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Abstract. We report on the development and use of formal verification
tools within Amazon Web Services (AWS) to increase the security assur-
ance of its cloud infrastructure and to help customers secure themselves.
We also discuss some remaining challenges that could inspire future re-
search in the community. 1

Introduction

Amazon Web Services (AWS) is a provider of cloud services, meaning on-demand
access to IT resources via the Internet. AWS adoption is widespread, with over a
million active customers in 190 countries, and $5.1 billion in revenue during the
last quarter of 2017. Adoption is also rapidly growing, with revenue regularly
increasing between 40–45% year-over-year.

The challenge for AWS in the coming years will be to accelerate the devel-
opment of its functionality while simultaneously increasing the level of security
offered to customers. In 2011, AWS released over 80 significant services and fea-
tures. In 2012, the number was nearly 160; in 2013, 280; in 2014, 516; in 2015,
722; in 2016, 1,017. Last year the number was 1,430. At the same time, AWS
is increasingly being used for a broad range of security-critical computational
workloads.

Formal automated reasoning is one of the investments that AWS is making
in order to facilitate continued simultaneous growth in both functionality and
security. The goal of this paper is to convey information to the formal verification
research community about this industrial application of the community’s results.
Toward that goal we describe work within AWS that uses formal verification to
raise the level of security assurance of its products. We also discuss the use of
formal reasoning tools by externally-facing products that help customers secure
themselves. We close with a discussion about areas where we see that future
research could contribute further impact.

1 Please see https://www.youtube.com/watch?v=JfjLKBO27nw for the FLoC’18 ple-
nary lecture that accompanied this paper. This paper appeared in the proceedings
of FLoC’s CAV’18 conference



Related work. In this work we discuss efforts to make formal verification appli-
cable to use-cases related to cloud security at AWS. For information on previous
work within AWS to show functional correctness of some key distributed algo-
rithms, see [43]. Other providers of cloud services also use formal verification to
establish security properties, e.g. [23, 34].

Our overall strategy on the application of formal verification has been heav-
ily influenced by the success of previous applied formal verification teams in
industrial settings that worked as closely with domain experts as possible, e.g.
work at Intel [33, 50], NASA [31, 42], Rockwell Collins [25], the Static Driver
Verifier project [20], Facebook [45], and the success of Prover AB in the domain
of railway switching [11].

External tools that we use include Boogie [1], Coq [4], CBMC [2], CVC4 [5],
Dafny [6], HOL-light [8], Infer [9], OpenJML [10], SAW [13], SMACK [14], Souf-
fle [37], TLA+ [15], VCC [16], and Z3 [17]. We have also collaborated with many
organizations and individuals, e.g. Galois, Trail of Bits, the University of Sydney,
and the University of Waterloo. Finally, many PhD student interns have applied
their prototype tools to our problems during their internships.

Security of the cloud

Amazon and AWS aim to innovate quickly while simultaneously improving on
security. An original tenet from the founding of the AWS security team is to
never be the organization that says “no”, but instead to be the organization
that answers difficult security challenges with “here’s how”. Toward this goal, the
AWS security team works closely with product service teams to quickly identify
and mitigate potential security concerns as early as possible while simultaneously
not slowing the development teams down with bureaucracy. The security team
also works with service teams early to facilitate the certification of compliance
with industry standards.

The AWS security team performs formal security reviews of all fea-
tures/services, e.g. 1,430 services/features in 2017, a 41% year-over-year increase
from 2016. Mitigations to security risks that are developed during these security
reviews are documented as a part of the security review process. Another impor-
tant activity within AWS is ensuring that the cloud infrastructure stays secure
after launch, especially as the system is modified incrementally by developers.

