
Reengineering the
TCL Job Compiler

SEM49060
Final Report

Ben Tagger
Department of Computer Science
University of Wales, Aberystwyth

Ceredigion, SY23 3DB
7thMay 2003

Department of Computer Science

Module code: SEM49060 ...

Declaration of Originality

This submission is my own work, except where clearly indicated.
I understand that there are severe penalties for plagiarism and other unfair practice, which
can lead to loss of marks or even the withholding of a degree.
I have read the sections on unfair practice in the Students’ Examinations Handbook and
the relevant sections of the current Student Handbook of the Department of Computer
Science.
I understand and agree to abide by the University’s regulations governing these issues.

Signature: ...

Name (please print): BEN TAGGER...

Date: 06/05/2003 ..

MGR 21/10/98

Acknowledgements
I would like to thank Dr. Ross King for his supervision and guidance throughout the
project. I would also like to thank Ken Whelan for his technical assistence with respect to
the current TCL Job Compileras well as other areas of the project. I would also like to
thank my friends and family who have continued to offer their support even when they
hadn’t the faintest idea what I was talking about.

Abstract
With the completion of the mapping of the human genome, the incentive to provide
methods for understanding the function of genomes has never been greater. It was
predicted that the mapping of the human genome would herald a new era for the life
sciences. Unfortunately, little (by comparison) has come to fruition due to lack of
understanding of the genome. The aim of functional genomics is to establish methods of
deriving gene functionality, given the information from structural genomics.
The robot scientist aims to automate part of a laboratory function in the establishment of
metabolic pathways. The purpose of the robot scientist is to provide a learning system that
can discriminate between competing experiments, select the ‘best’ ones, perform the
experiments, analyse the results and then repeat the whole process.
The role of the TCL Job Compiler is to convert the experiments (those that have been
chosen within the robot scientist) into machine operations that can be used by the Biomek
Workstation (the robot that physically performs the experiments). This project aims to
completely reengineer the current TCL Job Compiler, providing greater readability,
portability, verstality and maintainability.

1 INTRODUCTION ...9
1.1 An Introduction to Functional Genomics..10
1.1.1 The importance of functional genomics .. 10
1.1.2 Methods in functional genomics... 10
1.1.2.1 Expression Profiling .. 10
1.1.2.2 Proteomics... 11
1.1.2.3 Single Gene Deletion... 11

1.1.3 The use of Yeast in Functional Genomics .. 12
1.1.3.1 Why use Yeast? ... 12

1.2 LIMS...13
1.2.1 What is a LIMS? .. 13
1.2.2 Benefits of a LIMS .. 14
1.2.3 LIMS Selection .. 14
1.2.4 Customisation .. 15
1.2.4.1 What can be customised? .. 15
1.2.4.2 How can you customise?... 16

1.2.5 LIMS Specification.. 17
1.2.6 The Development Process... 17
1.2.6.1 Development Languages for LIMS ... 17
1.2.6.2 XML in a LIMS .. 18
1.2.6.3 ASP for a LIMS .. 19
1.2.6.4 Web Services ... 20

1.2.7 A Look to the Future.. 21
1.2.8 Conclusion.. 22

1.3 The Existing System .. 23
1.3.1 Overview... 23
1.3.2 Structure.. 24
1.3.3 Function.. 24
1.3.4 ASE-Progol .. 25
1.3.5 Biomek Workstation ... 27
1.3.5.1 Biomek Sensing and Control .. 28
1.3.5.2 Workstation Coordinate System .. 31
1.3.5.3 The T Coordinate... 31
1.3.5.4 Liquid Transfers ... 31

1.3.6 The TCL Compiler.. 33
1.3.6.1 A Note on TCL .. 33

1.4 Reengineering and Refactoring.. 34
1.4.1 Reengineering... 34
1.4.1.1 Why should we reengineer? .. 35
1.4.1.2 How can we reengineer? ... 35

1.4.2 Refactoring ... 37
2 MARKET ANALYSIS ...38
2.1 Problem Definition... 39
2.2 Approach.. 39
2.3 Market Area ... 39
2.4 Existing (Adaptable) Packages ...41
2.5 Benefits of Developing a Bespoke System...41
2.6 Risks .. 42
2.7 Possibilities for Expansion ... 42
2.8 Other Possible Approaches .. 43

3 REQUIREMENTS AND PROJECT PLANNING......................44
3.1 Approach.. 45
3.2 Requirements... 45
3.2.1 Functional Requirements ... 45
3.2.2 Non-Functional Requirements.. 45

3.3 Project Management and Planning .. 46
3.3.1 Development Model ... 46
3.3.2 Planning .. 47
3.3.3 Effort Estimation .. 47
3.3.4 Time Plan.. 49
3.3.5 Risk Analysis and Management... 49

4 DESIGN..50
4.1 Development...51
4.1.1 Development Environment... 51
4.1.2 Development Language.. 51
4.1.2.1 TCL .. 51
4.1.2.2 Object-oriented Languages and the Use of Java 52

4.2 Approach to Design ... 53
4.2.1 Study of the Current System.. 53
4.2.2 Analysis of Inputs/Outputs... 53
4.2.3 Visualisation and Incremental Build... 53

4.3 Design of the System.. 54
4.3.1 The Experiment Creation Subsystem... 54
4.3.1.1 The Substance Subsystem... 54
4.3.1.2 The Experiment Subsystem.. 54

4.3.2 The Log Subsystem... 55
4.3.3 The Configurator Subsystem... 56
4.3.4 The Surface Subsystem... 56
4.3.5 The Builder Subsystem... 57

4.4 TCL Job Compiler.. 59
5 IMPLEMENTATION..63
5.1 Approach.. 64
5.2 Implementation of the Subsystems .. 64
5.2.1 The Substance Subsystem .. 64
5.2.2 The Experiment Subsystem... 66
5.2.3 The Log Subsystem... 69
5.2.4 The Configurator and Surface Subsystems.. 69
5.2.5 The Builder Subsystem... 73
5.2.5.1 createSteps() ... 73
5.2.5.2 deploySteps().. 74
5.2.5.3 Liquid Transfer ... 75

6 TESTING..78
6.1 Overview of the Chapter... 79
6.2 What Will Be Tested? ... 79
6.3 What Will Be Tested For?... 79
6.3.1 Typographical Errors.. 79
6.3.2 General Coding/Syntactic Errors ... 79
6.3.3 Communication/Interfacing Errors ... 80
6.3.4 Design Flaws .. 80

6.4 How Will It Be Tested? .. 80
6.4.1 Static Testing.. 80

6.4.2 Black box testing ... 80
6.4.3 White box (Structural) testing.. 80
6.4.4 Interface testing ... 81
6.4.5 Regression testing.. 81

6.5 Test Cases ...81
6.5.1 Substance Test Case.. 81
6.5.2 Experiment Test Case... 83
6.5.3 Configurator Test Case... 84
6.5.4 Surface Test Case .. 84
6.5.5 Builder Test Case... 86

7 LIMITATIONS AND EVALUATION...88
7.1 Introduction ... 89
7.2 Requirements Limitations.. 89
7.2.1 Vagueness of Requirements... 89
7.2.2 The Current TCL Job Compiler.. 89
7.2.3 Current System Knowledge ... 90
7.2.4 System Accountability... 90

7.3 Project Planning Limitations...91
7.3.1 System Knowledge.. 91
7.3.2 External Time Planning.. 91
7.3.3 Development Model ... 91

7.4 Design Limitations... 92
7.4.1 Size Estimation .. 92
7.4.2 The Surface Subsystem... 92
7.4.3 Locus of Control ... 92

7.5 Implementation Limitations .. 93
7.5.1 External Alterations .. 93
7.5.2 Log Implementation ... 93
7.5.3 Front End... 93

7.6 Testing Limitations.. 93
7.6.1 Time Constraints ... 93
7.6.2 Test Cases ... 94

7.7 System Limitations... 94
7.7.1 Pipette Changes ... 94
7.7.2 Completeness of the System.. 94

7.8 System Evaluation.. 95
7.8.1 Metrics... 95
7.8.2 System Discussion... 95

7.9 The Future for the TCL Job Compiler.. 96
REFERENCES ...97
APPENDIX A………………………………………………………….101

Part A: Requirements Definition…………………………………………....102
Part B: Analysis of the Current TCL Job Compiler…………………….…..110
Part C: System Design Specification………………………………….…….122
Part D: Basic Test Plan…………………………………………….………..196
Part E: Subsystem Test Specification………………..……………………..203

APPENDIX B…………………………………………………………..222
populateSubstances()………………………………………………………..223
populateExperimentPlate()………………………………………………….225
setup()…………………………………….…………………………………..228
createSteps()………………………………………………………………….231

deploySteps()……………………………………………………..…………..233
create()…………………………………………………………..……………235
SubstanceTest.java……………………………………..……………………240
ExperimentTokenizer.java………………….…….…………………………240
TipListDemo.java……………………………………………………………241
SurfaceDemo.java……………………………………………………………242
BigDemo.java…………………………………………………...……………243

hapter

1 Introduction

1

Chapter 1 - Introduction

10

1.1 An Introduction to Functional Genomics
The area of genomics can be divided into 2 distinct categories; structural genomics and
functional genomics [13]. Structural genomics is based largely on preliminary genome
analysis and the creation of genetic maps for an organism. The aim of structural genomics
is to establish a complete map of an organism’s DNA [13]. The aim of functional
genomics is to establish methods of deriving gene functionality, given the information
from structural genomics.
A cell can be viewed as a biochemical machine. It consumes simple molecules in order to
manufacture more complex ones. It achieves this by chaining together biochemical
reactions into long sequences, which are known as metabolic pathways [24]. Functional
genomics functions by analysing these pathways and determining the components.

1.1.1 The importance of functional genomics
Genomic data has various uses, including the following:

· Discovering new vaccine or drug candidates.
· The identification of the causes of diseases in genetically similar systems.
· Improving the understanding of genome/chromosome organisation, structure and

evolution.
· The analysis of metabolite production (methane, etc.).
· Establishing of common metabolic pathways.

Functional genomics can help identify the genes responsible for various human diseases,
which result from afflictions of a single gene. For example, a single nucleotide change can
result in sickle cell disease, cystic fibrosis or breast cancer. Such single nucleotide changes
have been linked to other hereditary variations; differences in height, brain development,
facial structure, pigmentation, etc.

1.1.2 Methods in functional genomics
A considerable challenge exists in developing methods that will aid in the identification
and definition of the role of genes that cannot be identified using other bioinformatic
analyses. Data mining and other bioinformatic methods can be employed to predict the
possible function of many genes, especially those similar to other genes with known
functions. The Pairwise alignment techniques are such a technique that uses database
search algorithms for searching for relationships based on sequence properties [2].
The following section describes three relatively common methods of gene identification.

1.1.2.1 Expression Profiling

An expression profile can be defined as the characteristic range of genes expressed at
different stages of a cell’s development and functioning [2]. Expression profiling involves
defining the genetic sequence and then proving the functionality in a regulatory network.
This method consists of micro array analyses. Thousands of genes are placed as arrays on

Chapter 1 - Introduction

11

slides and observed under varying physiological conditions. The alterations in gene
expression due to the physiological changes can be observed and studied with a view to
establishing gene function.

1.1.2.2 Proteomics

Proteomics is a process used to understand the function of proteins that cannot be
identified through similarity to databases. A protein is a chain of one or more amino acids,
linked in a specific order [2]. The order of this chain is specified by the base sequence of
nucleotides in the genetic code for the protein [2]. Proteomics is the study of protein
expression of biological systems, measuring values such as the abundance, stability and
fluctuations of various proteins and from this, establish their probable function.

