
SideTrail: Verifying Time-Balancing of Cryptosystems

Konstantinos Athanasiou1, Byron Cook2, Michael Emmi3, Colm MacCarthaigh2,
Daniel Schwartz-Narbonne2, and Serdar Tasiran2

1 Northeastern University
2 Amazon Web Services

3 SRI International

Abstract. Timing-based side-channel attacks are a serious security risk for mod-
ern cryptosystems. The time-balancing countermeasure used by several TLS
implementations (e.g. s2n, GnuTLS) ensures that execution timing is negligibly
influenced by secrets, and hence no attacker-observable timing behavior depends
on secrets. These implementations can be difficult to validate, since time-balancing
countermeasures depend on global properties across multiple executions. In this
work we introduce the tool SIDETRAIL, which we use to prove the correctness
of time-balancing countermeasures in s2n, the open-source TLS implementation
used across a range of products from AWS, including S3. SIDETRAIL is used in
s2n’s continuous integration process, and has detected three side-channel issues
that the s2n team confirmed and repaired before the affected code was deployed to
production systems.

1 Introduction

Timing-based side-channel attacks are a serious security risk for modern cryptosystems;
the Lucky 13 attack is a recent example [1]. Current systems deploy one of two prevailing
countermeasures to prevent such attacks. One possible mitigation against this threat is to
apply the constant-time coding principle, where secrets must not influence control-flow
paths, memory access patterns, or the cycle counts of instructions. This simplifies local
reasoning about timing leaks: if secrets are not used in the prohibited manner, then the
code does not exhibit timing side-channels. However, constant-time coding often requires
replacing a program’s natural control-flow with complicated bitwise operations, and
can require significant changes to standard data-structures and APIs, making it difficult
to reason about functional correctness. The developers of OpenSSL recently applied a
500+ LOC patch to perform constant-time cipher block chaining (CBC) decoding; the
complexity of which led to subsequent issues [2].

The second approach, dubbed time-balancing, ensures that execution time is neg-
ligibly influenced by secrets. This relaxation from constant-time enables simpler and
more readable countermeasures: developers must balance a program’s executions to
have similar timing footprints, allowing the use of standard operations that depend on
secrets. The CBC code from s2n [3], for example, implements time-balancing in fewer
than 20 additional lines, and s2n’s time-balanced HMAC has been proven functionally
correct [4]. However, since time-balancing countermeasures depend on global properties
across multiple executions, programmers easily miss subtle timing leaks [5].



In this work, we introduce SIDETRAIL (available at [6]), a deductive verifier for
time-balancing countermeasures. SIDETRAIL uses an instruction-level precise timing
model and encodes it via a time counter. It uses Boogie [7] to precisely reason about
control flow and values, including the time counter. We automatically infer invariants
over time-counter values with minimal user annotation, and use self-composition [8] to
prove that the timing difference between every pair of executions with similar public
inputs is below a given bound.

We have used SIDETRAIL to verify the correctness of the timing countermeasures
for the data-packet processing stack in s2n. SIDETRAIL is used in s2n’s Travis-based
continuous integration system [9], has detected three issues that the s2n team has
confirmed and repaired before the affected code was used in production systems, and
has proved correctness of the repaired countermeasures.

1.1 Related Work

Prior work has proposed verification for constant-time [10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20] and power-balancing [21] side-channel countermeasures including the Everest
project which has proven the functional correctness of a side-channel resistant TLS
implementation in the constant-time model [22, 23].

Different approaches have recently appeared in the context of time-balancing counter-
measures [24] [25]. Blazer [24] uses a partitioning strategy instead of self-composition
and scales to examples of up to 100 basic blocks in size. Themis [25] uses Quantitative
Cartesian Hoare Logic to capture timing differences between executions and scales to
real-world Java applications. Themis requires functions to be time-balanced; it otherwise
reports spurious violations. In contrast, SIDETRAIL takes a path-based approach, and
can handle time-balancing countermeasures, such as those used in s2n’s HMAC, which
compose unbalanced functions to ensure that every execution path is time balanced. Both
Blazer and Themis target Java programs while SIDETRAIL focuses on low-level C-code
implementations. Unlike these two approaches, which approximate leakage using com-
putational complexity and bytecode instruction counts respectively, SIDETRAIL supports
fine grained cost models at the instruction level of LLVM’s Intermediate Representation
language.

