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Abstract We propose a program analysis method for proving termination of recursive pro-
grams. The analysis is based on a reduction of termination to two separate problems: reach-
ability of recursive programs, and termination of non-recursive programs. Our reduction
works through a program transformation that modifies the call sites and removes return
edges. In the new, non-recursive program, a procedure call may non-deterministically enter
the procedure body (which means that it will never return) or apply a summary statement.

Keywords Program verification · Model checking · Termination · Recursion ·
Summarization

1 Introduction

The extension of Hoare logic for reasoning about recursive programs is by now well-
understood (see, e.g., [12]). In contrast, the treatment of recursion in program analysis con-
tinues to be an active research topic [6, 13, 14, 16, 18–20, 22, 29–33], as we continue to
search for appropriate abstract domains for analyzing the stack as an infinite data struc-
ture. This issue is circumvented if one switches from a trace-based semantics to relational
semantics (a procedure denotes a binary relation between entry and exit states). The draw-
back, however, is that one looses the direct connection to trace-based properties: reachability
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and termination, and thus partial and total correctness (or, more generally and especially for
concurrent programs, safety and liveness). A breakthrough in this regard was obtained by
the framework for interprocedural analysis in [30].

The contribution of the framework [30] is a refinement of the relational semantics, a re-
finement that accounts for traces—an interprocedural analysis is used to compute an effec-
tive abstraction of this semantics, but this issue is orthogonal. To be precise, the refinement
of the relational semantics in [30] accounts for finite prefixes of traces, as opposed to infinite
traces. As a consequence, it retrieves the connection between the relational semantics and
reachability, and thus partial correctness. The framework [30] left open the question of an
analogous refinement of the relational semantics that accounts for full traces and thus also
retrieves the connection between the relational semantics and termination, and thus total
correctness. In this paper, we do exactly that.

Related work The technical contribution of our work is (to the best of our knowledge)
the first practical interprocedural program analysis for automatic termination and total cor-
rectness proofs. Our work differs from previous work on interprocedural program analysis
by the extension of its scope from partial to total correctness. Our work differs from previ-
ous work on automatic termination proofs which was restricted to non-recursive imperative
programs (e.g., [8–11, 27]) or to programs in declarative languages (e.g., [23, 24]); in both
those cases the above-mentioned dichotomy between the trace-based semantics and the de-
notational (relational) semantics is not an issue. Our work differs from existing work on
model checking of temporal properties (in generalization of termination and total correct-
ness) for finite models augmented with one stack data structure (e.g., [4, 14, 21]) by the
extension of its scope to general programs.

Our TERMINATOR termination prover [11] is, in some cases, capable of proving ter-
mination of recursive programs. These are cases when a precise relationship between the
interplay between the stack and states in the transitive closure of the programs transition
relation are not important, as we abstract this information away in previous work. TERMI-
NATOR can, for example, prove the termination of Ackermann’s function, while it fails to
prove the termination of Fibonacci’s function.

Our work distinguishes itself from both existing interprocedural analysis and model
checking, e.g., [3, 5, 7, 15], by the way abstraction is introduced. It is well-known that
the finitary abstraction of valuations of infinite data structures is bound to lose the termina-
tion property. Instead, one needs to abstract pairs of consecutive states (e.g., by the fact that
the variable x properly decreases its value). This relational abstraction of programs inter-
feres in intricate ways with the abstraction of the relational semantics of a procedure. This is
one reason why it is practically mandatory to separate the reasoning about recursion (which
requires the abstraction of the relational semantics) and the reasoning about termination
(which requires relational abstraction).

The work in [28] extends the proof rule for termination based on the disjunctive well-
foundedness of transition invariants [25], from non-recursive to recursive programs. This
proof rules relies on transitive closure, which is what summaries are based on implicitly.
In contrast, our work presents a program analysis method that is orthogonal to the partic-
ular termination analysis and the particular termination proof rule used in the termination
analysis.

The framework of visibly pushdown languages [1, 2] can be used as an alternative formal
foundation for our method. We leave an exploration of this research direction for future
work.
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2 Partial correctness

We use the framework of [30] and follow its notation.

