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generalisations of Brownian motion

@ Prototypes of Markov processes: simple dependence structure, spatial
as well as temporal homogeneity

Prototypes of semimartingales: suitable for stochastic calculus
Applications to insurance ruin, storage problems, dams etc.
Subordination of Markov processes by increasing Lévy processes

Relationships to other classes of Markov processes: branching
processes, self-similar Markov processes

More recently
@ Financial modelling: non-Normal returns, volatility smiles
@ Financial modelling: stochastic volatility, leverage effects
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The structure of Lévy processes

A Lévy process is a continuous-time stochastic process (X, t > 0) with
@ stationary increments
Xt+s — Xt has the same distribution as X for all t > 0, s > 0,
@ independent increments
Xt — Xy, J=1,...,n, are independent for all 0 < tp < ... < t,
@ and cadlag paths

t — X is a.s. right-continuous with left limits.

compact topological group. We will focus on the real-valued case,
extensions to k-dimensional Euclidean space are straightforward.
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1. Brownian motion B; ~ Normal(ut,o?t).

2. Poisson process N; ~ Poisson(At) for some intensity A € (0, c0).

o

Their moment generating functions exists, for all v € R:

o0 1 e -
Be®) = [ e e g — o (¢ iy + 30™))
]E( ")/Nt _ - 'YHM —At _ 2
™) = Ze n© =er{ti(er—1)}.
n=0 '
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3. Compound Poisson process —

Nt
Cl' — ZAI(I
k=1
o where Ak, k > 1, independent
identically distributed E—

e and (N, t > 1) is an independent Poisson process.

v

lts moment generating function exists if and only if E(e741) exists and then

[e.9] n
E(e?%) = Z]E exp ’YZAk P(N¢ = n)
k=1

(B ()" O e — op {12 (i (64 1)1
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Definition (Infinite divisibility)

A random variable Y (or its distribution) is called infinitely divisible if

Yo Y4 v

for all n > 2 and independent and identically distributed Y{" ... v{".

The distribution of YJ-(") will depend on n, but not on j.
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Definition (Infinite divisibility)

A random variable Y (or its distribution) is called infinitely divisible if
Y ~ Yl(”)+...+Y,S”)

for all n > 2 and independent and identically distributed Y{" ... v{".

The distribution of YJ-(") will depend on n, but not on j.

Proposition

X¢ is infinitely divisible for a Lévy process (X, t > 0).

We recall the stationarity and independence of increments and take
Y = Xispn = X(j-tye/n U

J
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Examples of Lévy processes
The structure of Lévy processes Infinite divisibility and the Lévy-Khintchine formula
and simulation of Lévy processes
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Theorem (Lévy-Khintchine)

A random variable Y is infinitely divisible if and only if

E(e’€Y) = exp {iﬂf . %0252 +/R (eiéx —1- i§x1{|x‘§1}> I/(dX)}

for some i € R, 0 > 0, and v on R\ {0} such that [ (1A x?)v(dx) < oo.

v

Furthermore, if E(e“fy) < 00, then

1
E(e") = exp {m + 507" + /R (€7 =1 = yxlyx<yy) ”(dx)} '
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Theorem (Lévy-Khintchine)

A random variable Y is infinitely divisible if and only if

E(e’€Y) = exp {i,uﬁ . %0252 +/R (eiéx —1- i§x1{|x‘§1}> I/(dX)}

for some i € R, 0 > 0, and v on R\ {0} such that [ (1A x?)v(dx) < oo.

v

Furthermore, if E(e“fy) < 00, then

1
E(e") = exp {m + 507" + /R (€7 =1 = yxlyx<yy) ”(dx)} '

In fact, Y ~ By + G + My, where A = v([—1,1]¢), Ax ~ A~ !v|_1 45 and

el0

Ml = L2—Iim <C]F€)_/RX1{E<X<1}V(dX)> .
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Construction of Lévy processes
Every Lévy process is infinitely divisible. For every infinitely divisible
distribution there is a Lévy process, the limit as € | 0 of