The self-composition we describe in Sec. 3 builds on those of existing works [26,
27, 28, 29], and our implementation follows ct-verif’s [19], replacing its cross-product
construction with self-composition; our novelty is in its application to time balancing.
Contrary to approaches providing upper bounds of information leakage metrics [30],
SIDETRAIL employs relational verification.

2 Time-Balancing

Time-balancing countermeasures provide the security assurance that program secrets
have negligible influence on execution time, even in the presence of potentially malicious
observers who can control the public inputs to the program. Formally, a program is
δ-secure if for every possible public-input value, the timing difference between every
pair of executions with different secrets is at most δ. In this work, we assume a standard



1: procedure CBC-VULNERABLE
2: pad := packet[len − 1]
3: payload len := len − pad
4: update(mac, packet, payload len)

5: digest(mac)

1: procedure CBC-TIMEBALANCED
2: pad := packet[len − 1]
3: payload len := len − pad
4: update(mac, packet, payload len)
5: update(dummyMAC, packet + payload len, pad)
6: digest(mac)

Fig. 1: A vulnerable TLS CBC algorithm (a), and its time-balanced version (b).

adversarial model: a network man in the middle (MITM), who has the ability to observe
and modify both the contents and the timing of any packet on the network, but who cannot
execute arbitrary code on the targeted endpoints [31]. This model is powerful enough to
capture a wide range of real TLS attacks, ranging from Bleichenbacher’s attacks against
PKCS #1 [32], to Brumley and Boneh’s attack against RSA decryption [33], to the Lucky
13 family of attacks against the TLS HMAC [1].

Example 1. The Lucky 13 family of attacks [1] takes advantage of a weakness in the
specification for SSL/TLS; CBC mode uses an HMAC to prevent adversaries from
modifying incoming cipher-texts, but neglects to protect the padding [34]. A MITM
attacker can trick a TLS implementation into decrypting a selected encrypted byte (e.g.
from a password) into the padding length field. Fig. 1a shows what happens in a naı̈ve
implementation: in line 4, len - pad bytes are hashed by the HMAC, whose timing
strongly depends on the number of bytes hashed. Since len is known to the attacker,
this creates a timing side-channel leaking the value of pad. A constant-time mitigation
would be to rewrite the HMAC implementation so that its computation was independent
of the value of pad. A simpler time-balanced countermeasure is shown in Fig. 1b: apply
update on a dummy HMAC state dummyMAC (line 5), which ensures that no matter the
value of pad, the HMAC will always process a total of len bytes, mitigating the timing
side-channel.

Verifying time-balancing. Following previous approaches to verifying non-interference [26,
29], we reduce verification of δ-security, which is a 2-safety property, i.e. a property
over pairs of executions, to the verification of a standard safety property, i.e. over in-
dividual executions. For technical simplicity, we consider a program P as a sequence
of instructions p0; p1; . . . ; pn whose variables V = Sec ] Pub are the disjoint union of
secret and public variables, respectively; a program state s maps the variables to values.
A configuration c is a tuple (s, p) of program state s and the next instruction p to be
executed. An execution is defined as a configurations sequence c1c2 . . . cm.

Effective reasoning about δ-security requires (i) a timing model that accurately
captures programs’ timing behavior, and (ii) a verification technique able to relate the
timing behavior of two distinct program executions. To capture timing, we introduce a
leakage function `(c), mapping configurations c to timing observations, i.e. the cost of
executing the next program instruction using the values of variables in c. To keep track of
the total cost of an execution we extend the set of variables with a time counter l as VL =
V ] {l} and write the time counter instrumented program PL as l1; p1; l2; p2 . . . ; ln; pn,
in which each instruction li updates the time counter variable as l:= l+`(s, pi). Finally
to relate the timing cost of two execution paths we compose PL with its renaming



P̂L over variables V̂L, and form its self-composition PL; P̂L ranging over variables
VL ∪ V̂L [35, 8]. Accordingly, δ-security can be specified as a safety property over the
time-counter variables l and l̂.

3 Implementation

Fig. 2: SIDETRAIL Architecture

SIDETRAIL uses the SMACK verification infrastructure [36], which leverages
Clang [37] and LLVM [38] to generate and optimize LLVM bitcode before transla-
tion to the Boogie [7] intermediate verification language. Using LLVM intermediate
representation (IR) allows SIDETRAIL to reason precisely about the effect of compiler
optimizations, which can affect the timing of time-balancing countermeasures. Our
initial experience verifying simple time-balanced examples showcased the importance
of correctly accounting for compiler optimizations. In some cases, the compiler can
notice that the extra code added for time-balancing is side-effect free, and remove it,
reintroducing the timing side-channel in the original algorithm.