Programs with procedures We assume that a program P is given by a set of procedures
together with a set of global variables V . We write g to refer to a valuation of global vari-
ables, and let G be the set of all such valuations. Each procedure p ∈ P has a set of local
variables Vp that includes a program counter variable pcp that ranges over the set of nodes
in the procedure’s control-flow graph that we describe below. We shall omit the indexing by
the procedure name when it is determined by the context and write pc. We refer to a valu-
ation of local variables as l, and write Lp for the set of all such valuations. The union over
all program procedures

⋃
p∈P Lp is denoted by L∪P . Let ginit and linit be an initial valuation

of global variables and an initial valuation of local variables of some procedure, say pmain,
respectively. Without loss of generality, we assume that the procedure pmain is not recursive,
which can be ensured by a straightforward modification of P . A procedure p is represented
by a control-flow graph with a set of nodes Np and a set of edges Ep . We assume that the sets
of procedure nodes are pairwise disjoint, i.e., for each p �= q ∈ P we have that Np ∩Nq = ∅.
We write E∪P for the set of all edges, i.e., E∪P = ⋃

p∈P Ep . The set of nodes Np contains
a unique start node sp and a unique exit node ep . We assume that the return value of the
procedure, if any, is passed to a global variable before the procedure exists. Since we use
ginit and linit to represent the starting point of the program, we have that the corresponding
program counter valuates to a start node, i.e., linit(pc) = spmain .

The program nodes are labeled with program statements by a function L. We assume that
the start node sp and the exit node ep of each procedure p ∈ P are labeled by START(p)

and EXIT(p), respectively. We consider three kinds of statement: operations (e.g. assign-
ments, intra-procedural control-flow statements), procedure calls, and returns from a proce-
dure. The corresponding labels are of the form OP(τ ), CALL(q, τ ), and RETURN(q), where
q ∈ P is a program procedure and τ is a transition from a set of transitions T . We assume
that for each node n labeled with CALL(q, τ ) there exists a unique successor node n′ and that
the label of n′ is RETURN(q). For a transition τ that occurs in a node label in a procedure p,
the corresponding binary transition relation ρτ has domain and range sets as follows:

ρτ ⊆ (G × Lp) × (G × Lp), if τ occurs in OP(τ ),

ρτ ⊆ (G × Lp) × (G × Lq), if τ occurs in CALL(q, τ ).

Let skipp be the skip transition such that ρskipp
is the identity relation over the pairs of the

valuations of global and p-local variables, i.e.,

ρskipp
= {((g, l), (g, l)) | g ∈ G and l ∈ Lp}.

We omit the indexing if the procedure is clear from the context and write skip.
We now consider triples (g, l, st), where g ∈ G, l ∈ L∪P , and st ∈ L∗

∪P . The sequence st
is called a stack. We write ε to represent the empty stack, and use l·st to represent a new
stack with state l on top of a stack st .

The transition relation R of the program P consists of pairs of such triples. We construct
R using transition relations that are associated with the procedure nodes in the following
way.
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R = {((g, l, st), (g′, l′, l·st)) | L(l(pc)) = CALL(q, τ ) and ((g, l), (g′, l′)) ∈ ρτ }
∪ {((g, l, l′·st), (g, l′, st)) | L(l(pc)) = EXIT(q)}
∪ {((g, l, st), (g′, l′, st)) | L(l(pc)) = OP(τ ) and ((g, l), (g′, l′)) ∈ ρτ

and (l(pc), l′(pc)) ∈ E∪P }
By abuse of notation, the condition ((g, l), (g′, l′)) ∈ ρτ here refers to the canonical exten-
sion of the relation ρτ , namely from Lp (the set of valuations of the local variables l of a
single procedure) to L∪P (the set of valuations of the local variables l of all procedures). If
τ occurs in the label OP(τ ) of a node in procedure p then the canonical extension of the
relation ρτ updates only the variables in Lp . If τ occurs in CALL(q, τ ) then it updates only
the variables Lq .