XD =pt oW+ G+ MO, M) = Ct(E)t/ XLe<)x<1yv(dx),
R

where
o (W, t > 0) is standard Brownian motion with W; ~ Normal(0, t),

@ (G, t > 0) is an independent compound Poisson process with
A=v((=1,1)%), Ak ~ A1,

° (Ct(s), t > 0) is an independent compound Poisson process with
Ao = vle < x| 1), A ~ AW ey

Note that C{*) has jumps of sizes Aff) e{e <|x| <1}
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Examples of Lévy processes
The structure of Lévy processes Infinite divisibility and the Lévy-Khintchine formula

Construction and simulation of Lévy processes
Parametric families of Lévy processes

For a sequence a9 =1, a, | 0, and I, = (an, an-1], I-n = [—an—1, —an),
Xt::U’t_‘_o-Wf_i_Z(Cl[n]*/tnt) R 'LLOZO,,U,n:/XI/(dX).
nez In

Convergence of this series means, we can approximate X; by only
considering I_p,, ..., I, for sufficiently high ng.
Is compensation of small jumps necessary? In general, yes.

e However, if [5(|x| A1)r(dx) < co, then we do not need compensation

E(eifxl) = exp {qu_ %0—262 +/ (eifx _ 1_I£X1{‘X‘Sl}> V(dX)} ;
R

o if [p(Ix[* A |x])v(dx) < oo, then we can also compensate big jumps

E(e’%1) = exp {iu §— %0252 +/ (eigx - 1*"§X1{\x\§1}> V(dx)} :
R
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For a sequence a9 =1, a, | 0, and I, = (an, an-1], I-n = [—an—1, —an),
Xt::U’t_‘_o-Wf_i_Z(Cl[n]*/tnt) R 'LLOZO,,U,n:/XI/(dX).
nez In

Convergence of this series means, we can approximate X; by only
considering I_p,, ..., I, for sufficiently high ng.
Is compensation of small jumps necessary? In general, yes.

e However, if [5(|x| A1)r(dx) < co, then we do not need compensation

E(e’fxl):exp{i//f—;a2§2+/ (eifx_l )V(dx)};
R

o if [p(Ix[* A |x])v(dx) < oo, then we can also compensate big jumps

. 1 .
E(e*X) = exp {iu"g - 50252 +/ (e’gx —1-iéx
R
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Example (Compensation)

For 1" = 02 = 0, v(dx) = |x|7%/21_3,<0ydx, the compensating drifts
J2 xv(dx) are 0.845, 2.496, 5.170 and 18.845 for e = 1, e = 0.3, ¢ = 0.1
and £ = 0.01. In the simulation, the slope increases (to infinity, as £ | 0):

8 4
s
5%, o
4 0 o g
/ -~ » //ﬁ.:/ ///’v ,,/ ., /‘»//1/ / ]
o -4
/
-4 -8
O 5 10 15 o} 5 10 15
eps=1 eps=0.3
4 4
2 o o]
o1 ” oy O . /l/
i ,,r"/ww v vy oo
" o Y ot A b
-8 -8 \/NJ
O 5 10 15 8} 5 10 15
eps=0.1 eps=0.01
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Method (Simulation by time discretisation)
Fix a lag 6 > 0. Denote Fgl(u) =inf{x € R: P(Xs < x) > u}. Simulate

76 - ~
thl ) = 5[1’/(5]7 where Sn = Z Yk and Yk = F§ l(Uk)
k=1

Method (Simulation by throwing away small jumps)

Let 02 = 0. Fix a jump size threshold & > 0 so that \. = v(|x| > ¢) > 0.
Denote H-1(u) = inf{x € R : A\71v((—o0, x] N [~¢,€]¢) > u}. Simulate