In addition, using LLVM IR easily allows us to use an instruction-level-precise
architectural timing model. We have extended SMACK to introduce the timing cost of
LLVM instructions, and implement program transformations at the Boogie code-level,
passing a time counter instrumented self-composition to the Boogie verifier [7]. If the
program being verified is δ-secure, SIDETRAIL returns with a proof; if there is a violation
of δ-security, SIDETRAIL provides a counter-example trace which includes the input
values that triggered the exception, the trace leading to the exception, and the amount of
leakage calculated for that trace. The SIDETRAIL flow is illustrated in Fig. 2 and Fig. 3.



#define DELTA 0

int plus(
int a, int b){
public_in(a);
assert_leakage(

DELTA);
return a + b;

}
...

define i32 @plus(
i32, i32){
%3 = add nsw i32

%1, %0,
!TimeCost !19

ret i32 %3,
!TimeCost !27

}
!19 = !{i64 1}
!27 = !{i64 0}

procedure plus(
i0: int, i1: int)
returns (r: int){
var i2: int;

bb0:
l := l + 1;
i2 := i0 + i1;
l := l + 0;
r := i2;
return;

}

var l, _l: int;
procedure wrapper(
i0: int, i1: int,
_i0: int, _i1: int){
assume i0 == _i0;
call plus(i0, i1);
call _plus(_i0, _i1);
assume l >= _l;
assert l - _l <= 0;
return;

}

Fig. 3: Stages of SIDETRAIL translation, from left to right: (a) an annotated C-code add
function; (b) the corresponding LLVM IR with timing annotations; (c) the translated
Boogie code with time counter instrumentation; and (d) the Boogie code for the self-
composition.

Security Annotations: SIDETRAIL requires a small number of annotations at the source-
code level to specify a δ-security proof. The programmer must annotate the appropriate
entry-point arguments as public (unannotated arguments are treated as secrets) and
specify the non-negative integer timing-difference bound (δ). The public_in and
assert_leakage annotations of Fig. 3a serve these purposes.

Timing Model: SIDETRAIL uses LLVM’s Cost Model Analysis for its instruction-level
precise timing model. The analysis approximates the timing cost of each instruction
when lowered to machine code by mapping it to a positive integer, and assumes that all
memory accesses hit their respective caches; we discuss the soundness of this assumption
in Sec. 4.3. Fig. 3b shows how SIDETRAIL annotates the LLVM IR add (time cost:
1) and ret (time cost: 0) instructions with timing metadata, represented as metadata
pointers !19 and !27 respectively. Fig. 3c shows how the timing metadata are carried
over to the Boogie code. A time-modeling transformation, implemented as a Boogie-code
transformation, introduces the integer-type time counter variable l and updates it in
lockstep with program instructions.

Loop Invariants: To capture how the values of the time counter variables are updated
throughout a loop’s execution, SIDETRAIL automatically inserts loop-timing-invariants
in the Boogie code, based on annotations provided by the user.

A loop’s cost depends on two factors: the number of times it iterates, and the cost
of each iteration. The number of iterations can be captured by annotating a simple con-
tinuation invariant — for example, loops of the form for (i=0; i<n; ++i) should
be user-annotated with a continuation invariant (i<=n). In the common case where
the execution time of the loop-body does not vary across iterations, SIDETRAIL can
automatically infer the cost of each iteration. If the loop body contains nested control
statements the user must provide annotations that describe how many times each branch
of the control statement is visited, although we note that we encountered only a single
loop with nested control in our experiments. In either case, SIDETRAIL automatically in-
fers timing-invariants of the form (l = l_prior + i*body_cost), where l_prior



is the value of l before entering the loop and body_cost is the timing cost of executing
the loop body once, and inserts them in the Boogie code.

Self-Composition: We implement the self-composition-based reduction of δ-security to
assertion checking as an additional Boogie-code transformation, demonstrated in Fig. 3d.
We duplicate the program to be verified, making a renamed copy of all functions (plus
becomes _plus), and then transform these duplicated functions to use renamed copies
of global variables including the time counter, and to perform nested procedure calls on
the renamed procedures. Finally, a wrapper procedure enforces the equality of public
inputs, makes two consecutive calls to the entry function of the program and its renamed
copy, and adds an assertion to check δ-security.

Inter-procedural Analysis: SIDETRAIL supports inter-procedural analysis through func-
tion inlining, allowing the analysis of arbitrary entry points which may invoke individu-
ally unbalanced functions (s2n uses such functions in its path-balanced HMAC). As we
discuss in Sec. 4, this approach is able to handle industrial codebases such as the s2n
HMAC. SIDETRAIL also supports modular verification through timing stubs, described
below.