A computation segment of the program P is a consecutive sequence σ = σ0, σ1, . . . of
triples (g, l, st). Consecutive means that each pair (σ,σ ′) satisfies the transition relation
of the program, i.e., (σ,σ ′) ∈ R. A computation is an initial computation segment. Initial
means that the first triple is initial, i.e., σ0 = (ginit, linit, ε). A reachable computation segment
is a finite consecutive sequence σ = σi, σi+1, . . . , σj of reachable triples; i.e., σi is reachable
in a computation.

Summarization A summary is a binary relation

SUMMARY ⊆ (G × L∪P ) × (G × L∪P ).

The summary SUMMARY contains all pairs (g, l) and (g′, l′) such that l(pc) = sp , l′(pc) =
ep , and there exists a reachable computation segment (g1, l1, st1), . . . , (gn, ln, stn) that satis-
fies the following property. The segment connects (g, l) with (g′, l′), and the content of the
stack at the intermediate steps is an extension of the stack content at the beginning of the
segment. formally, we require that

g1 = g, l1 = l, gn = g′, ln = l′, st1 = stn,

sti = st′i ·st1, for each 1 < i < n, where st′i ∈ L+
∪P .

Given a call node n, we define SUMMARY(n) to be the projection of the summary SUMMARY
to the pairs that correspond to the procedure called at the node n.

Figure 1 presents the computation of summaries following [30]. For now we omit prac-
tical details, such as guaranteeing the termination of the summarization procedure via an
abstraction function α, which are standard and performed by the existing software verifica-
tion tools.

The algorithm in Fig. 1 computes summaries (i.e., the refined relational semantics of the
program). More formally, a pair of valuations (s1, s2) belongs to the summary SUMMARY
if and only if it is eventually added by the algorithm (“if and only if” assumes a precise
abstraction α; only one direction holds according to whether the abstraction α induces an
over- or an under-approximation). The sets WL, PE, PE′ used in the algorithm are the usual
data structures for a fixpoint-based transitive closure computation. The transitive closure
is restricted to pairs of valuations (s1, s2) whose first component has been seeded at some
point. Seeding s1 is encoded by adding the pair (s1, s1) to PE′. A valuation s1 is seeded if
two conditions holds. (1) It has been recognized as reachable, which means that it occurs
in the second component of some pair added to the (restricted) transitive closure. (2) It is
an entry valuation, i.e., its program counter value is a start node sp of some procedure p.
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Fig. 1 Computation of procedure summaries, following [30]. Our formulation take an abstraction function
α that overapproximates binary relations over the valuations of global and local variables. The abstraction is
applied on-the-fly to achieve a desired efficiency/precision trade-off

[Line 3] The two conditions hold for the initial valuation sinit given by (ginit, linit). The second
condition holds by the assumption that its program counter valuates to the start node of
the procedure pmain, i.e., linit(pc) = spmain . The first component of every pair in the restricted
transitive closure is an entry valuation; this is an invariant of the algorithm.

The summary SUMMARY is the restriction of the transitive closure relation to pairs (s1, s2)

whose second component s2 is an exit valuation, i.e., its program counter value is an exit
node ep of some procedure p. Its first component s1 is an entry valuation whose program
counter value is a start node sp of the same procedure.
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The transitive closure computation takes a newly added pair (s1, s2). There are three cases
according to the label of the node of s2.

[Line 23] In this case the node of s2 is labeled with an operation. The outgoing transition
(s2, s3) is intraprocedural. The transitive closure computation is the classical one. It shortcuts
a two consecutive transitions by one.

In the other two cases the transitive closure computation is more complicated. This is
because either the outgoing or the incoming transition follows a call edge (from a call node
to a start node) in the control flow graph.

[Line 10] In this case the node of s2 is a call node. The outgoing transition (s2, s3) follows
an edge from a call node to a start node (and pushes the frame of local variables of the calling
procedure onto the stack). Thus, s3 satisfies the two conditions for being seeded.

[Line 14] The transitive closure computation does not shortcut two transitions (s1, s2) and
(s2, s3). Instead, if the transitive closure computation has already produced a pair (s3, s4)

whose second component is an exit valuation (thus, the pair (s3, s4) lies in the summary
relation SUMMARY), then the transitive closure computation shortcuts the three consecutive
transitions (s1, s2), (s2, s3) and (s3, s4). The local variables in s − 2 are not changed by the
procedure call.