1.1.2.3 Single Gene Deletion

Single gene deletion techniques are used to identify the function of an unknown gene.
Mutations of the microorganism are grown without the gene that has been selected for
functional identification. The mutant strains are grown with known differing growth
solutions and the growth of these can be compared to the growth of a wild strain of the
organism. Using this technique and by feeding the organism differing growth media with
varying chemical compositions and then measuring the resultant growth, you can deduce
which enzyme (and thus, gene) is responsible for a particular pathway.
Auxotrophic growth experiments are a technique for determining the metabolic pathways
exhibited by a particular organism. An auxotrophic mutant is a strain of organism that has
been grown with a particular gene missing or mutated [24]. The organism is grown so that
the particular gene is defective and so cannot play its normal part in the pathway.
Consequently, the organism cannot synthesise a particular component of the metabolic
pathway and so will not grow. However, if the product that is created by the missing gene
is manually added, the pathway can be restored [24].
“The deletion of any genes essential in the synthesis of these molecules will prevent
growth and replication. As a result, auxotrophic experiments can be used to infer their
biochemical function.” [24]

Chapter 1 - Introduction

12

Figure 1 - An illustration of the single-gene deletion process

As an illustration of the single-gene deletion process, consider the diagram above. A, B and
C are all metabolites. E1 is the enzyme that catalyses the reaction that uses the reactants Aand B and produces the product C, and is controlled by the gene G. If a mutant organism
is grown with the gene G missing, then the reaction will be unable to occur, as the enzyme
needed will no longer be present. Hence, the metabolites A and B will no longer be able to
be used to produce C and other reactions that use the metabolite C will be unable to
function as well. If this mutant organism is given various growth media, one of which has
the metabolite C added, then the pathways depending on C will be able to function again
and the organism will continue to grow. From this, it can be concluded that the gene G is
responsible for the production of E1.
The technique of single-gene deletion is widely used and has proved extremely successful
in many applications, especially single-gene disorders [10][37]. However, there is a cost
attributed to the trials and so, the fewer trials that can be done, the better.
1.1.3 The use of Yeast in Functional Genomics
Functional genomics research is usually conducted through the use of model organisms
such as mice and yeast. The use of model organisms provides a cost-effective way of
conducting genetic research as many generations can be studied over a relatively short
period of time.

1.1.3.1 Why use Yeast?

There are several reasons why yeast (Saccharomyces cervisiae) is commonly used in
genomic experimentation. In 1996, the first complete DNA sequence of a eukaryotic
genome (yeast) was sequenced. By 1997, the yeast genome has been completely sequenced
thanks to a huge international effort involving over 600 scientists in Europe, North
America and Japan [12]. With the entire yeast genome sequenced, it is now possible to
estimate the number of genes that have significant human homologs. Evidence suggests
that of all the protein-encoding genes in yeast, around 30% of them have a statistically
significant human homolog [6]. Even with a relatively simple organism such as yeast, 60%
of the genes still have no experimentally determined function [6], indicating that there is
still much work to be done.

A

B

Reaction

E
G

C

Chapter 1 - Introduction

13

Genetic manipulation in yeast is relatively easy and cheap when compared to manipulation
in mammalian systems (when possible), is neither easy, nor cheap. The gestation period for
many mammalian subjects is very long, whereas many generations of yeast can be achieved
in a relatively short period of time. It has been shown that there are over 70 human genes
that complement yeast mutations and this is certain to be an underestimate [42]. With this
in mind, information about human genes can be established by studying their yeast
homologs and at a considerably more cost-effective way.
Yeast is an extremely useful model organism for eukaryotic biology and there is
considerable justification for forging efforts to uncover the functionality of the remaining
60% of yeast genes whose function is still not known. It is commonly believed that many
of the remaining yeast genes may represent the most efficient path to understanding
diseases such as colonic cancer.

1.2 LIMS
It is possible that the existing system (described in 1.4) could form part of a LIMS
(Laboratory Information Management System). The system aims to automate part (or
whole) of the work carried out by scientists, which fits nicely into the ideology of a LIMS.
The following subsection will provide an introduction to LIMSs and give some detail as to
the implementation approaches for LIMSs.
1.2.1 What is a LIMS?
The modern laboratory exists in an environment that produces a large amount of data.
With the advent of new technologies, both the quality and quantity of information is
increasing exponentially. This increase of data can cause significant problems and methods
are needed to manage it. One such method is a LIMS [5].
A LIMS provides a way of automating part of the laboratory system. In a traditional
laboratory 75% of the total cost comes from manpower. Removing the need for some
human interaction can significantly reduce overheads. The primary function of most
laboratories is to provide validated information under some sort of time constraint and
then based on that information, allow customers to make decisions [19]. Nowadays,
traditional record keeping solutions are simply not up to the task. A LIMS can be of great
importance in integrating laboratory operations with the laboratory itself. One of the most
important aims of a LIMS is the integration of many different subprocesses, bringing
together and consolidating the efforts of potentially many individuals and consequently
speeding up the whole process.
LIMSs can save considerable amounts of time and dramatically improve the level of data
access for all stakeholders of any given project. This is where a LIMS can become
extremely beneficial. The sooner the user is notified of a problem, the sooner that problem
can be fixed and the less the solution will cost [19][14][5]. The ideal LIMS should help
provide the documentation to ensure that a laboratory and all of its operations exist in
compliance.
LIMSs have been used for over 20 years and the technology has evolved considerably
during this time. This section aims to provide the reader with a brief introduction to LIMS
and help explain the benefits and problems with LIMS.

Chapter 1 - Introduction

14

1.2.2 Benefits of a LIMS
A LIMS provides benefits for many of the users of a laboratory. However, a LIMS does
represent an expense that must be considered. This expense will almost certainly have to
be justified by a level of higher management. The following is a brief outline of several of
the main benefits identified and realised from current users of LIMSs.i [38]

· Information can be obtained with the click of a button rather than having to dig
through files.

· Years of data can be kept easily without the need for traditional archiving.
· The improvement of business efficiency.
· Improvement of data quality (all the instruments are integrated).
· Automated login, tracking and management.
· Automated customer reports (Turnaround Time, Work Load).
· Automated Integration of Hand-held LIMS devices.
· Automated Quality Control.
· Daily Quality Reports.
· Easily accessible data via the web.

1.2.3 LIMS Selection
It is said that a successful LIMS implementation is closely linked to the selection process.
Selection and implementation of the LIMS is a complex process [20]. It is very important
to select the right product, as this will have a major impact on the success of the LIMS
project. The selection process should be thought of as an official part of the LIMS
implementation process.
There are reasons for not taking a formal selection process for a LIMS. The most
prevalent is that most of the systems today all have about 80% functionality in common.
In considering the ‘Pareto Principle’, it can be shown that it is the remaining 20% of
functionality that is regarded as the most important [20]. For example, the greatest benefit
that a LIMS provides may be in the 20% that is not provided. When selecting a LIMS, it is
important to select one that is the ‘best fit’ for your requirements. There are obvious
problems with selecting ones with less functionality than needed, but at the same time,
there is little worth in selecting a LIMS with superfluous functionality just because it is
available.
LIMS projects require large amounts of time, commitment and money. Making the wrong
choice of selection could result in a failed project. It can therefore be argued that a process
with such bearing on the success of the overall project should have a formal selection
process.
There are many steps involved in the selection process. One of the most important (and
frequently missed) steps in LIMS selection is a method known as WPE (Work Process
Evaluation). WPE is used primarily to define the role of LIMS within the organisation.

i Data taken from a survey paper, in which users had been running LabWare LIMS for at least two years.

Chapter 1 - Introduction

15

Requirements must be clearly specified, concise and well understood. Once these
requirements have been clearly defined, the selection process can enter the ‘Purchase
Process’. This process should include viability studies:

· What is the state of financial health of the company supplying the products? Will
they be around in 2 years when you need to upgrade?

· What are the future plans for the company? Are they planning on shifting business
strategies, rendering your purchase obsolete?

It is important to consider such concerns when selecting a product to ensure that the
companies’ resources are spent wisely.
As customisation is an expensive way of achieving a ‘correct fit’, it is important that a
LIMS match your criteria as far as possible with as little need for customisation as possible.
The final stage of LIMS selection is the Vendor Audit. It is accepted that the customer is
responsible for the system once it has been installed. With this in mind, it is necessary to
check that the system has first been engineered properly. It is a chance for the customer to
verify that the system fully meets the organisation’s criteria and to identify any potential
pitfalls. It also provides a platform for the customer to suggest possible improvements or
modifications and to establish a working environment with the supplier.
1.2.4 Customisation
LIMS can save vast amounts of time and dramatically improve productivity within the
workplace [3]. However, inevitably no two laboratories are going to be the same. Work
practices, management structure, strategy, expectations, human involvement, are all going
to differ. How can a LIMS be produced so as to satisfy this gantry of differing criteria?
The answer is simple. It cannot. The solution is to provide the users with a LIMS, which
they themselves can customise and alter to their own ends. This removes the need for the
LIMS developer to include specific functionality, rather provide the means for LIMS users
to provide their own. As a result, the overall potential functionality for the system is greatly
increased.
One point to note is that customisation does not simply involve passing on a shell of a
working program to a customer. It may involve extensive testing and analysis of the
stakeholder’s requirements. User feedback can help a developer produce a new, more
efficient process, automating as many activities as possible.

1.2.4.1 What can be customised?

The most important need for customisation is the user interface of a system. If a LIMS is
to improve productivity, it must provide an easy-to-use, specifically designed front-end for
its users. The user interface must be intuitive, flexible and robust. There must be specific
screens for various parts of the system and this should reflect the specificity of the
system’s domain. This is no different to many other areas of system design. The average
Microsoft WordÔ user will only ever use 15-20% of the functionality of the application.
The determination of exactly which 15-20% is to be used is the hard part and this is where
the power of customisation can be applied. By allowing the user to determine which parts
they are going to need, avoids the need for a proverbial ‘finger in the air’ guestimate.

Chapter 1 - Introduction

16

Whole screens can be redesigned (possibly from scratch), making them more intuitive and
specific for the individual applications. Unnecessary fields, selections, and choices can be
removed. Important areas can be highlighted. The user can drill-down or drill-up menus to
the desired level of detail. As a consequence, users will not see functions that they do not
need and will not have access to data or functions that are irrelevant to their job. The
largest drain on productivity manifests in the communication of a desire of a user to a
system. Improving the user interface will have the greatest effect on productivity, as it is
the tool that provides the most interaction with the user. The more a system can reduce
the amount of typing, clicking and thinking, the greater the improvement to productivity.
Customisation can occur in terms of the type and functionality of instrumentation that is
to be used. Some instruments may be passive. Others may require user input and require
bi-directional communication to provide feedback. Aspects of the project such as these
can be provided and integrated into the LIMS from the start.
Laboratory systems are primarily concerned with the collection and analysis of data. A
database (RDBMS) seems the most sensible way to manage this plethora of data.
However, it is extremely unlikely that any two unrelated laboratories will have the same
structure of data. Therefore, a level of customisation is needed to give the customer the
freedom to present the data in the most beneficial way for them. This also applies to areas
such as data-entry systems, where a generic form is totally unsuitable.

1.2.4.2 How can you customise?

There are two main ways of providing customisation to a LIMS. The first is to include a
scripting language with the LIMS. LIL (Laboratory Interface Language) from LabManager
is an embedded high-level language with which the user can write their own methods and
routines to automate repetitive tasks [3]. With a language, such as LIL, users can combine
parts of the system, utilising available additional functions supplied with LIL. This
approach is not unique to LabManager. Most LIMS developers provide some sort of
scripting language in order to allow the user to customise, develop, and progress their
laboratory system.
Another means of customizing a LIMS is to provide a packaged customised LIMS to the
customer right from the start. This is usually advantageous for laboratories conducting
research on fairly generic subjects. For example, consider the problem of integrating
molecular genetics analysis capabilities into a LIMS. gtLIMS is a pre-customised LIMS that
specializes in this area [11]. gtLIMS contains the basic building blocks found in a normal
LIMS. However, additional features have been added in order to create gtLIMSii and make
it more specialised to its target domain.

ii A complete description of gtLIMS is not within the scope of this document. Please refer to the
referenced paper.

Chapter 1 - Introduction

17

1.2.5 LIMS Specification
One of the great problems with LIMS selection is the huge variety of vendors from which
to consider services. Many of these vendors offer services and products that are not
compatible with other similar products from the same domain. It is important to invest in
products that are valuable and are not going to become redundant in the future.
To date, a set of standards regarding the development of a LIMS has yet to be produced. It
is possible that this is one of the essential pieces of the puzzle still to be put into place.
Standards allow universal acceptance of a product and also promote a facilitated
development curve. The absence of standards can often put the brakes on a potentially
successful technology. Often, the discussion on appropriate standards can take so long that
the demand for the product has diminished when an agreement is struck. This is true for
network technologies more than any.
Localised standards are emerging such as LECIS (Laboratory Equipment Control Interface
Specification) [23]. This technology is concerned with providing a specification to provide
a robust standard for communicating between equipment from different controllers and
platforms. The problem is that developers are inherently more concerned with improving
their core capabilities rather than their interfaces and engineering standard. This can often
result in poorly designed device interfaces, which can be very inconvenient for
implementers. LECIS aims to define the interactions between the devices and the
controllers in order to achieve some level of operation. The degree of flexibility pushes
LECIS into more of a specification-type category although in 1999, LECIS was balloted
through ASTM and has become standard E1989-98.
Such standards are important so that equipment can interact directly with the controllers, a
standard specified by the industry rather than by the individual user. Specifications such as
LECIS are sorely needed in an industry that contains so much variety and incompatibility.
However, more are needed in order to improve the LIMS development process.
1.2.6 The Development Process
The following section describes some of the tools that are often used in the
implementation of a LIMS. This section is by no means exhaustive but endevours to cover
some of the basic points of development, such as: development languages, XML, ASPs
and web services.