Timing Stubs: SIDETRAIL allows the user to specify the expected leakage from a
function by providing support for timing stubs. Users specify these stubs by adding
assume_leakage(expr) statements to the body of a function, where expr is any
expression computable within the function. When the time-modeling transformation
encounters this call, it increases the time counter variable by expr. This allows stubs to
represent complex timing behaviour which may depend on properties of both the input
and current state of the function. It is the responsibility of the user to ensure that the stub
correctly models the timing behaviour of the concrete implementation; we discuss how
SIDETRAIL can be used to verify the correctness of stubs in Sec. 4.2.

4 Case Study of the s2n TLS Library

s2n is an open-source TLS library used by Amazon, including S3, and AWS services [39].
Its design goals are that it be: “small, fast, with simplicity as a priority” [40]. Its time-
balanced CBC mode requires fewer than 20 additional lines of code, compared to
the 500+ LOC patch to perform constant-time CBC decoding in OpenSSL. We have
used SIDETRAIL to verify the correctness of the timing countermeasures for the whole
data-packet processing stack (which includes CBC verification as a sub-component) in
the current s2n release. In the process we have discovered three previously unknown
issues that violate δ-security. We note s2n has a belt-and-suspenders security model with
randomized delay on error and a secure default configuration [41], which would have
prevented these issues from affecting data in production.

The proofs described below are automatically rerun as part of s2n’s Travis based
continuous integration system. This ensures that code changes are only accepted to the
s2n repository after they have been validated using SIDETRAIL.



int s2n_hash_update(struct s2n_hash_state *state, const void *data, uint32_t size)
{

assume_leakage(PER_BYTE_COST * size);
state->currently_in_hash_block += size;
int num_filled_blocks = state->currently_in_hash_block / BLOCK_SIZE;
assume_leakage(num_filled_blocks * PER_BLOCK_COST);
state->currently_in_hash_block = state->currently_in_hash_block % BLOCK_SIZE;
return SUCCESS;

}

Fig. 4: Hash function timing stub.

4.1 Timing Stubs

s2n is written in a modular fashion, and does not implement its own cryptographic
primitives – instead they are linked from the system libcrypto. We provide timing
stubs for each cryptographic primitive used by s2n, following the approach described in
Sec. 3. An example stub for hash_update is shown in 4. This stub has two components:
a per-byte cost, representing the cost of memcpying the data, and a per-block cost,
representing the cost of a hash compression round. The stubs were validated by using
SIDETRAIL to verify that the stub had the same timing behaviour as a C implementation,
as described in Experiment 3 (Sec. 4.2).

4.2 Experiments

Except as noted below, all experiments had approximatly 400 lines of initial source, 5
security annotations, 3 loop invariants, 100 lines of additional code (stubs + test harness),
and expanded to an order of 1000 SMT clauses. All of the experiments listed below
completed in less than 8 minutes on a 3.1 GHz Intel Core i7 with 16GB of RAM running
OSX 10.11, using Z3 4.6.0’s integer arithmetic theory.4 The code for all experiments is
available online.5

For each experiment, we determined the precise amount of δ-leakage by varying
δ to find the boundary where verification moved from unsuccessful to successful. Our
experience in this process suggests that refuting values of δ that are too small is typically
faster than verifying values of the correct size.

Properties Verified We performed four related verification experiments using SIDE-
TRAIL. Experiment 1 validated our ability to detect a previously reported timing issue in
the CBC mode of s2n. Experiment 2 validated the correctness of the current implemen-
tation of this code. Experiment 3 validated the correctness of the timing stubs used in
Experiment 2. Experiment 4 extends this proof to provide an end to end guarantee for
data-packet processing.

4 Using integer arithmetic provides performance benefits at the cost of losing information about
the underlying C types. In a few cases, we needed to annotate back this information, for example
by adding assume(x >= 0 && x < 256) after an assignment to a uint8_t x;

5 https://github.com/danielsn/s2n/tree/sidetrail-vstte-artifact/
tests/sidewinder

https://github.com/danielsn/s2n/tree/sidetrail-vstte-artifact/tests/sidewinder
https://github.com/danielsn/s2n/tree/sidetrail-vstte-artifact/tests/sidewinder


[Experiment 1] One of the motivations for this work is a previously reported and repaired
timing side-channel issue [42] in s2n’s time-balanced CBC decoder. The issue is caused
by an off-by-one error in the code that tracks how many bytes have been hashed and
triggers for a particular edge-case in the padding size. SIDETRAIL reports an error trace
that includes the concrete value of the padding size, as well as the expected leakage
(equivalent to one hash compression round, approximately 1 microsecond).