[Line 16] In this case the node of s2 is an exit node. Since the first component of every pair
in the restricted transitive closure is an entry valuation, the entry-exit pair (s1, s2) belongs to
the summary relation SUMMARY.

[Line 19] As in Line 14, the transitive closure computation takes three consecutive pairs,
the third one being a summary and the second one corresponding to a call edge (an edge
from a call to an entry node). The only difference with Line 14 is that now the pair (s1, s2)

is the third of the three pairs. That is, the three consecutive pairs are of the form (s3, s4),
variables are not changed by a procedure call. This means that the local variables of s4 are
preserved by the shortcut.

Example 1 Consider the following program:

procedure main() begin
�1: z := ∗;
�2: f(z);
�3: exit

end

procedure f(x) begin
local y initially 0;

�4: if x > 0 then
�5: y := 2;
�6: while y > 0 do
�7: z := z − 1;
�8: f(x − y);
�9: y := y − 1;

done
fi

�10: exit;
end



Form Methods Syst Des (2009) 35: 369–387 375

Fig. 2 Control-flow graphs for procedures main and f from Example 1. The notation a(e) is shorthand for
assume(e)

where x is a parameter, y is local to f, and z is a shared variable. Thus, P = {f,main},
V = {z}, Vf = {x, y}, Vmain = {}, Nf = {sf, ef, �4, �5, . . .}, Nmain = {smain, emain, �1, . . .}. Emain =
{(smain, �1), (�1, �2), . . .}, Ef = {(sf, �4), (�4, �5), . . .}. See Fig. 2 for a complete picture.

The labeling map L would include, for example L(�9) = OP(y := y − 1), where

ρ(�9:y:=y−1) = {((g, l), (g, l′)) | l′(x) = l(x) ∧ l′(y) = l(y) − 1}
L would also include the mapping L(�8) = CALL(f, x := x − y).

We know, for example, that the relation

{((g, l), (g′, l′)) | g(z) = l(x) − 1 ∧ l(y) = 2 ∧ g′(z) = 0 ∧ l′(x) = l(x) ∧ l′(y) = l(y)}
⊇ SUMMARY(�8)

when we do not perform abstraction, i.e., α is the identity function.
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Note that this example terminates, for a somewhat subtle reason: in the case we get into
the loop the recursive callsite will be invoked twice, but each time with a value that is less
than the current value of x, as y will equal 2 and then 1.

Equivalence wrt. partial correctness We develop a procedure for replacing procedure calls
at their callsites with procedure summaries:

1
2
3
4
5
6
7

procedure TRANSFORM

input
q : caller
n : call node

begin
CALL(p, τ ) := L(n)

(n,n′) ∈ Eq

τ ′ := fresh transition
T := T ∪ {τ ′}
ρτ ′ := {((g, l), (g′, l)) | exists l′ ∈ Lp s.t. ((g, l), (g′, l′)) ∈ ρτ ◦ SUMMARY}
L(n) := OP(skipq)

L(n′) := OP(τ ′)
end.

In essence this procedure searches for callsites in the form (a) in the picture below, and
replaces them with (b):

The program transformation PARTIALCFL replaces procedure calls by intraprocedural
operations based on summaries computed by TRANSFORM:

1
2
3
4
5
6

function PARTIALCFL
input
P : program

begin
SUMMARY := SUMMARIZE(P )

foreachn ∈ Npmain when L(n) = CALL(p, τ ) do
TRANSFORM(pmain, n)

done
P := {pmain}
returnP

end.
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In more detail, the label of each call node in the control flow graph is transformed into
the label of the (intraprocedural) skip operation. The skip transition leads to the successor
node in the control flow graph which was originally a return node but is now labeled with
the (intraprocedural) operation OP(τ ′). The transition τ ′ is the composition of the transition
τ in the original label of the call node (the “parameter passing”) and the application of the
summary relation.