1.2.6.1 Development Languages for LIMS

One of the most important aspects to consider when developing a LIMS is the database
technology to be used. The database technologies have not significantly changed over the
past few years, so it is reasonable to suggest that the ones around today will be around
tomorrow. Most LIMS support relational SQL (Structured Query Language) databases
such as Oracle, whilst the newer systems are expanding into the object-oriented
technology. This has been supported by the object alternative to SQL, namely OQL
(Object Query Language, surprisingly).

Chapter 1 - Introduction

18

The hugely popular object-oriented programming languages Java and C++ have reinforced
this object-oriented approach. While most vendors develop their LIMS on the Windows
platform, those who have employed a multi-platform approach have done so largely
influenced by Java’s JVM (Java Virtual Machine) [29]. This allows the same source code to
be used on many different platforms, by providing a platform-specific runtime
environment for the code rather than the code itself being platform-specific.
Selecting the right language to implement the LIMS is a difficult process. Many aspects
must be considered; functionality, readability, portability, maintainability, support, tools,
etc [29]. Currently, Java is one of the most flexible and widespread programming languages
available. As well as providing platform-independent software development, Java enjoys a
plethora of support, including distributed computing, networking, and enterprise
technology. Standard and non-standard APIs and other support tools are emerging all the
time, making Java an extremely strong contender.

1.2.6.2 XML in a LIMS

XML (eXtensible Markup Language) provides a flexible way of creating a common data
format to facilitate the sharing and distribution of information on-line. XML provides a
means for obtaining and supplying information about things in a standard way. For
example, authors can allow browsers to present information inline with the user’s
requirements, rather than a standard HTML page. Compared to traditional closely coupled
interface methods, XML-based systems can be loosely coupled, which are more
maintainable and less expensive [8].
XML fits in nicely with the idea of distributed computing with the use of peer-to-peer
message passing [27][29]. In such a system, there are no slave-master relationships, rather
each individual system creates, responds to and deals with its own packages. This has two
main benefits. Firstly, the peer-to-peer architecture helps to keep the network protocol as
generic as possible – systems can learn where neighbours are, rather than having an explicit
hierarchical structure. Secondly, a peer-to-peer messaging system will survive if one
machine fails. Each system will simply re-route the packages via an alternative route.
The appeal of the XML interface is its ease of development, maintainability and potential
for reuse. The XML interface can aid a LIMS in situations such as job and sample
submission, LIMS data archiving and the integration of two LIMS in different labs. It is
this transfer to and from different laboratories in which XML provides the biggest
benefits. Transferring the data in a secure and recognisable format constitutes one of the
largest challenges for a current lab. There are often isolated areas of a typical laboratory,
each of which must be successfully integrated to exploit fully the laboratory’s total
potential [17]. This problem is further exacerbated due to there being so many different
vendors, offering products that lack the standards for exchanging information between
them.
With XML, systems can pass tagged data to each other without having to know how the
other system is organised. The system can be expanded, trimmed, or reused without any
further need to provide additional or differing functionality.
For example, in a LIMS, each XML file could represent one job. Users can customise this
file with their own job descriptions as well as including static data structures (lists, etc.).

Chapter 1 - Introduction

19

Consider the development of an ELN (Electronic Laboratory Notebook). The ELN must
be able to liaise with the other components of the laboratory, one component being the
LIMS. Within the ELN, the user submits experiments to be analysed by the LIMS and
then the results are required back at the ELN. In such a situation, XML capabilities can
simply be added to both the ELN and the LIMS, providing a successful means of
communication between the two.
ASPs and Web Services are closely linked to one another and are as much a part of the
development process as the selection process. It may be important to select vendors that
have provided means for ASP integration. Conversely, it may become a development issue
as whether and where ASPs and web services are used within the LIMS.

1.2.6.3 ASP for a LIMS

Of all the ‘buzzwords’ in use today, ASP (Application Service Provider) is one of the
largest and most promising. It was predicted that ASPs would revolutionise the face of the
industry, changing how systems are implemented and managed. However in spite of this,
ASP has failed to produce more than a few decent examples of its use [18]. Hugely
optimistic forecasts were made about the future ASP market but with the end of the dot-
com boom, it now seems that these are unattainable in light of the industries’ self-mistrust.
The other problem with ASP is that there is a general lack of clarity and understanding in
what is actually offered. In spite of this, there are indications that ASP will have a
successful future.
Over the past 7 years, science-based organisations have been looking to outsource their IT
operations in order to achieve a business focus on their core competencies. This does raise
the question of security. In particular, pharmaceutical companies are reluctant to employ
third parties to manage their systems as regulatory and security issues are paramount.
ASP provides a way of using software applications without the need to buy expensive
licenses, machines, and support. Functionality of the applications is rented out to the
organisation, possibly on a pro rata basis. System maintenance, backup, and recovery are
all provided for by the supplier as the source program normally resides with them rather
than with the customers. All the functionality of the application is held somewhere else
and the customers are only shown a front-end. A lot of money can be saved in various
areas such as implementation, installation, upgrading, maintenance, security and support.
In modern day businesses, up to 80% of the total cost of system will come from these
types of costs, greatly outweighing the initial expense of the actual hardware and software.
One of the drawbacks with ASPs is that it requires a totally radical new way of strategising
an organisation’s attitude to software purchasing. There is no slow, baby-stepping into an
ASP scenario. It must be done all at once with no middle ground. This requires some
degree of faith, which can be lacking when there is so much at stake. One huge concern
within the LIMS domain (as well as any other security-conscious organisation) is that data
is held off-site by a third party. This can raise considerable security issues as well as legality
concerns in some cases as information must be passed back and forth continuously.
However, confidence in the security of the Internet and the communication abilities of the
Internet is growing all the time and rightly so.

Chapter 1 - Introduction

20

There are considerable advantages in considering ASPs. In the IT sector today, there exists
more competent competition than ever before. The pressure to develop quality products
in the shortest time possible is an extremely prevalent occurrence [18]. ASPs can
significantly reduce the time taken to achieve an operational status. Installation,
configuration and implementation can all be completed at a greatly increased rate, reducing
the time needed to prepare the equipment for development. ASPs should be thought of
favourably, especially with regards to tightly scheduled projects. There is no need to spend
time choosing and purchasing hardware and software systems. With ASPs, the experience
is already there. There is constant available support providing instant resolvement. The
other benefit of using an ASP is the assurance that it provides. The total risk taken by the
customer is reduced when compared to that of purchasing a whole new system. Many
suppliers will have an insurance clause, indicating their responsibility for any loss incurred
due to a failure in their system.
ASPs can work within the LIMS environment but first, a solid, reliable service must be
offered, providing peace of mind to customers. Once this is achieved, ASPs could
represent a considerable step forward for LIMS.

1.2.6.4 Web Services

A web service is effectively an application or application logic that can be accessed through
the Internet. Companies pay rent in return for the use of services held on a third party’s
web-server. By using the standard Internet protocols (HTML and XML amongst others),
the web application can pass and receive messages from the user. The ASP (Application
Service Provider) may have many customers using the same web service and so the web
applications are written with strict specifications in order to allow different users access to
similar business methods. Companies can add value and functionality to their services as
and when the customers require it [17].
Laboratories can have many different data management tools and needs. These may
include LIMSs and ELNs, measuring and analysis machinery, as well as the more logistic
areas such as human resources, time planning, and accounting. The vast majority of these
tools can either benefit by using or beneficially become a web service. Web technologies
such as XML and SOAP (Simple Object Access Protocoliii) and the current omnipresence
of the Internet have made this kind out application outsourcing technically possible, but
there are various hurdles to overcome before a complete success can be made through
web servicing [9].
One major issue is trust. The leap of allowing an organisation’s sensitive data to be held
off-site is a very large one. It is very difficult to place the destiny and future of your
business in anyone’s hands other than your own [9]. An organisation must be confident
that the system will not go down, that it will be secure and safe. In some cases, the option
of web services will not be a viable one, due to the nature of the data or the level of
importance of the operation. At the moment, safety-critical applications are not suitable
for outsourcing given the level of importance, but there are many organisations operating
in a non-safety-critical environment that would consider their operations as important. So,
are web services suitable for them?

iii A protocol defining how XML represents data.

Chapter 1 - Introduction

21

As always, it is necessary to weigh the advantages against the potential hazards. It is
reasonable to assume that the supplier will have more specific knowledge and therefore be
more proficient at handling the same service than the client. It is the shifting of
responsibility that unnerves many customers.
1.2.7 A Look to the Future
Although LIMS can be shown to be advantageous to the running of a modern laboratory,
there are many problems and issues that must be addressed in order to ensure a successful
project. Almost all laboratories could benefit from a LIMS but for many such a system is
prohibitively expensive. A LIMS’s implementation requires a colossal amount of time,
effort and money. The failing of a LIMS project is an all too often occurrence and results
in a great waste of resources, probably including a ‘forced career move’ of several of the
responsible parties. Therefore, it is important to get it right and first time round. Both the
expense involved and the high possibility of failure can deter the more modest
organisations from attempting a LIMS implementation. Even for the more lucrative
companies, of which there are many in the pharmaceutical industry, a LIMS
implementation cannot be without hindrances. The shear scope of vendor variety can
make the important LIMS selection process complex and confusing. The degree of
difference between vendors is largely the result of the lack of specifications for building a
LIMS and this often leads to serious compatibility problems. For the LIMS technology to
progress in a beneficial and well-engineered way, these problems must be addressed.
One step forward could come from the introduction of a standardised way of
implementing a LIMS. Standards must be unambiguous, clear and concise. They provide
an encapsulation of the most appropriate way of performing a process in order to avoid
repetition of previous mistakes. Standards provide a clear way of performing a process.
They also allow one person to carry on with another’s work, as all the work should be
standardised. Specifications and standards can be used to guide a project owner through a
successful LIMS implementation. By introducing standards and specifications, vendors will
be forced to provide compatible components. In turn, this will help drive the price of
LIMSs down for the consumer, increasing competition amongst the LIMS providers. It
will become easier to weigh up the differences between different vendors and give the
customers the ability to ‘pick and choose’ rather than being limited to only one company’s
products. By providing a standardised process that will actually result in a successful LIMS
implementation, the possibility of failure will be reduced (not eliminated). This will open
the door for the more meagre companies that could not before consider a LIMS. Now that
the risk of failure is lower, a LIMS can be seen as a more solid investment.
There is a difficulty arising from attempting to standardise the LIMS development process.
Laboratories are largely centred on experimentation. By definition, experiments are original
and novel. This makes it very hard to define standards for them. How do you define a
standard for something that can be so varied? It is said that it is this variety of laboratory
function that has so far hindered the standardising of processes in the laboratory.
However, if the experimentation process is treated more like a process, rather than
attempting to consider all possible experiments, then a more accessible ideology of a
laboratory can be achieved. For example, an experiment can be thought of as having some
basic componentsiv: Analysis, Planning, Implementation, Observation, Validation and

iv These are only the very basic ideas of an experiment. Obviously, some experiments will have differing
components.

Chapter 1 - Introduction

22

Conclusion. When considered in this way, it seems plausible to construct some kind of
standardised process, at the very least fitting around the experiment process.
Typically, standards take a very long time to be produced. This length of time is rightly
needed so as to get the standards absolutely correct. However, with an industry that is
changing so quickly, standards can often appear too late and consequently, are useless.
Generally, standards do not work well with industries and technologies that are changing at
a very quick pace.
Good software engineers are inherently lazy and try at all costs to refrain from being
innovative. Innovation takes time and is pointless when a solution already exists. Patterns
are a tool used by developers to avoid having to re-invent certain solutions. A thorough set
of patterns, for use with a LIMS, could significantly increase productivity, speed up
implementation, and help reduce the amount of innovation required when developing a
LIMS.
1.2.8 Conclusion
Implementing a LIMS is an extremely expensive process, one that must be improved
considerably if it is to become more widely available. There exist many technologies of
which to take advantage, some of which are described here in this paper. However, there
are very prominent risks involved in the implementation of a LIMS. A high failure rate can
deter many laboratories from attempting such a project. There are various ways to reduce
this risk of failure but none of the afore-mentioned processes provide a total, ideal
solution. The guidelines for successfully implementing a LIMS are useful but are by no
means complete. What may work for one business may be totally unsuitable for another.
The process of experimentation is so varied that any form of automation seems optimistic.
However, a LIMS can work, they have been shown to work and they have been shown to
be very profitable when employed correctly. It is necessary that, before committing to any
particular LIMS, the consumer sits down and reads all the facts. They should be aware of
all the possible pitfalls and how to avoid them. A LIMS is a subject that, if tackled
correctly, can yield astonishing results.