[Experiment 2] In this experiment, we verify the correctness of the CBC mode time-
balancing countermeasures for all protocol versions (SSL3, TLS[1.0–1.2]) and hash
functions (MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512) supported by s2n.
In order to handle this wide range of modes and functions, both the test-harness and the
hash-stubs were written in a generic fashion, allowing different modes to be tested by
setting the appropriate compile-time constants. The experiment could then be rerun with
varying parameters to cover all modes.

We experienced two types of scalability issues in this experiment. Firstly, s2n does
not contain its own cryptographic primitives, leading us to use a modular verification
approach using timing stubs as described in Sec. 4.1. Secondly, the CBC code makes
branching decisions based on non-linear operators (mod and div), which the backend
SMT solver had difficulty solving in a reasonable time. We worked around this issue by
replacing the div operation with a handwritten variant that uses pre-calculated values
for the block-sizes being tested. Our proofs for the various modes all showed a small
δ-leakage, caused by the extra call to hash_digest necessary to affect time-balancing.
Since this δ (approximately 0.03 microseconds) is significantly smaller than the time
granularity visible to a network based attacker (estimated at 1 microsecond based on
timing experiments done between co-located machines, which is in agreement with [31]),
the code is successfully balanced.

[Experiment 3] The soundness of Experiment 2 depends on correct modeling of the
timing behaviour of the timing stubs. In this experiment we verify that our SHA-1 timing
stub accurately captures the timing cost of an open-source C implementation [43]. Our
proof methodology is similar to the one used for δ-security, but in this case we form
a composition of the timing stub (Fig. 4) with the C implementation and assert that
their time counter variables are equal (i.e. δ = 0). The SHA-1 C code contains a loop
with a nested control statement, which requires us to indicate the times each branch is
exercised via an additional invariant. After experimenting to find the correct values for
PER_BYTE_COST and PER_BLOCK_COST, we verify that the δ between the stub and the
C implementation is 0.

[Experiment 4] (450LOC Source, 150LOC stubs, 20LOC Annotations, 1860 SMT
clauses) In this experiment we verify that data-packet processing is time-balanced, for
all protocols (SSL3, TLS[1.0–1.2]) and modes (AEAD, CBC, Composite, and Stream)
currently supported by s2n. This provides end-to-end confidence that from the time a
data-packet is decrypted, until when the bytes are returned to the client, all paths are
time-balanced.



The proof decomposes packet processing into three phases. Phase one, packet pars-
ing, operates on public data, such as header fields, which are already known to a MITM
attacker, and hence can be treated as public inputs. Phase two, decryption, is handled by
stubs which havoc the decrypted data buffer, making the values non-deterministically
different across the self-composed program executions. Phase three validates the de-
crypted data and returns it to the user. This phase uses the decrypted data from stage two,
and hence is the stage which could potentially leak confidential information via a timing
side-channel. We leverage the δ-security proof and the concrete value of δ reported from
Experiment 2 to validate the timing stub for HMAC verification. All modes reported a
δ < 0.05 microseconds.

Previously Unknown Issues Discovered Using SIDETRAIL, we reported three pre-
viously unknown issues in the s2n time-balancing countermeasures, which have been
acknowledged and fixed by the s2n team, and validated the repaired code.

[Issue 1] s2n time-balancing code counts the number of bytes in the hash block, and
uses this value as part of its time-balancing countermeasures. As an optimization, s2n
took advantage of the fact that the standard HMAC specification [44] pads keys to be
multiples of the hash-block in length, which means that hashing a padded key does
not affect the number of bytes remaining in the hash block. Unfortunately, the SSLv3
specification follows this recommendation for MD5, but in SHA1 mode uses a padded
key that is 4 blocks short of the hash block size [45], causing the time-balancing code to
incorrectly count the number of bytes.

[Issue 2] s2n’s HMAC had two variables with similar names: hash_block_size and
block_size. Due to a typo, the wrong variable was used in a modular operation which
determines the need for time-balancing operations. Interestingly, this issue only exposes
itself in SSLv3 mode; in all other modes, block_size and hash_block_size have
the same value. This issue was accepted and repaired by the s2n team, who also renamed
the variables to have more descriptive names.