The resulting program PARTIALCFL(P ) consists of a single (non-recursive) procedure.
All nodes labeled by an intraprocedural operation OP(τ ). Its transition relation does not use
stack content, i.e., its computations consist of triples of the form (g, l, ε) where the stack is
always empty. Theorem 1 provides a logical basis of such reduction. It relies on the correct-
ness of the summary computation algorithm SUMMARIZE, and follows from Theorem 4.1
in [30].

Example 2 Recall the simple program from Example 1, whose program graph is displayed
in Fig. 2. When given this graph, PARTIALCFL would produced the following procedure:

Any partial-correctness Hoare triple {P }main{Q} valid in the original program holds in
the modified program.

Theorem 1 (PARTIALCFL preserves partial correctness [30]) The validity of Hoare triples
for partial program correctness is preserved by the transformation PARTIALCFL. That is, a
triple {φ}P {ψ} for the program P with procedures is valid under partial correctness if the
triple {φ}PARTIALCFL(P ){ψ} for the program PARTIALCFL(P ) without procedures is
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Fig. 3 Program transformation
TOTALCFL. Theorem 2 provides
a logical characterization of the
transformation

valid under partial correctness, and the opposite direction holds if the abstraction function
used in the summarization procedure is the identity function, i.e.,

|=par {φ}P {ψ} if |=par {φ}PARTIALCFL(P ){ψ},
|=par {φ}PARTIALCFL(P ){ψ} if |=par {φ}P {ψ} and α(x) = λx.x.

The transformation PARTIALCFL can be extended in a straightforward way to preserve
not only Hoare triples but also the validity of assertions within procedure bodies.

3 Total correctness

See Fig. 3. The program transformation TOTALCFL replaces each procedure call (of the
procedure p) by a non-deterministic choice between two intraprocedural transitions: the
application of the summary and the (intraprocedural!) jump transition to the start node of the
procedure p. Informally this transformation has the effect of replacing every recursive call
site to a procedure p with a conditional non-recursive command. For example, in the case
of the code from Example 1, the recursive call to f would be replaced in the graph-based
program representation with a conditional transition which we might express in program
syntax as if ∗ then z := 0; else x := x − y; goto sf fi.

See Fig. 3 for the formal description of the transformation. For the first of the two tran-
sitions, the transformation calls the procedure TRANSFORM defined on Page 376. For the
second of the two transitions, the transformation adds an edge from the call node to the entry
node to the control flow graph. The original label of the entry node, START(p) is replaced
by the label OP(τs) with the new transition τs . This transition is the union of all transitions
τ in the labels CALL(p, τ ) of all call nodes from which the procedure sgProc can be called
(those transitions perform the “parameter passing”).
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Fig. 4 Program transformation TOTALCFLat call, return and start nodes. (a)–(b) shows additional nodes
n′

1 and n′
m between call nodes n1 and n′

m and a start node sp . (c)–(d) demonstrates how a return node p′
is decorated with summaries using an operation label OP(τ ′). We observe that the interprocedural edges
between call and start nodes are replaced by intraprocedural edges. Note that interprocedural edges between
exit and return nodes are removed

The two transitions follow the two outgoing edges from what was the call node in the
old program. The label of that node is updated to the operation with the skip transition. In-
formally, this update means that the two new transitions must accommodate the “parameter
passing.”

Note that the transformation does not add an edge between the exit node and the return
node to the control flow graph.

Example 3 Figure 5 shows the output of TOTALCFL, when applied to Example 1’s pro-
gram graph from Fig. 2. Note that TOTALCFL introduces new nodes, where commands
for parameter-passing are stored. Call-edges are then replaced with standard control-edges.
Unlike PARTIALCFL, the set of reachable procedures after an application of TOTALCFL
remains the same—though technically the bodies are no longer treated as procedures. Note



380 Form Methods Syst Des (2009) 35: 369–387

Fig. 5 Control-flow graph from Example 3, which is the output of TOTALCFL when applied to the program
in Example 1 and Fig. 2. Note that SUMMARY(�2) and SUMMARY(�2) both represent commands with the
relational meaning equaling x′ = x′ ∧ y′ = y ∧ z′ = 0

that all partial-correctness or total-correctness Hoare triples that valid in the original pro-
gram remain valid in the modified program.