Chapter 1 - Introduction

23

1.3 The Existing System
1.3.1 Overview

Figure 2 – An Overview of the Existing System

Chapter 1 - Introduction

24

1.3.2 Structure
The complete system is comprised of three smaller systems; ASE-Progol, TCL compiler
and the Biomek Workstation. The diagram above shows the limits of each of the three
subsystems. The following section will discuss the ASE-Progol and Biomek Workstation
subsystems and also an analysis of the TCL compiler, upon which this project is based.

1.3.3 Function
The purpose of the system is to develop a framework for automatic experimentation,
involving machine learning for the generation of trials and robotics for the execution of
the trials to establish accurate hypotheses [13]. This framework is to be used in functional
genomics to discover the function of genes [13][2]. Currently, the system is being used to
establish metabolic pathways in the amino acid pathway of yeast (Saccharomyces cervisiae).

Chapter 1 - Introduction

25

1.3.4 ASE-Progol
ASE-Progol (Active Selection of Experiments with Progol) is an active learning system,
using ILP (Inductive Logic Programming) in order to construct hypotheses. ASE-Progol
selects trials to eliminate the hypotheses and then composes the experiments to be
executed by the robot. Below is a diagrammatic algorithm of the processes employed
during the ASE-Progol system.

Figure 3 – The Program Loop for ASE-Progol

Machine learning systems that produce intelligible results are being increasingly
implemented in both scientific and business industries. Such systems are typically open loop
systems, in which there is no direct link between the machine learning system and the data
collection. A closed loop machine learning system is one that not only selects the trials, but
also is responsible for carrying out the trials in the specified domain.
ASE-Progol is an attempt to partially automate some of the aspects of scientific including;
the forming of hypotheses, the creation of trials to discriminate between competing
hypotheses, the execution of these trials and the analysis of the trials to establish a
validated hypothesis. ASE-Progol was developed with the long-term goal to use the
framework in functional genomics to discover the function of genes [35][7].

Select Next
Experiment

Produce set of
Viable Next
Experiments

Generate
Hypotheses

Interpret
Results

Execute
Experiment +
Read Results

Create
Experiment

Start

Finish

Generate First
Experiment

send to
robot

produce
examples

get from
robot

finish if no
experiments
left or max
loop reached

Chapter 1 - Introduction

26

ASE-Progol has been used to discover how genes participate in the aromatic amino acid
pathway of yeast. The cost of chemicals consumed during this process was shown to be
five times less using ASE-Progol, when compared to a random strategy. Although ASE-
Progol results in an increased cost when compared to a naïve strategyv, both the naïve and
random strategies took significantly longer to reach a final hypothesis [39].
According to [35], there are several distinct phases in ASE-Progol.

· Hypothesis Generation. ASE-Progol uses Progol 5.0 to generate hypotheses
from observed results and background. The system introduces the examples, one
at a time over each iteration and then uses “Theory Completion using Inverse
Entailment” [21] for formulation of the hypotheses.

· Trial Generation. The first trial that is chosen is the cheapest trial. In the
following iterations of the program loop, the trial generator removes any duplicate
trials (or trials that have already been performed). The result is a set of no more
than 20 trials, which are passed to the classifier.

· Classifier. The classifier determines whether the order of each trial is consistent
with each hypothesis. ASE-Progol uses the Progol Interpreter inside Progol 5.0 to
construct a binary matrix specifying the consistency with the hypotheses. From
[35], the binary matrix is one in which entry ij is 1 is the outcome of the trial i is
logically consistent with the hypothesis j and 0 otherwise.

· Trial Selection. Given the binary matrix, the trial selector computes the expected
cost of experimentation for each candidate trialvi. The next trial to be performed by
the robot will be the trial that minimises the expected cost of the experimentation.

· Termination. The loop will terminate if any one of the following conditions is
met.

1. all possible trials have been tried,
2. the experimental resources have been exhausted,
3. the number of trials exceeds a limit specified by the user.

v A naïve strategy will always choose the cheapest trial from a set of candidate trials.
vi expected cost will consist of the chemicals needed for the experiment.

Chapter 1 - Introduction

27

1.3.5 Biomek Workstation
Information documented here in relation to the Biomek Workstation has been obtained
from [4].
Bioworks methods are used to control the action of the Biomek workstation. These
methods contain details of the tools to be used, the specified actions to be performed and
the sequence in which to perform them. Below is a diagram to represent the rough flow of
data between the operations. From the diagram, it can be seen how the data ‘filters’ up the
system.

Figure 4 - An illustration of the filtering of information through the Biomek system

Motors
XYZT

Variables/
Resources

Firmware

Libraries TCL Commands

User Scripts

BioScript Pro

Bioworks Methods

Initial Configuration Procedural Steps

Chapter 1 - Introduction

28

The initial configuration specifies which tools, lab accessories, and other lab ware is
needed for the following experiment. This is an important and necessary step to take. The
initial configuration must be set at the beginning of the experiment. Once the experiment
has started, it is impossible to add new tools or devices without halting the software
completely. It is up to the user to ensure that the setup of the physical machine matches
that described in the initial configuration.
Once the initial configuration has been uploaded and checked, then the Biomek starts to
perform the functions as set out in the methods. These could include many different types
of operations including pipetting liquid from one plate to another or filling plates from
another container, or gripping or shaking a substance. The Biomek can only function
correctly if the exact dimensions of all the lab equipment are known. However, once this
has been achieved, then the user can use higher-level commands to control the Biomek.
For example, instead of stipulating exact movement directions in terms of X, Y, Z and T,
to access a certain well in a certain plate, the user can simply enter the row and column
values of the well that is to be manipulated.

1.3.5.1 Biomek Sensing and Control

1.3.5.1.1 Head Sensing

The system contains sensing on the head in order to maintain control over the
manipulation of the lab ware. The system can check the tool type when it picks something
up. If the wrong tool is picked up or the intended tool is missing, then an exception is
thrown and the Biomek is suspended, waiting for further action from the user.
The Biomek system contains information about the type of tip that is currently being used.
Once the system has hold of a tip, either it can put the tip back or it can dispose of it. A
tip can be in one of three states, according to the system; clean and empty, dirty and filled,
and dirty and empty. If the state of the tip was clean, then the tip can be put back.
However, if the state of the tip is dirty, the tip must either be used (if it is full) or it must
be deposited. The head can sense whether a tip is missing and it can also detect whether a
tip is blocked.
The robot that is being used is a Beckman Coulter 2000 Workstation, primarily a liquid-
handling workstationvii. The reader is a Wallac Victor 2 plate readerviii.
“ The reader’s counting modes cover all the main nonradioactive counting technologies,
including fluorometry, TR-fluorometry, luminometry and photometry. It also has shaking
and temperature control features. The server is running an IBM PC running Windows NT
v3.2. It hosts the robot and reader’s software and is connected to the local network and
the Internet.” [24]

vii See www.beckman.com for details
viii See www.lifesciences.perkinelmer.com for details

http://www.beckman.com
http://www.lifesciences.perkinelmer.com

Chapter 1 - Introduction

29

1.3.5.1.2 Work Surface Locations

Figure 5 - An illustration of the workspaces of the Biomek system

The work surface used by the Biomek workstation is split up into 12 locations as shown in
the diagram above. These locations may hold many different things including;

· Tools
· Labware
· Tip racks
· Other devices, such as VICTOR (optical density reader)

It is imperative that the system has the details of these locations. This usually occurs in the
form of a configuration file passed to the robot (at the same time as the job files, or
immediately before) to document the explicit locations of all the experiment materials.
However, there are some restrictions. For example, the location A1 is always reserved for
the Optical density reader. These twelve locations are the system’s work domain and as
such, must be fully accounted. Any piece of lab ware being held at any of the locations
may have a label, which the system keeps track of. The system will know where the next
clean tip is in a location occupied by a tip rack. Labware and racks can be moved
automatically by the system from one location to another, but all labels, marks and unused
tip markers will move with them.

1.3.5.1.3 Motion Control

This is monitored by the system with the use of a motion control status flag. When this
flag is set to TRUE, then everything is considered to be fine. When this flag becomes set
to FALSE, exceptions are thrown and the system begins to fail. There are several reasons
why this flag may fail and a few are covered here.
The system monitors its X Y position from the encoding strips along these axes. As well as
this, the system also keeps its ‘presumed machine position’ and ‘related motor position’.
The system can tell if there have been motion inaccuracies (or stalls) if the measurements
from the encoding strips differ to that of the presumed machine position. Obviously, there
will always be some difference. The machine’s motion will never be 100% accurate, so a
minimum is established, a set measurement that gives the calculation scope for error. The
control status flag will only fail if the measurements from the encoding strips differ to the
presumed machine position by this predefined minimum.

A

B

1 2 3 4 5 6

Chapter 1 - Introduction

30

The system can detect a stall in the Z and T directions by taking measurements of the
machine when it is in the home position. After a motion, the system will check its
positions using the aforementioned methods (as well as some others) and then try and
recalibrate itself by amending the differences.
Positioning, speed, acceleration, jerk, grip force can all be controlled and monitored by the
system. The system can also detect a collision. Sometimes, there needs to be a collision
(for example, when picking something up).

1.3.5.1.4 Method Loop

This involves keeping track of the position within the current method and also keeping
track of the method loop exit conditions to see if they are fulfilled. For example, the
system needs to know whether it has timed out. This would invoke the system to break out
of the loop at the ‘next available exit’. The system can break out of the method loop
immediately when it tries to pick up ‘Next’ piece of lab ware, but it discovers it to be of the
wrong type or missing.

1.3.5.1.5 Others

Liquid levels can be measured. The wash tool has its own states. The gripper has sensors
detecting whether a good grip has been achieved. Much of the internals of the Biomek
system are handled within the system itself and not known by the rest of the system. For
example, a blocked tip will be handled internally. I.e., a clean tip will be obtained, and
operation will continue. This and other experimentation exceptions will be handled within
the Biomek system.

Chapter 1 - Introduction

31

1.3.5.2 Workstation Coordinate System

The 3 coordinates used for specifying the movement of the tool head of the Biomek
workstation are X, Y, and Z. These can be defined as;

Figure 6 - An illustration of the Workstation coordinate system

The diagram above can be thought of as being viewed from the front, facing the
workstation. The workstation uses a process called Z-Conversion. The system needs to be
aware of where the bottom of the tool head is. This value may change depending on the
type of tool attached to the head. Naturally, there are limits for the motors. If the user tries
to send the motors to coordinates that it cannot physically go to, the system will stop and
abort, returning a error message.

1.3.5.3 The T Coordinate

The T motor, in conjunction with the Z motor, is used to transfer liquids via the pipetting
tool. The Z motor controls the up/down movement of the tool head. The T motor
controls the amount of liquid that is to be taken up in the pipette. The T motor (along
with the Z motor) is principally used in the process of liquid transfers.

1.3.5.4 Liquid Transfers

The Biomek uses the Z and T motors to aspirate and dispense liquid with the pipetting
tool. As will be made clear later in the report, liquid transfers form the backbone of the job
files that will be passed to the Biomek robot. The Z motor (up/down movement) moves
the tool into and out of the liquid, whilst the T motor controls the plunger responsible for
aspirating and dispensing the liquid.
There are four main types of variable that affect the process of liquid pipetting delivery.
These are:

x

y

z

Chapter 1 - Introduction

32

· Prewet – the amount of excess liquid moved into and out of a pipette before
pipetting the correct volume, by means of wetting the tip.

· Blowout – the amount of excess air that is blown out of a tip, to ensure all the
liquid has been dispensed.

· Deliver – the amount of excess liquid that will be pipetted in order to transfer the
desired volume.

· Bias – an amount in order to compensate for the plunger (T motor) inaccuracies.
Please refer to [31] for details of a single liquid transfer.

Chapter 1 - Introduction

33

1.3.6 The TCL Compiler
The TCL compiler is responsible for translating the experiment instructions (supplied
from ASE-Progol) to BioScript job files that can be used by the Biomek Workstation to
execute the experiments. A version of the TCL compiler already exists and an analysis and
can be found in the appendix [31]. Below is a diagram of the requirements of the TCL
compiler, taken from [30].