[Issue 3] As discussed in Issue 1, s2n uses a count of the number of bytes hashed as part
of its time-balancing countermeasures. In addition to the bytes directly added by calls
to hash_update(), s2n must track the number of bytes added behind the scenes by
the hash algorithm. In particular, before generating a hash digest, most hash algorithms
append padding, which typically includes an integer specifying the total number of bytes
that have been hashed. Most hash functions used in TLS (e.g. MD5, SHA1) use an 64-bit
(i.e. 8-byte) integer for this purpose, and hence s2n’s time-balancing code adds 8 to the
number of bytes that have been hashed when determining the need for time-balancing
operations. However, some hash algorithms, such as SHA-384 and SHA-512, append a
128 bit (16-byte) integer, which would cause s2n time-balancing code to miscount the
number of bytes hashed when using these algorithms.



4.3 Discussion on the Timing model

SIDETRAIL assumes an architectural timing model, which abstracts away micro-archite-
ctural features such as caching and branch prediction, similarly to other approaches
[24, 25]. This model captures the capabilities of a MITM network attacker against a TLS
endpoint who can measure final execution time (with limited precision due to network
jitter) but cannot affect or directly observe machine state. Consequently the attacker can
only observe the cumulative number of cache hits/misses, and cannot influence them
by altering the state of the cache. In the context of our s2n case study, the TLS code we
verify preloads a data-packet whose maximum size is 16KB into the cache, and then
spends approximately 50 microseconds doing a linear scan across it (based on the speed
of the hash functions used in TLS). Since the data-packet fits in the L1 cache (typically
at least 32KB), all memory accesses results in cache hits. Additionally, 50 microseconds
are considerably less than the Linux quantum which is on the order of milliseconds,
meaning that cache interference effects from context switches are minimal.

4.4 Verification Inspired Refactoring

Verifying an industrial code-base requires forming a clear understanding of the code
being verified. As part of this effort, we discovered a number of refactorings that made
the code more modular, clean, and easy to verify. These code changes were shared with
the s2n team as GitHub PRs, and have been merged into the mainline code-base.

The proposed changes ranged from small optimizations such as removing an unnec-
essary loop, to refactoring of larger portions of the code-base. For example, as part of
Experiment 2, we discovered that different HMAC modes had duplicated functionality;
merging this functionality into a common function simplified both the code, and the
proof effort. Conversely, in Experiment 4, the data-packet processing code interleaved
functionality from several different modes, requiring a large number of local variables
and making it difficult to write a test harness that covered all cases. We split the code into
four simpler functions, with four simple test harnesses. The s2n team accepted the PR
with the comment “this looks much better, thanks.” The most interesting fix was to s2n’s
error handling which follows a disciplined methodology. As we analysed several error
handling code paths, we realized that every case followed the same template, and could
be simplified with a macro that made error-handling easier to annotate (since we only
needed to add the annotation in one place). As an added benefit, this change removed
400 LOC from an approximately 6 KLOC code-base.

Formal verification both inspired and enabled these changes. Our refactoring touched
large portions of the overall code-base, and made changes to security-critical functional-
ity. Without automated formal proofs to give us confidence that our changes would not
introduce new timing regressions, the amount of effort to manually validate the changes
would have made these changes impractical.

5 Future work

As future work we first aim to improve the accuracy of SIDETRAIL’s timing model.
Modeling the behaviour of micro-architectural components, such as the cache and the



branch predictor, will extend the class of attackers that SIDETRAIL can reason about
with on-machine active attackers. Additionally, replacing LLVM’s instruction cost model
with a model based on micro-benchmarks will increase the precision of SIDETRAIL,
especially for operations such as div and mod which take a different number of cycles
depending on the values of their input. We have demonstrated SIDETRAIL’s capability
to utilize and validate timing stubs. As a second direction of future work, we envision
extending the tool’s usability by inferring timing stubs in an automated fashion.

6 Conclusion

Ideal cryptographic practice is to design algorithms for an easy and straightforward
implementation that is naturally constant-time. For legacy algorithms that were not
designed with this restriction in mind, developers must use alternate approaches such as
time-balancing. SIDETRAIL allows developers of industrial cryptographic code-bases
such as s2n to verify the correctness of these mitigations, and to detect issues and
regressions when they occur.

References

[1] AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, IEEE Computer Society (2013) 526–540

[2] Somorovsky, V.J.: Curious Padding oracle in OpenSSL (CVE-2016-
2107). https://web-in-security.blogspot.co.uk/2016/05/
curious-padding-oracle-in-openssl-cve.html (2016) [Online;
accessed 15-Jan-2018].