Theorem 2 below holds for recursive programs over unbounded data domains. An equiv-
alent statement for the case of finite data domains is given by Theorem 12 in [3].

Theorem 2 (TOTALCFL preserves total correctness) The validity of Hoare triples for to-
tal program correctness is preserved by the transformation TOTALCFL. That is, a triple
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{φ}P {ψ} for the program P with procedures is valid under total correctness valid if and
only if the triple {φ}TOTALCFL(P ){ψ} for the program TOTALCFL(P ) without proce-
dures is valid under total correctness, and the opposite direction holds if the abstraction
function used in the summarization procedure is the identity function, i.e.,

|=tot {φ}P {ψ} if |=tot {φ}TOTALCFL(P ){ψ},
|=tot {φ}TOTALCFL(P ){ψ} if |=tot {φ}P {ψ} and α(x) = λx.x.

Proof (sketch) First, we prove that if the program P does not terminate then there is in
infinite computation in the transformed program TOTALCFL(P ). Let σ = σ0, σ1, . . . be
an infinite computation of P . We construct the corresponding infinite computation σ ′ by
traversing σ and inspecting its triples that are labeled by call nodes using the check described
below. The outcome of the check determines which branch to take when traversing the
corresponding node in the program TOTALCFL(P ).

Let (gi, li , sti ) be a triple at the call node, i.e., L(l) = CALL(p, τ ). We consider the suffix
of σ that starts at σi . We check if it contains a triple (gj , lj , stj ) that corresponds to the
matching return node, i.e., stj = sti and for each triple (gk, lk, stk) between i and j the stack
stk is strictly larger than sti . In case there is such a matching triple, we follow the branch
of TOTALCFL(P ) that corresponds to the edge (lipc, lj pc) that connects the call and return
nodes in P . Otherwise, we follow the other branch, which goes to the start node of p.
Following this steps we construct an infinite computation in TOTALCFL(P ), as we never
need to follow the omitted interprocedural edges between exit and return nodes.

Now we prove that for every infinite computation of TOTALCFL(P ) there is a corre-
sponding infinite computation in P . We apply a construction similar to the one above, but
this time we traverse the infinite computation of TOTALCFL(P ). When visiting a triple
(g, l, ε) that corresponds to a call node with the label CALL(p, τ ) in the program P , we
look one step ahead and do the following case analysis. If the successor triple (g′, l′, ε) is at
the node that was present in P (and hence was labeled by RETURN(p)), then we expand the
P -computation σ by adding a computation segment between (g, l, ε) and (g′, l′, ε). Such
a segment exists, since the pair (g, l) and (g′, l′) appears in the summary relation that we
used to construct TOTALCFL(P ). Otherwise, we proceed to the next triple and push l on
the stack content in the P computation. �

Example 4 When developing tools based on abstraction we aim to find methods in which
the largest abstraction suffices in the common case. In the case of recursive functions the
common case is a function with only a single recursive call (i.e. functions in which the
recursive call sites do not appear in loops, and multiple recursive call sites do not occur).
Consider, for example, the factorial function:

procedure fact(x) begin
�1: if x > 1 then
�2: y := fact(x − 1);
�3: return y ∗ x;

fi
�4: return 1;

end

This example would result in the supergraph displayed in Fig. 6.
Note that even the weakest possible summary, true, suffices to prove termination in this

example, as the only cyclic path through the control flow graph does not visit �2r . In fact, the
only case in which a summary stronger than true will be required are those in which an outer
loop is used (see the example below), or the function has multiple recursive calls within it.
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Fig. 6 Control-flow graph of function from Example 4 after the application of TOTALCFL. Note that the
choice of SUMMARY(�2) is not important, as even the summary true suffices to prove termination

Example 5 Consider a slight modification to the function from Example 1:

procedure f(x) begin
local y initially 0;

�4: if x > 0 then
�5: y := 2;
�6: while y ≥ 0 do
�7: z := z − 1;
�8: f(x − y);
�9: y := y − 1;

done
fi

�10: exit;
end
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Fig. 7 Control-flow graph fragment from code of Example 5, after application of TOTALCFL