Where formal reasoning fits in. The application security review process used
within AWS increasingly involves the use of deductive theorem proving and/or
symbolic model checking to establish important temporal properties of the soft-
ware. For example, in 2017 alone the security team used deductive theorem
provers or model checking tools to reason about cryptographic protocols/systems
(e.g. [24]), hypervisors, boot-loaders/BIOS/firmware (e.g. [27]), garbage collec-
tors, and network designs. Overall, formal verification engagements within the
AWS security team increased 76% year-over-year in 2017, and found 45% more
pre-launch security findings year-over-year in 2017.



To support our needs we have modified a number of open-source projects and
contributed those changes back. For example, changes to CBMC [2] facilitate its
application to C-based systems at the bottom of the compute stack used in
AWS data centers [27]. Changes to SAW [13] add support for the Java program-
ming language. Contributions to SMACK [14] implement automata-theoretic
constructions that facilitate automatic proofs that s2n [12] correctly implements
the code balancing mitigation for side-channel timing attacks. Source-code con-
tributions to OpenJML [10] add support for Java 8 features needed to prove the
correctness of code implementing a secure streaming protocol used throughout
AWS.

In many cases we use formal verification tools continuously to ensure that
security is implemented as designed, e.g. [24]. In this scenario, whenever changes
and updates to the service/feature are developed, the verification tool is re-
executed automatically prior to the deployment of the new version.

The security operations team also uses automated formal reasoning tools in
its effort to identify security vulnerabilities found in internal systems and deter-
mine their potential impact on demand. For example, an SMT-based semantic-
level policy reasoning tool is used to find misconfigured resource policies.

In general we have found that the internal use of formal reasoning tools
provides good value for the investment made. Formal reasoning provides higher
levels of assurance than testing for the properties established, as it provides
clear information about what has and has not been secured. Furthermore, formal
verification of systems can begin long before code is written, as we can prove the
correctness of the high-level algorithms and protocols, and use under-constrained
symbolic models for unwritten code or hardware that has not been fabricated
yet.

Securing customers in the cloud

AWS offers a set of cloud-based services designed to help customers be secure
in the cloud. Some examples include AWS Config, which provides customers
with information about the configurations of their AWS resources; Amazon In-
spector, which provides automated security assessments of customer-authored
AWS-based applications; Amazon GuardDuty, which monitors AWS accounts
looking for unusual account usage on behalf of customers; Amazon Macie, which
helps customers discover and classify sensitive data at risk of being leaked; and
AWS Trusted Advisor, which automatically makes optimization and security
recommendations to customers.

In addition to automatic cloud-based security services, AWS provides peo-
ple to help customers: Solutions Architects from different disciplines work with
customers to ensure that they are making the best use of available AWS ser-
vices; Technical Account Managers are assigned to customers and work with
them when security or operational events arise; the Professional Services team
can be hired by customers to work on bespoke cloud-based solutions.



Where formal reasoning fits in. Automated formal reasoning tools today
provide functionality to customers through the AWS services Config, Inspector,
GuardDuty, Macie, Trusted Advisor, and the storage service S3. As an exam-
ple, customers using the S3 web-based console receiving alerts—via SMT-based
reasoning—when their S3 bucket policies are possibly misconfigured. AWS Ma-
cie uses the same engine to find possible data exfiltration routes. Another ap-
plication is the use of high-performance datalog constraint solvers (e.g. [37])
to reason about questions of reachability in complex virtual networks built us-
ing AWS EC2 networking primitives. The theorem proving service behind this
functionality regularly receives 10s of millions of calls daily.

In addition to the automated services that use formal techniques, some mem-
bers of the AWS Solutions Architects, Technical Account Managers and Profes-
sional Services teams are applying and/or deploying formal verification directly
with customers. In particular, in certain security-sensitive sectors (e.g. finan-
cial services), the Professional Services organization are working directly with
customers to deploy formal reasoning into their AWS environments.

The customer reaction to features based on formal reasoning tools has been
overwhelmingly positive, both anecdotally as well as quantitatively. Calls by
AWS services to the automated reasoning tools increased by four orders of mag-
nitude in 2017. With the formal verification tools providing the semantic foun-
dation, customers can make stronger universal statements about their policies
and networks and be confident that their assumptions are not violated.

