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Modeling Cell Populations

Time Series from Experiments

In the biological sciences, time series can now be routinely
collected from experiments. These data permit modeling, analysis
and simulation.

Modeling Techniques

Many quantitative modeling techniques has been proposed. For

continuous-valued

continuous-time

deterministic

systems, the traditional approach based on ODEs is still the most
common (descriptive and analytical power!).
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Measuring Single Cells

Single Cells and Populations

Dynamical modeling can be performed

at the single cell level
(e.g. fluorescent protein degradation) or

averaged over a cell population
(e.g. gene expression).

This depends on data availability and on the required detail.

Single Cells VS Populations!

What if we are interested in the dynamics of the single cell but
only population measurements are available?!
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Single-Cells VS Populations

Single and Average Behaviors

The dynamical behaviors of single cells and populations can be
significantly different!

Experimental Observations

For instance, in GFP degradation

zero-order dynamics are measured in vitro,

first-order dynamics are measured in vivo.

This distortion can be caused by the mentioned discrepanciesa.

aW. W. Wong et al. Single-cell zeroth-order protein degradation
enhances the robustness of synthetic oscillator. Mol Sys Biol, 3, 2007.
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Causes

Discrepancies!

What causes the observed discrepancies between single cells and
populations?

Causes

The main causes of discrepancy are

heterogeneously parametrized models,

heterogeneous initial conditions for every cell,

other reasons (incomplete modeling, ...).
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Biologically Significant?

Scenario

Our scenario: recovering single cell behaviour (hidden variables)
from measurements of a cell population.

We are interested in the behavior of a “generic” cell, not of a
specific one. All the cells follow the same biological law.
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Protein Degradation Example

Example

A possible modela for single-cell GFP protein degradation is

f (x , t, c , δ, γ,K ,V ) =
c

γ
exp(−γt)︸ ︷︷ ︸

(1)

−δx︸︷︷︸
(2)

− Vx

K + x︸ ︷︷ ︸
(3)

,

(1) transcription/translation,

(2) dilution,

(3) enzymatic decay.

aC. Grilly et al., A synthetic gene network for tuning protein
degradation in Saccharomyces cerevisiae. Mol Sys Biol, 3, 2007.
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Single Cells

Example

In this example, time-dependent fluorescence [AU;AU] trajectories
are plotted (for single cells with different initial conditions).
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Masking Single Cell Behavior

Example

Single-cell behavior can be masked by population averages.
Different density of initial conditions give quite different dynamical
results!
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Assumptions

Assumptions

The following mathematical formalization is based on the following
assumptions:

a cell population consists of a large but finite number of cells,

every cell is independent,

every cell is deterministic,

cell models are heterogeneously parametrized,

cell models exhibit heterogeneous initial conditions,

the measurement noise is an additive stochastic process.

A. G. Busetto, B. Fischer, J. Buhmann — Density Estimation of Initial Conditions for Populations of Dynamical Systems 11/30



Outline Introduction Estimation Conclusion

Modeling Single Cells

Modeling a Single Cell

Let x be a biological quantity (protein abundance, metabolite
concentration, ...), the dynamics of a single cell with initial
condition x0 follows the initial value problem Ux0 :

Ux0 :


dx(t, x0)

dt
= f (x(t, x0), t, θ)

x(t0, x0) = x0,

restricted to the interval [t0, tf ], where f : R× [t0, tf ]× T → R
and θ ∈ T is a parameter vectora.

aAssume also that the conditions of the Picard-Lindelöf
(Cauchy-Lipschitz) theorem are satisfied.
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Modeling Single Cells

Density over the Initial Conditions

Let p be a probability density over the initial conditions x0 of Ux0 .

Random Initial Conditions

Let the continuous random variable X0C ∼ p determine the initial
condition for the dynamics of the cell C.
For a given realization with an initial value x0C , C follows the
dynamical behavior x(t, x0C)

a.

aFrom the Picard-Lindelhöf theorem, this trajectory exists and is
unique.
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Modeling Populations

Cell Populations

Consider a large but finite cell population consisting of s cells. Its
dynamics is the average of the behaviors of the single components,
whose initial conditions are the realization of a set of iid
continuous random variables X01,X02, . . . ,X0s .

Population Behavior

For a given realization x0 = (x01, x02, . . . , x0s), the population
follows the dynamics given by the aggregation of Ux01 , . . . ,Ux0s :

Zx0 :


dx(t, x0i )

dt
= f (x(t, x0i ), t, θi )

x(t0, x0i ) = x0i

i = 1, 2, . . . , s.
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Observed Behavior

Averaged Behavior

The averaged behavior of the population is given by

z(t, x0) = E[x(t, x0i )] =
1

s

s∑
i=1

x(t, x0i ),

where x(t, x0i ) is the solution of Ux0i . Then, for s →∞, it tends to

z∞(t) = E[x(t, x0)] =

∫
p(x0)x(t, x0)dx0.