[3] Amazon Web Services: s2n : an implementation of the TLS/SSL protocols. https:
//github.com/awslabs/s2n (2018)

[4] Dodds, J.: Part one: Verifying s2n HMAC with SAW. https://galois.com/
blog/2016/09/verifying-s2n-hmac-with-saw/ (2016) [Online; ac-
cessed 15-Jan-2018].

[5] Albrecht, M.R., Paterson, K.G.: Lucky Microseconds: A Timing Attack on Ama-
zon’s s2n Implementation of TLS. In: Proceedings of the 35th Annual International
Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume 9665,
New York, NY, USA, Springer-Verlag New York, Inc. (2016) 622–643

[6] Sidewinder: Time-balanced Verification Tests. https://github.com/
awslabs/s2n/tree/master/tests/sidewinder (2018)

[7] Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P., eds.: Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1-4, 2005, Revised Lectures. Volume 4111 of Lecture Notes in Computer
Science., Springer (2005) 364–387

[8] Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Computer Security Foundations Workshop, 2004. Proceedings. 17th IEEE, IEEE
(2004) 100–114

https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://github.com/awslabs/s2n
https://github.com/awslabs/s2n
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://github.com/awslabs/s2n/tree/master/tests/sidewinder
https://github.com/awslabs/s2n/tree/master/tests/sidewinder


[9] Amazon Web Services: s2n Travis CI integration page. https://travis-ci.
org/awslabs/s2n/ (2018)

[10] Agat, J.: Transforming out timing leaks. In Wegman, M.N., Reps, T.W., eds.: POPL
2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Boston, Massachusetts, USA, January 19-21, 2000,
ACM (2000) 40–53

[11] Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.A.: The program counter
security model: Automatic detection and removal of control-flow side channel
attacks. In Won, D., Kim, S., eds.: Information Security and Cryptology - ICISC
2005, 8th International Conference, Seoul, Korea, December 1-2, 2005, Revised
Selected Papers. Volume 3935 of Lecture Notes in Computer Science., Springer
(2005) 156–168

[12] Svenningsson, J., Sands, D.: Specification and verification of side channel declassi-
fication. In Degano, P., Guttman, J.D., eds.: Formal Aspects in Security and Trust,
6th International Workshop, FAST 2009, Eindhoven, The Netherlands, November
5-6, 2009, Revised Selected Papers. Volume 5983 of Lecture Notes in Computer
Science., Springer (2009) 111–125

[13] Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières, D.:
Eliminating cache-based timing attacks with instruction-based scheduling. In
Crampton, J., Jajodia, S., Mayes, K., eds.: Computer Security - ESORICS 2013
- 18th European Symposium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings. Volume 8134 of Lecture Notes in Computer
Science., Springer (2013) 718–735

[14] Almeida, J.B., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of side-
channel countermeasures using self-composition. Sci. Comput. Program. 78(7)
(2013) 796–812

[15] Barthe, G., Betarte, G., Campo, J.D., Luna, C.D., Pichardie, D.: System-level
non-interference for constant-time cryptography. In Ahn, G., Yung, M., Li, N.,
eds.: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, Scottsdale, AZ, USA, November 3-7, 2014, ACM (2014)
1267–1279

[16] Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language for
timing-sensitive information-flow security. In Özturk, Ö., Ebcioglu, K., Dwarkadas,
S., eds.: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15, Istan-
bul, Turkey, March 14-18, 2015, ACM (2015) 503–516

[17] Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1) (2015)
4:1–4:32

[18] Rodrigues, B., Pereira, F.M.Q., Aranha, D.F.: Sparse representation of implicit
flows with applications to side-channel detection. In Zaks, A., Hermenegildo, M.V.,
eds.: Proceedings of the 25th International Conference on Compiler Construction,
CC 2016, Barcelona, Spain, March 12-18, 2016, ACM (2016) 110–120

[19] Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016. (2016) 53–70

https://travis-ci.org/awslabs/s2n/
https://travis-ci.org/awslabs/s2n/


[20] Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations by
abstract interpretation. In: European Symposium on Research in Computer Security,
Springer (2017) 260–277

[21] Fang, X., Luo, P., Fei, Y., Leeser, M.: Leakage evaluation on power balance coun-
termeasure against side-channel attack on fpgas. In: 2015 IEEE High Performance
Extreme Computing Conference, HPEC 2015, Waltham, MA, USA, September
15-17, 2015, IEEE (2015) 1–6