Challenges

At AWS we have successfully applied existing or bespoke formal verification tools
to both raise the level of security assurance of the cloud as well as help customers
protect themselves in the cloud. We now know that formal verification provides
value to applications in cloud security. There are, however, many problems yet
to be solved and many applications of formal verification techniques yet to be
discovered and/or applied. In the future we are hoping to solve the problems
we face in partnership with the formal verification research community. In this
section we outline some of those challenges. Note that in many cases existing
teams in the research community will already be working on topics related to
these problems, too many to cite comprehensively. Our comments are intended
to encourage and inspire more work in this space.

Reasoning about risk and feasibility. A security engineer spends the ma-
jority of their time informally reasoning about risk. The same is true for any
corporate Chief Information Security Officer (CISO). We (the formal verifica-
tion community) potentially have a lot to contribute in this space by developing
systems that help reason more formally about the consequences of combinations
of events and their relationships to bugs found in systems. Furthermore, our
community has a lot to offer by bridging between our concept of a counterex-
ample and the security community’s notion of a proof of concept (PoC), which



is a constructive realization of a security finding in order to demonstrate its fea-
sibility. Often security engineers will develop partial PoCs, meaning that they
combine reasoning about risk and the finding of constructive witnesses in order
to increase their confidence in the importance of a finding. There are valuable
results yet to be discovered by our community at the intersection of reasoning
about and synthesis of threat models, environment models, risk/probabilities,
counterexamples, and PoCs. A few examples of current work on this topic in-
clude [18, 28, 30, 44, 48].

Fixes not findings. Industrial users of formal verification technology need to
make systems more secure, not merely find security vulnerabilities. This is true
both for securing the cloud, as well as helping customers be secure in the cloud.
If there are security findings, the primary objective is to find them and fix them
quickly. In practice a lot of work is ahead for an organization once a security
finding has been identified. As a community, anything we can do to reduce the
friction for users trying to triage and fix vulnerabilities, the better. Tools that
report false findings are quickly ignored by developers, thus as a community
we should focus on improving the fidelity of our tools. Counterexamples can be
downplayed by optimistic developers: any assistance in helping users understand
the bugs found and/or their consequences is helpful. Security vulnerabilities that
require fixes that are hard to build or hard to deploy are an especially important
challenge: our community has a lot to offer here via the development of more
powerful synthesis/repair methods (e.g. [22, 32, 39]) that take into account threat
models, environment models, probabilities, counterexamples.

Auditable proof artifacts for compliance. Proof is actually two activities:
searching for a candidate proof, and checking the candidate proof’s validity. The
searching is the art form, often involving a combination of heuristics that at-
tempt to work around the undecidable. The checking of a proof is (in principle)
the boring yet rigorous part, usually decidable, often linear in the size of the
proof. Proof artifacts that can be re-checked have value, especially in appli-
cations related to compliance certification, e.g. DO-333 [26], CENENLEC EN
50128 SIL 4 [11], EAL7 MILS [51]. Non-trivial parts of the various compliance
and conformance standards can be checked via mechanical proof, e.g. parts of
PCI and FIPS 140. Found proofs of compliance controls that can be shared
and checked/re-checked have the possibility to reduce the cost of compliance
certification, as well as reduce the time-to-market for organizations who require
certification before using systems.