Additive Noise

The measurement process assumes an additive stationary noise
term:

zε(t) ' z∞(t) + ε(t).
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System Diagram
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Discretized Integral Equation

Approximated Integral Equation

With the introduced approximation,

z∞(t) =

∫
p(x0)x(t, x0)dx0

'
∫

p̂n(x0,p)x(t, x0)dx0

=
n∑

i=1

pi

∫
1

h
K

(
x0 − x̂0i

h

)
x(t, x0)dx0︸ ︷︷ ︸

φi (t)
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Approximate Subpopulations

Subpopulation Behavior

The averaged behavior of an approximate subpopulation is

φi (t) =

∫
wi (x0)x(t, x0)dx0

=

∫
1

h
K

(
x0 − x̂0i

h

)
x(t, x0)dx0

= E[x(t, x0)],

Dynamical Contributions

Therefore, before the sampling,

zε(t) '
n∑

i=1

piφi (t) + ε(t).
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Sampling

Sampling

the sampled values are expressed in the following form

∀j = 1, 2, . . . ,m zε(tj) = zj , φi (tj) = φji i = 1, 2, . . . , n.

Discretizing the Integral Equation

The integral equation that was introduced before can be rewritten
as

j = 1, 2, . . . ,m zj '
n∑

i=1

piφji .

that is, in matrix form,
z ' Φp.
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Numerical Integration

Numerical Integration

Given x0, x(t, x0) must be approximated by numerical integrationa,
obtaining x̃(t, x0).

aCare must be taken, since the ODE can be stiff!

Numerically Integrated Subpopulation Dynamics

Assuming x(t, x0) ' x̃(t, x0),

i = 1, 2, . . . , n, φi (t) '
∫

1

h
K

(
x0 − x̂0i

h

)
x̃(t, x0)dx0.
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ML Estimation

Least Squares Problem

This can be stated as problem P: find p∗ such that

p∗ = arg min
p∈Rn

‖Φ̃p− z‖22,

subject to 
n∑

i=1

pi = 1,

0 ≤ pi ≤ 1 i = 1, 2, . . . , n.
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Prior Information

Domain Knowledge

In systems biology, the simple processes are often understood quite
well, but complex systems are still under investigation.

Prior Information

Domain knowledge is given under the form of priors over functions
describing the dynamics of a cell. This is not possible with purely
data-driven approaches and, when existing, must be exploited.
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Robustness

Robustness

Since prior domain information is often available,

the existence of outliers cannot be denied and

the least-squares approach by itself is not robust,

Bayesian regression with a mixture of regular observations and
outliers can be employeda.

aM. Kuss et al., Approximate inference for robust Gaussian process
regression. Technical Report 136, Tübingen, Germany, 2005.

Computational Costs

However, this is computationally expensive and feasible approaches
must be approximated!
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Undersampling

Undersampling

When undersampled, problem P is solved by the (constrained)
linear subspace of Rn that satisfies

Φ̃p− z = 0.

Entropy Maximization

In order to maximize entropy, we solve H: find p∗ such that

p∗ = arg max
p∈Sol(P)

H[p̂n(x0,p)],

where H[p] =
∫

p(x) log p(x)dx is the differential entropy.
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A Proof of Concept

Example

Consider the following function

f (x(t, x0), t, θ1, θ2, θ3) = (θ1t) exp{−(x(t, x0)− θ2 + θ3t)
2},

where σε = 0.2, m = 60 and n = 10.

A. G. Busetto, B. Fischer, J. Buhmann — Density Estimation of Initial Conditions for Populations of Dynamical Systems 25/30



Outline Introduction Estimation Conclusion

Undersampled Protein Degradation

Example

Now in the case of undersampling with n = 15 > 6 = m (as before
but with robust regression):

note that, for m/n → 0 we have that p∗ tends to the uniform
distribution.
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Outlook: Optimal Sampling

Sampling

Due to experimental costs, sample points are scarce. Whereas they
are usually chosen uniformly spaced or according to heuristics, an
optimal sampling is highly desirable.

Optimal Experiment Design

To maximize the average information gain, the optimal sampling
minimizes the maximum entropy of the estimate. The result is

the most informative of

the least biased between the

consistent with the observations.
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Entropy Minimization

Entropy Minimization

We want to solve the problem O: find t∗ such that

t∗ = arg min
t

arg max
pt∈Sol(Pt)

H[p̂nt(x0,pt)]︸ ︷︷ ︸
Ht

 ,

where Ht is the entropy maximization problem subject to the
sampling encoded by t.

This is a constrained non-convex problem that is computationally
expensive.
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Considerations

Considerations

1 In practice, taking prior information into account is strongly
beneficial since it might reduce the effects of undersampling.
Approximate inference permits a feasible approximation of the
robust regression, extending the applicability of the whole
approach.

2 The determination of the optimal experiment design is highly
desirable for experimentalists and helps the improvement of
the results, since it maximizes the information gain from the
expensive measurement.
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Open Questions

Open Questions

1

The selection of a double model for outliers and regular
observations seems promising, which model provides the
best results? Which inference approximation technique
provides the best results?
Exact inference is intractable and must be approximated,
but how? Which method provides the best tradeoff
between quality and cost?

2

How is it possible to speed up the non-convex
experiment design optimization process?
Which heuristics give the best results?
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