Figure 7 – Requirements for the TCL Job Compiler

Please refer to [32] for a specification of the redesigned TCL compiler.

1.3.6.1 A Note on TCL

TCL stands for Tool Command Language and is pronounced ‘tickle’. Tcl can be thought
of as both a language and a library. Tcl is a simple textual language with simple commands,
which can ideally used for issuing commands to interactive programs such as text editors,
debuggers, illustrators, and shells [40]. It has simple procedures and is programmable. This
means that it can be used to program command procedures that can be more powerful
than the standard ones.
Tcl was built with the idea that it would be used as part of a larger system, which in turn
would potentially be using a set of other languages. Tcl is ideally used as a scripting
language, tying together other parts of the system. Tcl can be used as a library embedded
within another application, containing routines and procedures that allow the user to enter
built-in Tcl commands to be used from within the application.
“Tcl was designed to make it easy to drop into a lower language when you come across
tasks that make more sense at a lower level. In this way, the basic core functionality can
remain small and one need only bring along pieces that one particular wants or needs.”
[40]

Expt.txt

RsConfig.txt

Substances.txt

Surface.txt

TCL
Job

Compiler

Job0.txt
.
.
.
JobN.txtLOG

Chapter 1 - Introduction

34

1.4 Reengineering and Refactoring
1.4.1 Reengineering

“Reengineering is any activity that;
A) Improves one’s understanding of Software.

or
B) Prepares or improves the software itself, usually for increased

i. Maintainability
ii. Evolvability
iii. Reusability” [1]

Chapter 1 - Introduction

35

1.4.1.1 Why should we reengineer?

There are several reasons why it is useful to reengineer.
(i) Maintenance – For the majority of software applications, it becomes

necessary to add or upgrade software. It is also highly likely that bugs will have
developed within the code, no matter how vigorous the design and testing
strategies. Upgrading a piece becomes increasingly difficult as the structure of
the system decreasesix. Reengineering a system can have serious benefits when
it comes to maintenance as it strives to do that very thing. I.e., to make tasks
such as maintenance easier.

(ii) Documentation – both inside and outside the system. This is an important
topic and is often neglected. The reengineering of a system, by its nature, can
improve the documentation of a system without actually adding any
documentation. If the structure of the system is a good one, with clearly setout,
well-defined classes and methods, there becomes less need for explicit
documentation. Frequent reengineering of a system can also ensure that
documentation is kept up to date. Documentation is rarely altered in the case
of debugging, or upgrading.

(iii) Reuse – When reengineering a system it is often the case that much of the
current system can be reused as part of the new system. It follows that, after a
project has been reengineered, parts should become more portable and
versatile, improving the chance that components of the reengineered system
can be reused elsewhere.

(iv) Integration – Reengineering can help systems evolve by allowing designers to
employ new techniques, which would not have ordinarily have been
implemented, within the system. It improves and elongates the thought process
of a system, allowing it to become the most well-engineered, evolved, up-to-
date system that it can possibly be.

1.4.1.2 How can we reengineer?

There are many reengineering strategies that can be used for any given system. These
include Static/Dynamic Extraction (Presentation), Reverse Engineering,
Redocumentation, Comprehension, Restructuring, and Refactoring. Two will briefly be
described below.

ix Please note that this is not always the case, in particular for very small applications. The statement is
meant in a general way in order to convey a widely acknowledged opinion.

Chapter 1 - Introduction

36

1.4.1.2.1 Extraction/Presentation

This is the breaking down of the system, analysing the different parts of the system and
then the reformation of the system with an improved and significantly simpler system. The
diagram below can illustrate this process.

Figure 8 - An illustration of the Extraction/Presentation process

This type of approach seems useful when considering the job of reengineering the TCL
compiler. One of the main problems with the existing system is the complexity of the
system and the convoluted system structure. It would be extremely useful, and indeed
fortunate, if the reengineering of the TCL compiler followed the same behaviour as the
model system in the diagram above.

Old System Old Sub-Systems
“Extraction”

Software
Repository

Reengineered
Sub-Systems
“Presentation”

Reengineered
System

Analysis

Visualisation

Chapter 1 - Introduction

37

1.4.1.2.2 Reverse Engineering

Reverse engineering is used in order to establish how a specific part of a system works. It
works by reversing the stream of 0’s and 1’s of the executable file and using a decompiling
tool to transform the stream into the original code. This works with only a varying degree
of success. Sometimes, the code produced can be unintelligible and of totally no use.
Other times, it can unlock valuable algorithms to the onlooker.
Reverse engineering is not just employed in the Software engineering world. In the
automobile industry, the same process is used. A manufacturer may purchase a
competitor’s car and take it apart, piece by piece, in order to see how it works.
Reverse engineering can be a useful tool when attempting to reengineer a system, the code
of which is not available. However, as this is not the case with the TCL compiler, reverse
engineering would be of little use.

1.4.2 Refactoring
Refactoring is concerned with the improvement of existing code. It consists of a collection
of techniques to improve the structural integrity and performance of existing software.
Using code refactoring, badly designed code can be reworked into a well-designed, robust
piece of code [43].
However, refactoring can be dangerous. There is always a danger when altering already-
working code that the newly ‘improved’ code may not work. By changing functional code,
the developer can introduce bugs into the system. If refactoring is not conducted in a
proper fashion, it can significantly reduce the productivity of the system. It is important
that refactoring is done properly and systematically, otherwise the code can take on a
‘hacked’ quality [43]. Like every other area of software engineering, a degree of discipline is
needed.
Refactoring does not alter the functionality of a system, rather it attempts to improve the
internal structure. If done properly, refactoring can improve many aspects of the code as
well as reducing the number of bugs. So, why is refactoring needed?
Systems are essentially designed and then written. Over time, they are altered, updated and
improved. The code transforms from being a closely-knit well-designed well-engineered
architecture, linked closely to the initial design, to becoming hacked. Changes are made to
the system and concern to the overall integrity of the architecture is generally not given.
Refactoring helps to reverse this trend by attempting to improve the design of code (which
has been hacked) with the use of specific refactoring methods [43]. It is important to apply
these methods in a systematic way. If not, they can cause even more confusion.

Chapter 2 - Market Analysis

38

hapter

2 Market Analysis

Chapter 2 - Market Analysis

39

2.1 Problem Definition
The aim of this project is to provide an intermediary system that will “translate” the
experiment details from ASE-Progol into machine instructions that can be read by the
Biomek Workstation in order to correctly perform the experiments. A typical batch of
experiments will result in the production of around 30,000 lines of robot instructions, so it
can be seen that an automated system for this process is needed. However, there already
exists a working version of the TCL Job Compiler. So, what is the point of building a new
one? There are several reasons for this and these shall be explained here.
A brief analysis of the current TCL Job Compiler can be found in [31]. Although this
analysis is not complete, it is clear that understanding the current version of the TCL Job
Compiler is no easy task. Moreover, the analysis of the current version has proved
extremely difficult and, as a result, the analysis remains incomplete. Upon examination of
the code for the current TCL Job Compiler, it is obvious that an adequate analysis would
take a great deal of time. Regrettably, that time has not been available, but even if it were, it
would be debatable as to whether a more in-depth analysis would have been useful. The
system is complicated, convoluted, and very poorly documented. There are no documents
describing the processes within the TCL Job Compiler, nor many useful comments
informing the reader of reasons to pieces of seemingly redundant code.
Furthermore, the original creator of the system has long since left. Ken Whelan has been
responsible for maintaining the system, but admits to having only partial knowledge of the
system. These consist of the parts he has been asked to maintain and this, in turn,
demonstrates the lack of readability within the current system. As mentioned previously,
there are no documents, formal or otherwise, supporting the current system.
The new system will be a working reengineered version of the current system. It will
exhibit a degree of inheritance, abstraction and polymorphism in order to increase the
portability, versatility and maintainability of the system. There will be a set of formal
documents that will accompany this report and can be found in Appendix A. It is hoped
that these documents will aid future revisions of the code and thus improving the
portability, versatility and maintainability of the system.

2.2 Approach
This market analysis will concentrate on the application of the system in the realm of the
pharmaceutical industry, in particular the application in LIMSs (Laboratory Information
Management System), rather than the market area of compiler creation.

2.3 Market Area
The pharmaceutical industry is one of the most lucrative and fast growing industries today.
The following graphs from [16] indicate the impact of the pharmaceutical industry.

Chapter 2 - Market Analysis

40

The following graph shows the percentage of the nation’s GDP (Gross Domestic Product)
spent on medicines, during 2000. Note that this figure includes prescription and hospital
medicines. Courtesy of [16].

Figure 9 – Pharmaceuticals as a percentage of GDP

The following graph illustrates the average expenditure on medicine per person in 2000.
Note that these figures include prescription and hospital medicines. Courtesy of [16].

Figure 10 – Average expenditure on pharmaceuticals per year per capita

From the above graph, one can easily estimate that in the UK alone, the pharmaceutical
revenue will be approximately £8 billionx. The obvious economic aspects hardly need to be
explained. Pharmaceuticals represent one of the UK’s leading manufacturing sectors. In
2001 alone, the pharmaceutical industry brought in a trade surplus of £2.9 billion, with
pharmaceutical exports at £9.25 billion – more than £150,000 per employee [36]. Yet, the
UK is still some way behind in comparison with our European neighbours. In spite of

x Approx. 58 million inhabitants – 58mil x £137 £8 billion.

Chapter 2 - Market Analysis

41

having two of the largest and most successful pharmaceutical companies in the world,
evidence has shown that doctors in the UK are still reluctant to prescribe new medicines.
In fact, physicians in neighbouring countries are far more likely to prescribe medicines that
have emerged into the market over the past five years [36].
Not only is the pharmaceutical industry large but importantly, it is also profitable. Below is
a list of the top ten industries, indexed by their profit as a percentage of revenue (results
from 2000).
1. PHARMACEUTICALS 18.6
2. COMMERCIAL BANKS 15.8
3. COMPUTER PERIPHERALS 12.1
4. TELECOMMUNICATIONS 11.7
5. BEVERAGES 11.0
6. SCIENTIFIC, PHOTO, CONTROL EQUIP. 10.6
7. PUBLISHING, PRINTING 10.5
8. DIVERSIFIED FINANCIALS 10.1
9. COMPUTER AND DATA SERVICES 9.2
10. SECURITIES 8.5
The recent profitability of the pharmaceutical industry has been extremely encouraging.
For example, the largest American drug company, Merck, had profits of $6.8 billion in
2000, which was more than the profits of all the Fortune 500 companies in the airline,
entertainment, food production, metals and hospitality industries combined.

2.4 Existing (Adaptable) Packages
At present, there are no known ‘off-the-shelf’ items of software (COTS) that could
perform the functions that are proposed here. The main reason for this is that as the
system is highly specialised, it would be unprofitable to produce and market commercial
packaged software for this purpose. There are software houses as well as bioscience
institutes, specialising in automated laboratory systems. If such a company were contracted
to perform this task, it would be at great expense.

2.5 Benefits of Developing a Bespoke System
One of the main advantages to using a bespoke system for the TCL Job Compiler is that
there are no additional overheads of having to learn and interact with another system. The
problem with using commercial system is that there are often redundant parts that are not
needed for our system and time would be needed to remove them. Individual add-ons can
be incorporated in the system at the request of the client, a process that is not available
with packaged software. Users should find this software more usable as it only contains
facilities useful for them (the average Word user will only use 10-15% of the available
facilities). One extremely influential reason for using bespoke software is cost. Not only is
the cost of development and integration much less (in this case only), the department will
also be able to maintain and develop its own systems, rather than having upgrade or even
re-purchase software at additional expense.