Note that, because of the change of the conditional y > 0 to y ≥ 0, the procedure no
longer guarantees termination. The non-terminating executions introduced by the change
have the characteristic that they enter and exit infinitely often through of recursive call sites.
This is because all non-terminating executions visit through the recursive call after the third
iteration of the loop. This case is interesting because it shows why its crucial to consider
both cases of the non-deterministic branch—the counterexample to termination in the trans-
formed program will necessarily have to visit both sides of the non-deterministic conditional
infinitely-often. To see why this is true consider the program after transformation (where we
are using the sound summary x′ = x ∧ y′ = y at the recursive call sites. See Fig. 7. The only
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non-terminating execution in the modified program is the cycle sf → �4 → �4t → �5 →
�6 → �7 → �8 → �8r → �4 → �4t → �6 → �7 → �8 → �8r → �4 → �4t → �6 → �7 →
�8 → �8c

Example 6 When proving a liveness property such as “call site location �3 can only be
visited infinitely-often”, the reader may be tempted to modify the transformation at other
call sites such that only the summary is used, and not the added edge back to the beginning
of the procedure. Such an optimization would be unsound, as this example shows:

procedure f(x) begin
�1: if x = 0 then
�2: f(1);

else
�3: f(0);

fi
�4: return;

end

This program’s control-flow graph, after TOTALCFL, can be found in Fig. 8. If we are
only considering the possibility of infinite executions through �3, for example, we might be
tempted to drop the edge from �2c to sf. The reason that this would be unsound, in this case,
is that all infinite executions alternates strictly between the two call sites. Thus the program
with the edge from �2c to sf removed guarantees termination.

Example 7 We find the summaries are also useful when proving non-termination. Consider
the following example:

�1: while x > 0 do
�2: f(x);
�3: x := x + 1;

od

where f is defined as:

procedure f(x) begin
�4: if x > 0 then
�5: f(x − 1);

fi
�6: return;

end

This program causes termination provers such as TERMINATOR [11] to diverge, as every
cyclic path is well-founded, but the program itself does not terminate. The difficulty with
this program is that the number of unfoldings of f tells us the value of x, thus every valid
program path location �1 back to �1 contains enough information to determine the concrete
values of x. Thus because x′ = x + 1 and x ′ ≤ c for some concrete value c determined by
the length of the cycle, we know that each cycle will be well-founded, whereas the program
clearly does not terminate. It is for this reason that tools such as TERMINATOR diverge while
examining an infinite set of cyclic paths. Note that x′ = x is a sound and complete summary
at �2, thus we can use the summary to prove non-termination (using recurrence sets [17]).
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Fig. 8 Control-flow graph of function from Example 6 after the application of TOTALCFL

4 Conclusion

We have presented a practical interprocedural program analysis for automatic termination
and total correctness proofs. The primary hurdle towards this goal was the dichotomy be-
tween the trace-based semantics (for termination) and the denotational (relational) semantics
for recursion. In our method, we factor out the recursion analysis from the termination analy-
sis. We first transform the recursive program under consideration into a semantically equiv-
alent non-procedural program. The interprocedural reachability analysis during the first step
can safely ignore the termination task; i.e., it considers only finite prefixes of traces, as
opposed to (full infinite) traces as it would be required for termination. The termination
analysis in the second step then uses the semantics of infinite traces of a non-procedural
program.

Our implementation uses transition-predicate abstraction [26] to implement both the re-
lational abstraction of the program and the abstraction of the relational semantics of proce-
dures (approximating reachable computation segments for the summarization).

The immediate next question that arises from our work is how to embed the analysis
method into a counterexample-guided abstraction refinement loop. This raises an interesting
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topic of research. We do not yet know an elegant way to pass back and forth counterexamples
between the termination analysis of the non-procedural program and the interprocedural
analysis of the recursive program.

An orthogonal direction for future research is the interprocedural analysis of termination
and liveness properties for concurrent programs, based on existing work for summaries for
concurrent programs, e.g., [22, 29].
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