Tracking casual or unrealistic assumptions. Practical formal verification
efforts often make unrealistic assumptions that are later forgotten. As an ex-
ample, most tools assume that the systems we are analyzing are immune to
single-event upsets, e.g. ionizing particles striking the microprocessor or semi-
conductor memory. We sometimes assume compilers and runtime garbage col-
lectors are correct. In some cases (e.g. [20]) the environment models used by



formal verification tools do not capture all possible real-world scenarios. As for-
mal verification tools become more powerful and useful we will increasingly need
to reason about what has been proved and what has not been proved, in order
to avoid misunderstandings that could lead to security vulnerabilities. In appli-
cations of security this reasoning about assumptions made will need to interact
with the treatment of risk and how risk is modified by various mitigations, e.g.
some mitigations for single-event upsets make the events so unlikely they they
are not a viable security risk, but still not impossible. This topic has been the
focus of some attention over the years, e.g. CLINC stack [41], CompCert [3],
and DeepSpec [7]. We believe that this will become an increasingly important
problem in the future.

Distributed formal verification in the cloud. Formal verification tools do
not take enough advantage of modern data centers via distributing coordinated
processes. Some examples of work in the right direction include [21, 35, 36, 38, 40,
47]. Especially in the area of program verification and analysis, our community
still focuses on procedures that work on single computers, or perhaps portfolio
solvers that try different problem encodings or solvers in parallel. Today large
formal verification problems are often decomposed manually, and then solved
in parallel. There has not been much research in methods for automatically
introducing and managing the reasoning about the decompositions automatically
in cloud-based distributed systems. This is in part perhaps due to the rules at
various annual competitions such as SV-COMP, SMT-COMP, and CASC. We
encourage the participants and organizers of competitions to move to cloud-
based competitions where solvers have the freedom to use cloud-scale distributed
computing to solve formal verification problems. Tool developers could build
AMIs or CloudFormation templates that allow cloud distribution. Perhaps future
contestants might even make Internet endpoints available with APIs supporting
SMTLIB or TPTP such that the competition is simply a series of remote API
calls to each competitor’s implementation. In this case competitors that embrace
the full power of the cloud will have an advantage, and we will see dramatic
improvements in the computational power of our formal verification tools.

Continuous formal verification. As discussed previously, we have found that
it is important to focus on continuous verification: it is not enough to simply
prove the correctness of a protocol or system once, what we need is to contin-
uously prove the desired property during the lifetime of the system [24]. This
matches reports from elsewhere in industry where formal verification is being
applied, e.g. [45]. An interesting consequence of our focus on continuous formal
verification is that the time and effort spent finding an initial proof before a
system is deployed is not as expensive as the time spent maintaining the proof
later, as the up-front human cost of the pre-launch proof is amortized over the
lifetime of the system. It would be especially interesting to see approaches de-
veloped that synthesize new proofs of modified code based on existing proofs of
unmodified code.



The known problems are still problems. Many of the problems that we
face in AWS are well known to the formal verification community. For exam-
ple, we need better tools for formal reasoning about languages such as Ruby,
Python, and Javascript, e.g. [29, 49]. Proofs about security-oriented properties
of many large open source systems remain an open problem, e.g. Angular, Linux,
OpenJDK, React, NGINX, Xen. Many formal verification tools are hard to use.
Many tools are brittle prototypes only developed for the purposes of publica-
tion. Better understanding of ISAs and memory models (e.g. [19, 46]) are also
key to prove the correctness of code operating on low-level devices. Practical and
scalable methods for proving the correctness of distributed and/or concurrent
systems remains an open problem. Improvements to the performance and scal-
ability of formal verification tools are needed to prove the correctness of larger
modules without manual decomposition. Abstraction refinement continues to be
a problem, as false bugs are expensive to triage in an industrial setting. Buggy
(and thus unsound) proof-based tools lose trust in formal verification with the
users who are trying to deploy them.

Conclusion

In this paper we have discussed how formal verification contributes to the ability
of AWS to quickly develop and deploy new features while simultaneously increas-
ing the security of the AWS cloud infrastructure. We also discussed how formal
verification techniques contribute to customer-facing AWS services. In this paper
we have outlined some challenges we face. We actively seek solutions to these
problems and are happy to collaborate with partners in this pursuit. We look
forward to more partnerships, more tools, more collaboration, and more sharing
of information as we try to bring affordable, efficient and secure computation to
all.
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