Chapter 2 - Market Analysis

42

2.6 Risks
As with all projects, there are risks. However, the economic risks associated with this
project are very low. As a working version of the system that is to be revised already exists,
only the time and labour can be lost. If the project was to be completed and the
reengineered system was found to be inferior to the original version, then it would simply
not be used. Obviously, this is an undesirable scenario, but if it were to occur, there would
be no financial or heuristic loss regarding the operation of the whole project.
There is a danger that an improperly implemented TCL Job Compiler may allow the robot
to damage itself using potentially harmful substances. For instance, there is nothing
physically stopping the robot from pouring substances on to itself, the analyser, or anyone
who may be nearby. These kinds of scenarios have to be identified and dealt with within
the project requirements and constraints. However, there is still the possibility that an
accident may occur and this can be considered as a possible risk.
There are also the inherent risks of the industry. The technology industry moves at an
ever-increasing speed, pulling many other industries, including the pharmaceutical industry,
along with it. There is a danger that a system engineered now may soon become out of
date. This has partly been accounted for with the selection of Java as the development
language. Java is a relatively new language, but has proved itself repeatedly in the object-
oriented circuit. It has the benefit of its “write once, run anywhere” strategy, which has
helped it achieve object-oriented supremacy among a range of development platforms.
There is also the danger of redundancy of the surrounding systems. The TCL Job
Compiler has been designed to run with the ASE-Progol and Biomek systems. If these
systems were to become redundant, this would have an effect on the worth of the TCL
Job Compiler. The system would have to be redesigned to accommodate the surrounding
redundancy.
There is also a danger that if the system is not completed to its fullest extent, then it may
be unused, even though it may itself not have become redundant. This might occur due to
there being no one to complete and integrate the new TCL Job Compiler into the rest of
the system.

2.7 Possibilities for Expansion
The system has several possible areas for expansion. Firstly, the system itself will
doubtlessly welcome the opportunity for some stream lining (and possibly some
debugging). The whole system process takes approximately 30 hours with the TCL Job
Compiler taking only about a minute, so there will not be much gain from much stream
lining. However, there are possibilities of cutting down the 30 hours that the Biomek takes
to complete the experiments. For example, the Biomek Workstation can handle operating
up to eight pipettes at a time. Currently, the system only employs the use of a single pipette
at any one time. An upgrade to take advantage of the 8-pipette strategy could significantly
reduce the experimentation time. There are other possibilities of a heuristic nature that
could be explored and integrated with relative ease to the new system in the future.

Chapter 2 - Market Analysis

43

2.8 Other Possible Approaches
An alternative approach to reengineering the current TCL Job Compiler could have been
to use refactoring techniques, described in 1.4.2. Refactoring is concerned with the
improvement of the internal structure of a system without changing the external
functionality of that system. When taken in this context, refactoring seems like an ideal
solution. However, upon closer inspection of the system that would be refactored, it seems
unreasonable to attempt to apply refactoring techniques. It is the opinion of the author
that the current TCL Job Compiler is ‘beyond refactoring’, although refactoring techniques
and issues can be taken into account in the reengineering of the current system.

Chapter 3- Requirements and Project Planning

44

hapter

3 Requirements and
Project Planning

3

Chapter 3- Requirements and Project Planning

45

3.1 Approach
This chapter endevours to provide a description of the general approach adopted for this
project along with some details of the methods of planning undertaken during the lifetime
of the project. It will cover the approach taken towards attaining the requirements for the
project (the creation of the Requirements Definition document) as well as some
explanations for some of the requirements. There will also be provided, an explanation of
some of the techniques used during the project, including some details of time
management and development decisions.

3.2 Requirements
A formal document for the Requirements Definition can be found in [30]. Although this
section will not cover the requirements to the same depth as [30], some introduction and
extra explanation to some parts is necessary. Document [30] aims to provide a description
of the services that the system should provide. It also specifies some of the constraints
under which the system must operate.
The approach for the conceptualisation of the requirements has been two-fold. The main
requirement is that the new system should be a reengineered version of the current
version. This led to a process of identification of requirements for the current TCL Job
Compiler. Unfortunately, there is no documented form of requirements for the current
system. The functional requirements have been ascertained through the identification and
analysis of the input and output requirements of the current TCL Job Compiler. These are
documented in [30]. Below is a brief description of the functional and non-functional
requirements and are referred to in this report only for completeness. To provide any
further documentation here would only serve to repeat material available in [30].
3.2.1 Functional Requirements
The functional requirements dictate the services that the system is to provide and are
described in [30], section 3. Descriptions of the four input requirements are given;
Experiment data, Substance data, Surface data and other configuration data. The only
output requirements inherited from the current TCL Job Compiler is the job files
(JOB0.txt, JOB1.txt…….JOBN.txt).
3.2.2 Non-Functional Requirements
The non-functional requirements aim to provide the new TCL Job Compiler with a higher
standard of operation, previously lacking from the older system. Requirements such as
efficiency, versatility and portability are described in [30], section 4.1, 4.2, 4.3.

Chapter 3- Requirements and Project Planning

46

3.3 Project Management and Planning
3.3.1 Development Model
The reengineering of the TCL Job Compiler does not formally adhere to any particular
model, in spite of early attempts to do so. It was intended at the start that the system
should be designed and implemented in line with the Unified Process. Upon careful
reading of [15], it became clear that the system would not fit into the Unified Process as
comfortably as had once been hoped. For example, due to the TCL Compiler being mostly
an automated process, it was very difficult to identify more than one actor for the system.
With only one actor (i.e., the one who starts the process), it became increasingly difficult to
find a reasonable set of use cases. Upon further reading of [15], it became clear that the
success of the Unified Process relied heavily on obtaining a relevant set of use cases and as
such, would not be entirely suitable for this project.
It was decided that the project’s software lifecycle would loosely conform to Boehm’s
spiral model as a form of evolutionary prototyping [28]. The system will be developed
incrementally. Each new feature of the system will be developed and tested informally (as
it is implemented). When the feature can be seen to be working correctly, it will be added
to the system and work on the next feature will begin. This form of development will
result in a system that is in danger of straying from the initial design, due to encountered
problems along the way.
Formal Documents will be included at relevant intervals. These will include:

· Requirements Definition [30]
· Analysis of the Current TCL Compiler [31]
· System Design Specification [32]
· Basic Testing Plan [33]
· Subsystem Test Specification [34]

The System Design Specification [32] will represent the design of the completed TCL Job
Compiler, although some alterations to the design occurred throughout the
implementation process. Formal testing will be conducted after the implementation stage
and will follow the guidelines put forth by [33][34]. The extent to which testing will be
conducted will be decided after the implementation stage and will depend on the
remaining time available.
An alternative development process would have been the Waterfall model. The problem
with the Waterfall model is that the development stages are entirely modular and require
that they be completed in a specific order. Furthermore, the completion of an earlier stage
is required before the commencement of a later one. It was decided that this system
should employ a more iterative form of development than the one offered by the Waterfall
model.

Chapter 3- Requirements and Project Planning

47

3.3.2 Planning
“Project planning is concerned with identifying the activities, milestones and deliverables
produced by a project. A plan must be drawn up to guide the development towards the
project goals.” [28]
Effective project planning is essential for a successful project. At the start of the project, a
plan should be drawn up and used to drive the project. The plan should make allowances
for both forseable and unforseable problems (where possible). The plan should be
influenced by the state of the project. That is to say that the project plan is not resistant to
change, rather it should be modified throughout the duration of the project.
The following section provides the project planning that was conceived at the beginning of
the project. As is normal, the planning had to be modified and updated and the actual time
scale of the project is discussed in chapter 7 (Limitations and Evaluation) for comparison
purposes.
3.3.3 Effort Estimation
The table below offers an outlined breakdown of the various tasks connected with the
project and the estimated amount of time that will be planned for each of the tasks. The
time in hours can also be thought of the anticipated effort to complete each of the tasks.
Tasks that involve the writing of documents are shown in italics.

Task Duration (hours)

Background
Problem Analysis/Definition 15
Analysis of Current TCL Compiler 20
Research 50
Approach Analysis 15
Market Analysis 20
Requirements Definition 10

Design
Outline Design 15
Detailed Design 25
Design Specification 50

Implementation 150

Testing 20
Basic Test Plan 10
Subsystem Test Specification 10

Documentation
Report 90

Total 500

Table 1 – Effort Estimation

Chapter 3- Requirements and Project Planning

48

Figure 11 – Initial project plan

The above diagram shows the ideal schedule for the tasks during the course of the year.
Time has been given to allow for both the Christmas holiday and the exams in late January.

Chapter 3- Requirements and Project Planning

49

3.3.4 Time Plan
There are several points of discussion regarding the time plan illustrated by the diagram
above.

1. The different areas of shading on the diagram represent different intensities of
work. This measurement does not attempt to quantify the amount of work to be
done; moreover it represents a relative intensity of work in areas where more than
one activity is scheduled at the same time.

2. The Requirements Definition and the Analysis of the Current TCL Compiler
documents are to be written in parallel. This reflects the approach towards the
requirements, described in 3.2. As the requirements are to be extracted from the
current TCL Job Compiler, it seems obvious to work on the two documents in
parallel.

3. The Design Specification document is to be added to, as long as the outline and
detailed design are occurring. It is expected that the design document is going to be
large and the plan accommodates for such an expectation.

4. It can be seen from the plan that the testing documents occupy the same time
frame as the design activities. This is to reflect the need of the design documents to
initiate the testing phase. Please note that the construction of the testing phase is
not connected with the implementation phase to ensure that the testing occurs
independently of the implementation. However, there is a period of time in which
both implementation and testing are occurring. This has been included to
accommodate for the presence of regression testing. This is further explained in
chapter 6 (Testing).

3.3.5 Risk Analysis and Management
Section 2.6 deals with the associated risks of the system in terms of its marketability. There
is also the inherent risk that the time planned for each stage of the development of the
system is inadequate. This constitutes the greatest risk for the implementation phase, as
there are so many other implications on the development process. It is hoped that possible
scenarios regarding the failure to complete important objectives can be identified at an
early stage and can therefore be taken into account. It would seem prudent that in such a
scenario, features of the system could be withheld in order to complete some more
important ones.

Chapter 4 - Design

50

hapter

4 Design

4

Chapter 4 - Design

51

This chapter endevours to cover the design phase of the project. After a description and
justification of the development tools and environment, there will be an overview of the
approach of the design, followed by a description of the system. Please refer to Chapter 7
(Evaluation and Limitations) for design limitations and other information regarding the
success of the design phase.
It is intended that this chapter be read in conjunction with the formal design document
[32]. It is not the aim of this chapter to merely repeat material found in [32], but instead to
add to it, improving the reader’s understanding of the design phase of the project.

4.1 Development
4.1.1 Development Environment
The system is to be developed on a standard home workstation, running Windows 2000©.The reason being that this is the most accessible platform available to the developer at the
current time. A Linux environment may have been more suitable for development with
some significant software development advantages. However, a Linux build was not
available for the primary development machine, due to an un-supported graphics card
(GeForce 4).
The robot that is being used is a Beckman Coulter 2000 Workstation, which is primarily a
liquid-handling workstationxi.
4.1.2 Development Language
This is possibly the most important of all the design decisions, as it has the largest bearing
on the finished system. There were two distinct development language options and these
are described here.

4.1.2.1 TCL

There was an argument that the TCL Job Compiler should be written using TCL (1.4.6.1).
This was a reasonable suggest given that the result of the compiler was a form of TCL,
BioScript Pro. It was put forward that the compiler should be written in the language that
it was compiling to. There are, however, some significant reasons for avoiding an
implementation using TCL. Firstly, there is no explicit structure in TCL. It seems to be a
primarily function-based language. Methods can be grouped into different TCL files, but
other than that, there is no concept of program structure or any of the other facilities that
co-exist with some of the modern paradigms today.
TCL was originally constructed for use as a scripting language and, as such, is not suitable
for developing large programs. From the start, it lacked arrays and other structure from
which to create linked lists. These have since been “added on”, but in a way that causes
TCL to operate far slower than before. TCL has been around for almost twenty years, but
has generally been confined to specific tasks and has failed to present an impact to the
same extent as other development languages, such as C or Visual Basic. This is not a

xi See www.beckman.com for details

http://www.beckman.com

Chapter 4 - Design

52

reflection on the quality or success of TCL, rather attempts to highlight the limitations of
application for the TCL language. As a result, support tools are scarce, compilers are
restricted and there exist few sources of well-documented support. This does not detract
from TCL as a language in itself, rather attempts to highlight the fact that TCL was not
designed and is not suitable for developing a system such as the TCL Job Compiler.

4.1.2.2 Object-oriented Languages and the Use of Java

The alternative to using TCL was to use an object-oriented programming language, such as
C++ or Java. After much deliberation, it was decided that Java was to be used for the
development of the TCL Job Compiler for the following reasons. Java is renowned for its
“Write once, run anywhere” philosophy, which refers to its method of platform-
independence for development. Sun intended Java to be a platform-neutral language and so
programs are written on a Virtual Machine rather than on a specific platform. Developers
can write programs for the virtual machine on any platform and can expect the resultant
code to run on any other platform. Java supplies the tools and support to provide a quality
object-oriented environment. The component architecture of Java brings interoperability
to a new level, giving Java a broad industry appeal. It also offers fast development for Web
applications, as well as the ability to easily re-use code and provide add-ons to existing
structures.
Given the requirements for the TCL Job Compiler (in particular the non-functional
requirements) of increasing the portability, versatility and maintainability of the system,
Java seems the obvious choice. Indeed, Java has been well noted for performing admirably
in these areas [25][26][22][41]. Being an interpreted language, Java will not possess the
same performance as the platform-specific languages such as C and C++, but with all the
optimisation packages available for Java today, this discrepancy is minimised. Java also
contains a well-designed and powerful set of APIs to increase program functionality.