Ne=#{n>1:T,<t}, where T,=> Z and Z = X" In(U_1),
k=1

Xt(z’s) = Sy, — bet, where S, = ZAk and Ay = Hgl(U2k)7
k=1
with bg = U — f{XGR:€<|X|§1} XV(dX)'
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Theorem (Asmussen and Rosinski)

Let (X, t > 0) be a Lévy process with characteristics (a,0,v). Denote
v(e) = [°. x*v(dx). If v(e)/e? — co ase | O, then

Xy — X129
v(e)

for an independent Brownian motion (W;)>0

— W, in distribution as ¢ | 0

If v(g)/e? — oo, it is well-justified to adjust Method 2 to set

X =X

for an independent Brownian motion. We thereby approximate the
small jumps (that we throw away) by an independent Brownian motion
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Parametric families
We can construct distributions that are infinitely divisible and consider
associated Lévy processes.

1. Brownian motion B; ~ Normal(ut,o?t), two parameters p1 € R,
02> 0.
2. Gamma process Gy ~ Gamma(at, 3), two parameters « > 0, § > 0.

3. Generalised Variance Gamma process V; = G; — H; for
Gt ~ Gamma(ay t, 54) and Hy ~ Gamma(a_t, 3_) independent,
four parameters a4+ > 0, 5+ > 0.

4. Normal Inverse Gaussian Z; = B,(tz), It =inf{s>0: Bs(l) > t} for two

independent Brownian motions B ~ Normal(u;s, o?s), three
parameters p1 > 0, ps € R, 0’% >0, wlo.g. Jf =1.

Advantages: explicit densities, useful for parameter estimation.
Disadvantages: not much modelling freedom, may lead to poor fit
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Examples of Lévy processes
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Construction and simulation of Lévy processes
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Gamma processes for parameters o = 3 € {0.1, 1,10, 100}.

= : . ; : . T : . ; ; .
o 2 a e s 10 o 2 a e B 10
Gamma process with shape parameter 0.1 and scale parameter 0.1 Gamma process with shape parameter 1 and scale parameter 1
— =
,/‘
- -
/,—z—‘ /
o 2 a . s
Gamma process with shape parameter 100 and scale parameter 100
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Examples of Lévy processes
The structure of Lévy processes Infinite divisibility and the Lévy-Khintchine formula

Construction and simulation of Lévy processes
Parametric families of Lévy processes

Variance gamma processes for parameters /2o = (5 € {1, 10,100, 1000}.

T T T T T T T T T T T T
o 2 a s B 10 o 2 a 6 B 10

time
Variance Gamma proc process with shape parameter 50 and scale parameter 10

iy
3'{ ‘éfi'!

o 2 P . s 10 o 2
Variance Gamma process with shape parameter 5000 and scale parameter 100 Variance Gamma process with shape parameter 56+05 and scale parameter 1000
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Construction and simulation of Lévy processes
Parametric families of Lévy processes

More flexibly, we can specify characteristics (u, 02, v).

1. Stable processes (St,t > 0) of index o € (0,1) with i/ = 02 =0,
v(dx) = x| (s Lixs0p + €-1x<o})dx for further parameters
ct > 0. They are the only Lévy processes with S,; = al/es,.

2. Stable processes (S, t > 0) of index a € (1,2) with p” = 02 =0,
v(dx) = ]x|_0‘_1(c+1{x>0} + ¢ 1gx<0y)dx for further parameters
¢y > 0. They are the only Lévy processes with S,; = a'/®S,. Slight
variation for & = 1. Brownian motion av = 2.

3. CGMY process (X;, t > 0) with 02 = 1" = 0 and v(dx) = g(x)dx

(x) = Ciexp{—Glx[}x|7Y"t x>0
EX= exp{—M|x|}|x|Y"! x<0
for five parameters C+ >0, G >0, M >0, Y € [0,2).