[22] Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S.T.V., Thompson, L.: Vale: Verifying high-performance crypto-
graphic assembly code. In: 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. (2017) 917–934

[23] Bhargavan, K., Bond, B., Delignat-Lavaud, A., Fournet, C., Hawblitzel, C., Hritcu,
C., Ishtiaq, S., Kohlweiss, M., Leino, R., Lorch, J.R., Maillard, K., Pan, J., Parno,
B., Protzenko, J., Ramananandro, T., Rane, A., Rastogi, A., Swamy, N., Thompson,
L., Wang, P., Béguelin, S.Z., Zinzindohoue, J.K.: Everest: Towards a verified, drop-
in replacement of HTTPS. In Lerner, B.S., Bodı́k, R., Krishnamurthi, S., eds.: 2nd
Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017,
Asilomar, CA, USA. Volume 71 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017) 1:1–1:12

[24] Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing
channels. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2017, New York, NY, USA, ACM
(2017) 362–375

[25] Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’17, New York, NY,
USA, ACM (2017) 875–890

[26] Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In Hankin,
C., Siveroni, I., eds.: Static Analysis, 12th International Symposium, SAS 2005,
London, UK, September 7-9, 2005, Proceedings. Volume 3672 of Lecture Notes in
Computer Science., Springer (2005) 352–367

[27] Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the
cross-product. In Cuéllar, J., Maibaum, T.S.E., Sere, K., eds.: FM 2008: Formal
Methods, 15th International Symposium on Formal Methods, Turku, Finland, May
26-30, 2008, Proceedings. Volume 5014 of Lecture Notes in Computer Science.,
Springer (2008) 35–51

[28] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In Butler, M.J., Schulte, W., eds.: FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.
Volume 6664 of Lecture Notes in Computer Science., Springer (2011) 200–214

[29] Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Mathematical Structures in Computer Science 21(6) (2011) 1207–1252

[30] Pasareanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run side-channel analysis using
symbolic execution and max-SMT. In: Computer Security Foundations Symposium
(CSF), 2016 IEEE 29th, IEEE (2016) 387–400



[31] Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and limits of remote timing
attacks. ACM Trans. Inf. Syst. Secur. 12(3) (January 2009) 17:1–17:29

[32] Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs #1. In: Proceedings of the 18th Annual International
Cryptology Conference on Advances in Cryptology. CRYPTO ’98, London, UK,
UK, Springer-Verlag (1998) 1–12

[33] Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium - Volume 12. SSYM’03,
Berkeley, CA, USA, USENIX Association (2003) 1–1

[34] Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (August 2008)

[35] Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: SAS.
Volume 3672., Springer (2005) 352–367

[36] Rakamaric, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In Biere, A., Bloem, R., eds.: Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Volume 8559
of Lecture Notes in Computer Science., Springer (2014) 106–113

[37] llvm: clang: a C language family frontend for LLVM. https://clang.llvm.
org/ (2018)

[38] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California (Mar 2004)

[39] Schmidt, S.: s2n Is Now Handling 100 Percent of SSL Traffic for
Amazon S3. https://aws.amazon.com/blogs/security/
s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
(2017) [Online; accessed 15-Jan-2018].

[40] Schmidt, S.: Introducing s2n, a New Open Source TLS Imple-
mentation. https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/
(2015) [Online; accessed 15-Jan-2018].

[41] MacCarthaigh, C.: s2n and Lucky 13. https://aws.amazon.com/blogs/
security/s2n-and-lucky-13/ (2015) [Online; accessed 15-Jan-2018].

[42] Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Verifiable side-channel
security of cryptographic implementations: constant-time mee-cbc. In: International
Conference on Fast Software Encryption, Springer (2016) 163–184

[43] Brad Conte: Basic implementations of standard cryptography algorithms, like
AES and SHA-1. https://github.com/B-Con/crypto-algorithms
(2018) Commit: 02b66ec38b474445d10a5d1f0114bc0e8326707e.

[44] Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Mes-
sage Authentication. RFC 2104, RFC Editor (February 1997) http://www.
rfc-editor.org/rfc/rfc2104.txt.

[45] Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Version
3.0. RFC 6101, RFC Editor (August 2011) http://www.rfc-editor.org/
rfc/rfc6101.txt.

https://clang.llvm.org/
https://clang.llvm.org/
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://github.com/B-Con/crypto-algorithms
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc6101.txt
http://www.rfc-editor.org/rfc/rfc6101.txt

	SideTrail: Verifying Time-Balancing of Cryptosystems