Chapter 4 - Design

53

4.2 Approach to Design
The design of the TCL Job Compiler was both an integral and challenging part of this
project. This section aims to convey the thought processes that were involved during the
design phase of the system. Upon reading this section, the reader should understand how
the reengineered system was built and conceptualised from the beginning. This section
aims to give the reader an idea of how the design phase began and has therefore been
written more or less chronologically.
4.2.1 Study of the Current System
As the aim of this project was to reengineer the current TCL Job Compiler, it seemed
prudent to start the design by analysing the current system. This largely prompted the
formal document [31]. However, upon beginning the analysis of the current TCL
Compiler, it was deemed that it would be both time-consuming and fruitless to provide a
full analysis of the current system, hence the incomplete nature of [31]. It became clear
that the new system would need to be much more than an updated version of the current
system, not least as the current system was too complicated to update. It also became clear
that the design would have to be developed using other sources rather than just from the
current system.
4.2.2 Analysis of Inputs/Outputs
In order to start building a system to perform the job of the TCL Job Compiler, it seemed
likely that most of the system would be centred around the processing and producing of
the required inputs and outputs. By analysing the inputs, it was possible to identify the
kinds of classes that were to be needed in the implementation. The use of an object-
oriented design language helped greatly at this juncture, as the idea of an object could be
applied to many of the features in the current setup. For example, from analysing the input
files (described in [30]), it seemed obvious that there would likely be an object for a
substance and an object for an experiment and so forth. Although this was not always the
case, this strategy was found to make considerable headway for the design.
4.2.3 Visualisation and Incremental Build
Once it had been possible to build a set of possible objects for the initial stage of the
design process, then it was possible to play around with the objects. This was done using
class diagrams, whiteboards and informal UML diagrams, until an adequate structure was
uncovered. Most of the structure was conceived from scratch by visualising the
functionality of parts of the system. Each part of the system was visualised, interpreted and
fitted in one at a time. The system was therefore built incrementally, each subsystem being
added to the system once it had been developed and tested. As mentioned before, this type
of approach is adopted during Boehm’s Spiral development model, except that in this case,
there was no rigid structure of iteration. As each subsystem was designed, so it was
implemented, approximately in the order of the documentation [32] and 4.2.4.

Chapter 4 - Design

54

4.3 Design of the System
As stated before, the aim of this section is not to repeat material found in [32], but to be
used together with [32] to provide a more thorough understanding of the design phase,
occasionally providing reasoning to specific design issues. Often, there shall be no merit to
expanding on the information in [32] and in that case, no information will be added.
Each subsystem shall be covered in the following section, building up a structured model
of the finished system.
4.3.1 The Experiment Creation Subsystem
It seemed likely that there would need to be a subsystem that dealt with the creation of the
experiments and the substances attached to those experiments. This came largely from the
methods described in 4.2.2. There is an experiment file (Expt.txt). This is a list of
experiments with the substances that constitute each experiment. There is a corresponding
file containing all the substances and their attributes (Substance.txt). It seemed the natural
progression to create a subsystem that handled both of these files, extracted the
information and created an internal model of the experiments. The result was two separate
subsystems, one to deal with the experiments and the other to deal with the substances.

4.3.1.1 The Substance Subsystem

Details of the Substance subsystem can be found in [32] - 3.1.1. The Substance subsystem
is very simple. Within SubstanceList, a method ‘populateSubstances’ handles the file,
Substances.txt, reads the substance information and then creates an array of corresponding
substances.

Figure 12 - An illustration of the Substance Subsystem

4.3.1.2 The Experiment Subsystem

Details of the Experiment subsystem can be found in [32] - 3.1.2. The Experiment
subsystem again is very simple and is designed around the use of the experiment file,
Expt.txt. Within ExperimentPlate, the method ‘populateExperimentPlate’ handles the file
(Substance.txt) and creates a set of ExperimentPlates (normally 4), and populates them
with the correct experiments taken from Expt.txt.

Substance

SubstanceListSubstance.txt

Substance …………Substance

Chapter 4 - Design

55

Figure 13 - An illustration of the Experiment Subsystem

The most important thing to note about the interaction between the Substance and
Experiment subsystems is the difference between a MediaComponent and a Substance.
Assuming that a Substance would be linked to an Experiment in some way, it became
evident that the amount of the substance in the experiment would have to be stored
somewhere, but it did not seem feasible to keep it with the Substance. As a result, a new
class was formed, namely MediaComponent. A MediaComponent contains both a
Substance and a float representing the amount of Substance. As can be seen in [32] -
3.1.2.1, an Experiment contains MediaComponents, which in turn contain Substances.
This helps to separate the Substance and Experiment subsystems and solves the problem
that a substance may be used many times in many experiments in differing amounts.

4.3.2 The Log Subsystem
The Log subsystem is a very simple subsystem and is adequately explained in [32] – 3.2. It
would not be worthwhile (or even possible) to delve further into the operability of the Log
subsystem. For details on the function of the Log subsystem, please refer to [32] – 3.2.1.2.

Figure 14 - An illustration of the Log Subsystem

Expt.txt ExperimentPlate

Experiment

MediaComponent MediaComponent

The Substance
Subsystem

Experiment …………

…………

Log

LogItem Log.txt

Chapter 4 - Design

56

4.3.3 The Configurator Subsystem
Details for the Configurator subsystem can be found in [32] – 3.3. Given the approach
mentioned in 4.2.2, the next file to look at logically was the JOB0.txt file. This file differed
to the other job files in that it consisted wholly of configuration data. Before the Biomek
could begin, it would need to be aware of all the tools, labware and other devices operating
within its environment. This data was carried by the configuration job file, namely
JOB0.txt, and consisted of around 1000 lines of configuration data. In order to handle this
configuration data, the Configurator and Surface subsystems were created.
As mentioned before, JOB0.txt consists of around 1000 lines of configuration code. Most
of these lines are responsible for setting a specific variable for a specific item (labware,
tool, device, etc). The unfortunate result of this is that there must be included, somewhere
in the code of the system, a section that sets each of these variables. This will result in
approximately 1000 lines of code somewhere in the system.

Figure 15 - An illustration of the Configurator Subsystem

The module, Configurator, will configure all the devices, tools, and labware for the
configuration file and be responsible for initiating the creation of the Biomek surface (see
4.4). One-by-one, the configurator creates and initialises the devices, tools and labware and
adds them to the workstation [32] – 2.4.22. After this has completed, the surface is created
(using the surface file, Surface.txt), and finally the configuration file, which is comprised of
the toString method of the WorkStation, is created.

4.3.4 The Surface Subsystem
It is debatable as to whether the Surface subsystem should constitute a separate subsystem
to the Configurator Subsystem, since they are closely tied to each other and both are
responsible for the creation of the configuration file. There were two main reasons why it
was decided that the Surface subsystem should become its own subsystem.

Configurator

Tool

ToolList

LabWare

LabWareList

TipRack

TipRacklist

Tip

TipList

JOB0.txt

Chapter 4 - Design

57

The first was for the sheer size of the two subsystems. There seemed a natural segregation,
however small, between the two and the opportunity to break the system into smaller
parts, was taken. The second reason was that, although data from the Configurator would
be used later on elsewhere in the system, it would mainly be for creating the configuration
file. The Surface subsystem would doubtlessly also be used for creating the configuration
file, but would also be used significantly during the creation of the job files.

Figure 16 - An illustration of the Surface Subsystem

The module, Surface, consists primarily of a 2-dimensional array, capable of holding
SurfaceObject items. It was decided that a generic form of surface object would be used,
rather than have the surface array hold individual surface objects of a specific type (see [32]
– 3.4.1.1 for an illustration of the Surface subsystem). This was due to two factors; the
surface objects varied significantly from each other to prevent them being referenced as
the same object, however, having significant enough similarities to warrant a hierarchical
relationship.
4.3.5 The Builder Subsystem
The Builder subsystem is responsible for the creation of the job files (JOB1.txt…
..JOBN.txt). Within the Builder subsystem is the module, WorkStation. This is an
important module as it contains all the information about the environment of the Biomek
workstation. Therefore, it contains details on all the tools, devices and labware available
within the environment as well as the Surface object that contains details about the
location of all the necessary parts of the experiments. As mentioned before, the
configuration file is constructed through a call to the toString method within WorkStation.

ToolSurface
Object

TipRackSurface
Object

SubstanceSurface
Object

LabWareSurface
Object

LabWare Substance TipRack Tool

SurfaceObject

denotes <<extends>>

Surface

Chapter 4 - Design

58

Figure 17 - An illustration of the Builder Subsystem

The role of the Builder subsystem is the construction of the job file (JOB1.txt). The
Builder subsystem works by taking all the SurfaceLabWare objects within the WorkStation
(i.e., all the experiments), and breaking the experiments down into Steps, based on the
substance. These experiment steps are grouped into Vectors according to their substance
(metabolite, agar or yeast). The steps in each Vector are then extracted and used in a
LiquidTransfer operation. The results of these liquid transfers are stored in a string until all
the transfers have completed, whereupon the string is exported to a text file (JOB1.txt).

Figure 18 - An illustration of the functionality of the Builder Subsystem

A diagram illustrating the functionality of the Builder subsystem can be seen above and is
taken from [32] – 3.5.1.2, where a more detailed explanation of the subsystem’s function
can be found.

StepBuilder

LiquidTransfer

Step

StepBuilder
[] metSteps
[] agarSteps
[] yeastSteps

createSteps()
deploySteps()
toString()

Step

LiquidTransfer

SurfaceLabWare

ExperimentPlate

Exp1
Exp2
.
.
ExpN

…………..

WorkStation

JOB1.txt
.
.
.
JOBN.txt

Chapter 4 - Design

59

4.4 TCL Job Compiler
The following section will describe the process of the complete system. It is intended to
represent the culmination of the description of the previous subsystems. The following
illustration should provide an explanation to how the subsystems interact with one
another.

Chapter 4 - Design

60

Figure 19 - An illustration of the complete TCL Job Compiler

Chapter 4 - Design

61

Colours have been used to signify the subsystem boundaries. These are:

· Red – Experiment Subsystem
· Brown – Substance Subsystem
· Yellow – Surface Subsystem
· Blue – Configurator Subsystem
· Green – Builder Subsystem

The following is a step-by-step guide to the intended operation of the TCL Job Compiler.
It was necessary to simplify some of the processes at this stage in order retain an
understanding of the system.

1. A WorkStation is initialised, using the default constructor.
2. A Configurator object is created, passing to it a reference to the WorkStation.
3. The setup() method from Configurator is called, passing to it the substance and

surface filenames.
a. TipList, TipRackList, LabWareList and ToolList are initialised and added

to the WorkStation.
b. SubstanceList is initialised and the array of substances is populated by the

method, populateSubstances(). The SubstanceList is then added to the
WorkStation.

c. The Surface is initialised and the 2-dimensional array is created by parsing
the surface file. The surface is then added to the WorkStation.

4. The method, writeJobFile() is called passing in the directory in which to place the
job file. This method calls the toString() method for the WorkStation and writes
the result to a file called JOB0.txt in the specified directory.

5. A Vector containing the labware (i.e., the ExperimentPlates) is returned from the
WorkStation.

6. For each experiment plate, the method, populateExperimentPlate(), is called. This
populates the ExperimentPlate with Experiments in accordance with the file
Expt.txt. The ExperimentPlates are added to the relevant LabWareSurfaceObjects.

7. The substances from each experiment are passed into an object of type Step. This
will contain data such as: Substance, amount, source and destination.

8. The Steps are sorted into Vectors by the type of Substance that is being
transferred. These are metabolites, agar and yeast.

9. The Vectors are passed into deploySteps() one-at-a-time in a specific order
(metabolites, agar and then yeast).

10. deploySteps() creates a LiquidTransfer object for each Step and executes the
create() method for the Step. The toString() of the LiquidTransfer is captured and
appended to a string, maintained within StepBuilder.