Advantages: more modelling freedom, can be easily generalised further, s
since any measure v is admissible subject to [ (1 A [x|?)v(dx) < oo.
Disadvantages: probability density function not available explicitly
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Stable processes with no negative jumps for o € {0.5,0.8,1.5,1.8}.

_
g = -
g —
g J
g
_

= - o 4 —

T T T T T T T T T T T T

° 2 § . s 10 ° > a . s 10

ime time
Stable process with index 0.5 and cplus= 1 and cminus= 0 Stable process with index 0.8 and cplus= 1 and cminus= 0
o AN
= © o o8
®
o T
< \\Y x,\‘\‘ \

o w A,
A \ 1 \
E \\
= N\Y\.\\\‘_\\ =

o > 4 . s 10 o B a . s

me uime
Stable process with index 1.5 and cplus= 1 and cminus= 0 Stable process with index 1.8 and cplus= 1 and cminus= 0
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General modelling with Lévy processes
Modelling financial price processes
Modelling and inference Quadratic variation and realised power variation

Application: Volatility inference in the presence of jumps

Modelling and inference

Lévy processes are semimartingales. As a consequence, stochastic integrals

/t f(s)dXs and /ot Q(s)dX;s

0
are well-defined for L2-functions f and predictable processes Q that are

appropriately L? also.

Example ((Non-Gaussian) Ornstein-Uhlenbeck process)

Let (X;, t > 0) be a Lévy process and X € (0,00). Then we call

t

Ve eyt [ eNdax,  rzo0,
0

the associated Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck

process is a Markov process and possesses a stationary regime under a

mild log-moment condition.
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General modelling with Lévy processes
Modelling financial price processes

Modelling and inference Quadratic variation and realised power variation
Application: Volatility inference in the presence of jumps

Further classes of Lévy-driven stochastic processes can be obtained

@ by stochastic differential equations
dYt = F(Yt)dt + G(th)dXt

For F(y) = —Ay and G(y) = 1 this is again the Ornstein-Uhlenbeck
process.

@ by time-change/subordination
Xu(s) or XT(S)

e.g. for a deterministic increasing function u, or for an increasing
stochastic process 7, either independent of X or such that 7(s) is a
stopping time for all s.

Matthias Winkel An introduction to Lévy processes
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Modelling and inference adra ati realised power variation
ty inference in the presence of jumps

Modelling financial price processes

Definition (Black-Scholes model)

The Black Scholes model for a financial price process is the solution to the
stochastic differential equation dS; = S;udt + StodWe, So > 0, which is

solved by

S = Soexp{<u— ;a2> t—f—aWt}.

There is abundant empirical evidence that financial price processes do not
have Normally distributed returns log(St4+s — St).

Definition (Lévy market)

In a Lévy market, the price process is taken as Sy = Spexp {X:} for a Lévy
process (X, t > 0).

G
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Lévy processes
ice processes

Modelling and inference E i realised power variation
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Stochastic volatility models

Lévy markets give good fit to return distributions, but there is also
evidence against independence of increments. Many stochastic volatility
models have been considered.

E.g., Barndorff-Nielsen and Shephard introduced the following Lévy-driven
stochastic volatility model:

dYt = O't_th, dUt = —AO'tdt + dZt,
where Z is an increasing Lévy process and W an independent Brownian
motion.

@ The price process (Y:, t > 0) has continuous sample paths.
@ This means that the volatility process (o, t > 0) is a non-Gaussian
Ornstein-Uhlenbeck process.

to increased activity that then slows down.
@ The volatility process (o¢, t > 0) is not (directly) observable.
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Quadratic variation and realised power variation

Let Y; = fot asds + fot osdWs be a (continuous) Brownian semimartingale
(a stochastic process with stochastic volatility (os,s > 0)).

