. We have

$$\langle x \rangle = a/b$$
 and $\langle \ln x \rangle = \psi(a) - \ln b$.

The function $\psi(\cdot) \equiv (\ln \Gamma)'(\cdot)$ is the *digamma* function.

Figure: Gamma distribution for two values of a and b.

The **Student**-t density² is defined as follows:

$$\mathcal{S}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = \frac{\Gamma(\frac{\nu+D}{2})}{\Gamma(\frac{\nu}{2})(\nu\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \left(1 + \frac{1}{\nu} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)^{-\frac{\nu+D}{2}}.$$

Parameter $\nu > 0$ is the **shape parameter**:

- The Cauchy density is recovered for $\nu = 1$.
- The Gaussian density is recovered when $\nu \to \infty$.

The Student-*t* density can be reformulated as an **infinite mixture of scaled Gaussians**:

$$S(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\nu}) = \int_0^\infty \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}/\boldsymbol{u}) \ \mathcal{G}(\frac{\boldsymbol{\nu}}{2}, \frac{\boldsymbol{\nu}}{2}) \ d\boldsymbol{u},$$

where u is a (latent) scale parameter.

²Student's t density was published in 1908 by William S. Gosset, while he worked at Guinness Brewery in Dublin and was not allowed to publish under his own name.

Multivariate Student-*t* distribution (continued)

Figure: (a) Student-t distribution for two values of the shape parameter and the corresponding (b) Gamma distribution.

Some notations, definitions, etc. (continued)

The differential **entropy** is defined as

$$H[p(\mathbf{x})] = -\int p(\mathbf{x}) \ln p(\mathbf{x}) \ d\mathbf{x}.$$

The entropy of a Gaussian is given by $\frac{D}{2} \ln 2\pi e + \frac{1}{2} \ln |\mathbf{\Sigma}|$.

If the continuous random variable Y has the same mean and covariance as the Gaussian random variable X, then $\mathrm{H}[p(\mathbf{y})] \leqslant \mathrm{H}[p(\mathbf{x})]$.

The Kullback-Leibler divergence measures the difference between two densities:

$$\mathrm{KL}[q\|p] = \int q(\mathbf{x}) \ln \frac{q(\mathbf{x})}{p(\mathbf{x})} \ d\mathbf{x} \geqslant \mathbf{0}.$$

The KL is asymmetric (thus not a distance) and only zero if q(x) = p(x) for all x.

Some notations, definitions, etc. (continued)

Jensens's inequality

For a *convex* function $f(\cdot)$, we have $\langle f(\mathbf{x}) \rangle \geqslant f(\langle \mathbf{x} \rangle)$.

Proof

We proof Jensen's inequality for $x \in \mathbb{R}$. Consider the Taylor expansion of f(x) around $\bar{x} = \langle x \rangle$:

$$f(x) = f(\bar{x}) + (x - \bar{x})f'(\bar{x}) + \frac{1}{2}(x - \bar{x})^2 f''(\bar{x}) + \dots$$

A function f is convex if $f'' \ge 0$ for all x. Hence,

$$f(x) \geqslant f(\bar{x}) + (x - \bar{x})f'(\bar{x})$$

in a small neighbourhood around \bar{x} , which is fixed. Taking the expectation leads to

$$\langle f(x)\rangle \geqslant f(\bar{x}) + \underbrace{(\langle x\rangle - \bar{x})}_{-0} f'(\bar{x}).$$

Matrix identities

Woodbury identity:

$$(\boldsymbol{\Psi} + \boldsymbol{V}\boldsymbol{\Phi}\boldsymbol{W})^{-1} = \boldsymbol{\Psi}^{-1} - \boldsymbol{\Psi}^{-1}\boldsymbol{V}(\boldsymbol{\Phi}^{-1} + \boldsymbol{W}\boldsymbol{\Psi}^{-1}\boldsymbol{V})^{-1}\boldsymbol{W}\boldsymbol{\Psi}^{-1},$$

where $\Psi \in \mathbb{R}^{N \times N}$, $\Phi \in \mathbb{R}^{M \times M}$, $\mathbf{V} \in \mathbb{R}^{N \times M}$ and $\mathbf{W} \in \mathbb{R}^{M \times N}$.

- When Ψ^{-1} is known and $N \gg M$, this speeds up the matrix inversion.
- For determinants we have $|\Psi + V\Phi W| = |\Psi| |\Phi| |\Phi^{-1} + W\Psi^{-1}V|$.

Cholesky decomposition:

When $\mathbf{\Lambda} \in \mathbb{R}^{D \times D}$ is symmetric, positive definite, it can decomposed as follows:

$$\boldsymbol{\Lambda} = \boldsymbol{Q}^{\top}\boldsymbol{Q},$$

where the cholesky factor $\mathbf{Q} \in \mathbb{R}^{D \times D}$ is upper triangular.

- Solving the linear system $\mathbf{Q}\mathbf{x} = \mathbf{b}$ by backward substitution is $\mathcal{O}(N)$.
- Computing the inverse of Λ by backward-forward substitution is $\mathcal{O}(N^2)$.
- The determinant of Λ is given by $\prod_d Q_{dd}^2$.

References

- Christopher M. Bishop: Pattern Recognition and Machine Learning. Springer, 2006.
- Tutorial on Gaussian processes at NIPS 2006 by Carl E. Rasmussen.
- The Matrix Cookbook by Kaare B. Petersen and Michael S. Pedersen.