To make inference on to unobserved volatility process from the observed
price process, consider

[t/6]-m m t
CiP {Yé}gm): Z H(Y(j+k)5—y(j+k—1)2fn)2/m—> dm/0 U_Edszdm[y]t
k=0 k=1

in probability as § | 0. The left-hand side is called realised m-power
variation (or realised variation for m = 1), while the right-hand side is
called quadratic variation. This convergence holds under very general
assumptions. Under slightly more restrictive assumptions,

t
CLT §71/2 ({yé}(t’") - dm[Y]t) N cm/ o2d s
0

in distribution for an independent Brownian motion §.
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Application: Volatility inference with jumps
Suppose now that the price process includes a discontinuous component
S: = Y: + Xi where

o Y= fot asds + fot osdW; is a Brownian semimartingale

@ and (X;, t > 0) is a Lévy process without Brownian term, not
necessarily independent of Y.

@ Define a =inf{y >0: f[il 1 [x["v(dx) < o0} €10,2].

@ We are still interested in making inference on (o, t > 0).

Theorem (Inference in the presence of jumps)
Q Ifa<2and m>2, then CiP is valid with Y replaced by S.

Q Ifa<landa/(2—a)<2/m<1,then CLT is valid with Y
replaced by S.

S
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R code for some of the simulations

psum <- function(vector){
b=vector;
b[1]=vector[1];
for (j in 2:length(vector)) bl[jl=b[j-1]+vector[j];
b}
gammarw <- function(a,p){
unif=runif (10%*p,0,1)
pos=qgamma (unif,a/p,a);
space=psum(pos) ;
time=(1/p)*1: (10%p);
plot(time,space,
pch=".",
sub=paste("Gamma process with shape parameter",a,
"and scale parameter",a))}
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vgammarw <- function(a,p){
unifpos=runif (10*p,0,1)
unifneg=runif (10*p,0,1)
pos=qgamma (unifpos,a*a/(2*p),a);
neg=qgamma (unifneg,a*a/(2*p) ,a);
space=psum(pos-neg) ;
time=(1/p)*1: (10%*p);
plot(time,space,
pch=".",
sub=paste("Variance Gamma process with shape
parameter",a*a/2,"and scale parameter",a))}

Simulations can now been carried out with various values of parameters
a > 0 and steps per time unit p =1/§ in gammarw(a,p), e.g.

gammarw(10,100)
vgammarw (10,1000)
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stableonesided <- function(a,c,eps,p){
f=c*xeps~(-a)/a;
n=rpois(1,10%f) ;t=runif (n,0,10);
y=(eps~ (-a)-axf*runif(n,0,1)/c)"(-1/a);
ytemp=1:n;res=(1:(10%p))/100;{
for (k in 1:(10*p)){{for (j in 1:n){
if(t[j1<=k/p)ytemp[jl<-y[j] else ytemp[j1<-0}};
res [k]<-sum(ytemp) } };
res}
stable <- function(a,cp,cn,eps,p){
pos=stableonesided(a,cp,eps,p);
neg=stableonesided(a,cn,eps,p);
space=pos-neg;time=(1/p)*1: (10%p);
plot(time,space,pch=".",
sub=paste("Stable process with index",a,
"and cplus=",cp,"and cminus=",cn))}
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stableonesidedcomp <- function(a,c,eps,p){

f=(c*xeps~(-a))/a;

n=rpois(1,10%f);

t=runif(n,0,10);

y=(eps” (-a)-axf*runif(n,0,1)/c)"(-1/a);

ytemp=1:n;

res=(1:(10%p))/100;{

for (k in 1:(10xp)){{if (n!=0)for (j in 1:n){
if (t[jl<=k/p)ytemp[jl<-y[j] else ytemp[j1<-0}};{
if (n!'=0)res[k]<-sum(ytemp)-(cxk/(px(a-1)))*(eps~(1-a))

else res[k]<--cxk/(px(a-1))*(eps~(1-a))}}};
res}

This R code to simulate stable processes can be refined to more
general measures v with smooth densities using the rejection method.
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