Chapter 4 - Design

62

11. When all the LiquidTransfers have completed, the string is outputted to a file
called JOB1.txt.

Chapter 5 - Implementation

63

hapter

5 Implementation

5

Chapter 5 - Implementation

64

5.1 Approach
As mentioned in 4.2 (Approach to Design), the implementation phase was carried out
simultaneously with the design phase. Once a feature had been designed, it was
implemented and then added to the system. This chapter aims to explain the process of
implementation and describe some of the methods of implementation used to create the
TCL Job Compiler. This chapter will be structured much in the same way as the previous
design chapter. Each subsystem will be described in turn, with particular attention paid
only to the important or interesting parts. It is not the aim of this report to explain every
single part of the system. Indeed, much of the functionality of the new TCL Job Compiler
is self-explanatory, thanks to the high level of documentation within the code (i.e.,
comments). Areas that are not covered explicitly in this chapter may be found in the
formal design document [32], or adequately explained within the code itself.
The nature of this chapter is not represented consistently due to the way it was itself
implemented. For sections 5.2.4 and 5.2.5, the methods were implemented by first
developing algorithms from which to write code. In this case, the algorithms are shown.
However, in sections 5.2.1 and 5.2.2, it can be noted that there are no specific algorithms
and the methods are described using examples from the actual code alongside textual
explanations of the process.
The complete code listing for each of the methods described in this chapter can be found
in Appendix B. The complete system code listing has not been included as much of it
would be unimportant to the understanding of the system. The complete system code
listing is however availablexii.

5.2 Implementation of the Subsystems
5.2.1 The Substance Subsystem
The Substance subsystem is very simple with few significant points of functionality. The
main point of interest in the Substance subsystem is the SubstanceList module. The
method, populateSubstances() is responsible for populating the array within SubstanceList
with Substances as directed from the substance file. 5.2.1 aims to describe this method in
more detail, revealing how the file is split into its necessary parts. populateSubstances()
can be found in Appendix B.
There are two forms of string manipulations at work in populateSubstances() and they are
utilised together to achieve the desired result. Below is one possible version of the
substance file that could be used.
minimal-agar 0 0 0 0 1 0 1 0
YDR007W:E-2 0 0 0 0 1 0 1 1
C00166:2E-1 0 0 0 0 1 0 1 0
C00108:2E-1 0 0 0 0 1 0 1 0
wild-type:E-2 0 0 0 0 1 0 1 1
YDR354W:E-2 0 0 0 0 1 0 1 1
C00079:2E-1 0 0 0 0 1 0 1 0
YDR035W:E-2 0 0 0 0 1 0 1 1
C00078:2E-1 0 0 0 0 1 0 1 0
YBR166C:E-2 0 0 0 0 1 0 1 1

xii Please consult author for complete system code listing – Ben Tagger – bnt8@aber.ac.uk

mailto:bnt8@aber.ac.uk

Chapter 5 - Implementation

65

The name appears first, followed by four integer values; the prewet delay, the blow delay,
the dispense delay, and the aspiration delay, then four Boolean values; prewet, tip touch,
blowout, and knockout.
It is necessary to create Substance objects for each of the substances above and set the
specified parameters for each one. Firstly, it is necessary to split the file into parts that
contain only one substance. For this purpose, a TextFileReader object is used. A
temporary array of Strings is created to store the strings relating to the different
substances. The array is then populated with the strings from the file. Please refer to the
code below.

TextFileReader tReader = new TextFileReader(fileName);

String [] tmp = new String [theList.length];
for (int i = 0; i < tmp.length; i++)
{

String temp = new String(tReader.readString());
tmp[i] = temp;

}

The operation ‘tReader.readString())’ passes in the string up to the end of the line.
Therefore, in this case, the array, tmp, is populated with the String up until the end of the
line. Hence, the contents of the array at position 0 will be:
tmp[0]:

minimal-agar 0 0 0 0 1 0 1 0

…and so on for the remaining strings. Once the array of strings (representing each
substance) has been created, a StringTokenizer can be used to break each string into its
integral parts and these can be used to create a Substance object. First, the tokenizer must
be initialised with the correct delimiter. In this case, it is necessary to use a space as a
delimiter and so the tokenizer is initialised as such:
StringTokenizer st = new StringTokenizer(tmp[i], " ");

‘tmp[i]’ refers to the String from the array that is currently being examined in the for loop.
Following this initialisation, a Substance object is created and its name is passed using the
StringTokenizer.
temp.setName(st.nextToken());

The method, nextToken(), passes the next whole argument (as a string) that has been
delimited by whatever is being used as a delimiter (in this case, a space). The remaining
attributes for the Substance are captured in the same manner. An example of the parsing
of the prewet delay can be seen below.
String a = st.nextToken();
int ai = Integer.parseInt(a);
temp.setPrewetDelay(ai);

Chapter 5 - Implementation

66

In this same way, each substance from the substance file is passed into the system and
added to the array within SubstanceList.
5.2.2 The Experiment Subsystem
Much in the same way as the Substance subsystem, the Experiment subsystem is mostly
constructed with very simple modules. The only point of interest and importance is the
method, populateExperimentPlate(), in ExperimentPlate. This method works much in the
same way as the method, populateSubstances(), described above (5.2.1). The listing for
populateExperimentPlate() can be found in Appendix B at the end of this report. The
purpose of populateExperimentPlate() is to extract the experiment details from the
experiment file, Expt.txt. An example of the experiment file can be seen below.
A1
minimal-agar 120
time 57600

B1
minimal-agar 120
time 57600
.
.
.
E9
minimal-agar 120
YDR354W:E-2 20
C00108:2E-1 20
time 57600

F9
minimal-agar 120
YDR354W:E-2 20
C00108:2E-1 20
time 57600
.
.
.
and so on…
It can be seen from the example above that experiments can contain a number of
substances with varying amounts. Therefore, the implementation must reflect this and
accommodate for this variety. The first challenge is to retrieve the text from the
experiment file. The contents of the experiment file were transferred to a single string with
the use of a BufferedReader (not explicitly explained here – see Appendix B). Then, the
string had to be broken down into single experiments. This was constructed much in the
same way as the substances were split in 5.2.1. A StringTokenizer was created that used ‘#’
as a delimiter.
StringTokenizer st = new StringTokenizer(temp, "#");

An array was created that would contain the experiment strings as shown below.
// create an array with the number of tokens as a size
String[] subStr = new String[st.countTokens()];
for (int i = 0; i<subStr.length; i++)

Chapter 5 - Implementation

67

{
subStr[i] = st.nextToken();

}

subStr is an array that has the string representing a single experiment as each of its
elements. It is then necessary to split each string of experiment into its integral parts so
that an Experiment object can be built. This became quite a serious problem. The String
Tokenizer that Java uses does not recognise the end of the line as a delimiting character.
Therefore, when the experiment string was split up, the end of the line ran in with start of
the next line. Using space as a delimiter, the results looked like this.
E9
minimal-agar 120
YDR354W:E-2 20
C00108:2E-1 20
time 57600

is delimited to this...
E9minimal-agar
120YDR354W:E-2
20C00108:2E-1
20time
57600

This proved extremely difficult to work with, as it required having to split words at
designated points and there seemed no simple way of achieving this. After much
deliberation and hours spent at trying to split the string satisfactorily, it seemed that the
only way to achieve this was to modify the experiment file. This could be done relatively
easily as the creation phase of the experiment file, but it was still unfortunate to have an
external influence from the TCL Job Compiler. The experiment file was altered to include
an extra delimiter at the end of each line. An example of the revised experiment file can be
seen below.
A1,
minimal-agar 120,
time 57600,

B1,
minimal-agar 120,
time 57600,
.
.
.
E9,
minimal-agar 120,
YDR354W:E-2 20,
C00108:2E-1 20,
time 57600,

F9,
minimal-agar 120,
YDR354W:E-2 20,
C00108:2E-1 20,
time 57600,
.
.

Chapter 5 - Implementation

68

.
and so on…
Notice the delimiters at the end of each line. Now, the string tokenizer can pick up the end
of the line using the ‘,’ as the delimiter. Each of the experiment strings is split using the
following tokenizer.
StringTokenizer tz = new StringTokenizer(subStr[i], ", ");

The line above creates the tokenizer for each experiment string using both the ‘,’ and a
space as delimiters. Using spaces and the introduced commas as delimiters, the results
looked like this.
E9
minimal-agar 120
YDR354W:E-2 20
C00108:2E-1 20
time 57600

is delimited to this...

E9
minimal-agar
120
YDR354W:E-2
20
C00108:2E-1
20
time
57600

Having broken the experiment file into the sections as can be seen above, there remained
only the matter of identifying each string and creating the resultant Experiment. The first
token to be dealt with is the well (in this case, ‘E9’). It was necessary to convert the
coordinate (E9) to a set of coordinates. This was further complicated by the fact that there
were up to 12 possible columns. The solution to this problem was to feed the coordinate
string into a character array. Below are two examples for two coordinates, E9 and B12 to
show the difference in handling the various sized character arrays.

E 9

Size of the
row

B 1 2

Size of the
row 1

(string)
2

(string)

By adding these
two strings

together, we get
the value of the
column.

As the character
array size is only
2, this becomes
the column value.

Chapter 5 - Implementation

69

Figure 20 - An example of the tokenization of the experiment file
By analysing the first character, the row number could be ascertained. Then, by measuring
the size of the character array, it could be established whether the size of the column was
either one or two digits. If the size of the character array were two (column being single
digit), then the column value would simply be the value of the second element of the
character array. However, if the size of the character array were three (showing that the
column was a double-digit number), then the value of the column would be 10 plus the
value of the third element of the character array.
After setting the rows and columns for the Experiment, it was necessary to add the
substances. Given that an Experiment can contain any number of substances, a method
was needed to extract that number of substances. Seeing that the first token after the last
substance of any experiment was ‘time’, the following section of code was developed.
String next = tz.nextToken();
do
{

// create instance of new Media component
MediaComponent media = new MediaComponent();

// uses the first token
next.trim();
media.setSubstance(substanceList.findByName(next));

// set amount of media component
next = tz.nextToken();
next.trim();
media.setAmount(Integer.parseInt(next));

exp.addMediaToList(media);
//move onto next token
next = tz.nextToken();

} while (!next.equals("time"));

For each Substance that exists, this algorithm will add it to the Experiment (as a
MediaComponent). The loop will break when the next token encountered is ‘time’. This
signifies the end of the substances. The next token will therefore be the time value and can
be entered as such.

5.2.3 The Log Subsystem
As mentioned in the design section for the Log subsystem, there is nothing complicated or
of interest within the Log subsystem. Please refer to the formal document, [32], in which
the design and structure of the Log subsystem is adequately explained.

5.2.4 The Configurator and Surface Subsystems
The following part of the system to be explained is the section of code within the
Configurator subsystem that creates the surface in the Surface subsystem. It is the final

Chapter 5 - Implementation

70

part of the method, setup(), in the Configurator class within the Configurator subsystem.
A selected part of setup() can be found in Appendix B. As in the previous sections, it
involves the use of a file. In this case, it is the surface file (Surface.txt). An example of the
surface file can be seen below.

A1 VICTOR -51.8 33.9 78.1 15
A21 P20L
A22 P200L
A24 Gripper
A3 P250
A4 96-well flat
A5 96-well flat
A6 quarter vertical
B2 P20
B3 96-well flat
B4 96-well flat
B5 quarter vertical
B6 half single
A6A1 YBR166C:E-2 20000.0
A6A2 C00078:2E-1 20000.0
A6A3 YDR035W:E-2 20000.0
A6A4 C00079:2E-1 20000.0
A6A5 YDR354W:E-2 20000.0
A6A6 wild-type:E-2 20000.0
A6A7 C00108:2E-1 20000.0
A6A8 C00108:2E-1 20000.0
B5A1 C00108:2E-1 20000.0
B5A2 C00166:2E-1 20000.0
B5A3 YDR007W:E-2 20000.0
B6A1 minimal-agar 120000.0

This file is used to document the locations of all the devices, tools and labware that exist
within the Biomek system. It is imperative that the Biomek system be aware of these items
and their locations. Therefore, it was necessary to create an in silico surface representation
and populate it using the surface file (above). The surface was modelled using a 2-
dimensional array in the class, Surface.
Before analysing the algorithm, it is necessary to understand the way that the surface is
represented in the system.
The Biomek surface can be illustrated by the following diagram.

Figure 21 - An illustration of the Biomek workspace

A

B

1 2 3 4 5 6

Chapter 5 - Implementation

71

Each of these 12 locations can hold a device, tool or piece of lab ware or any number of
these, or conversely it can be empty. The system model must be able to adequately
represent this. For example, consider the following line from the surface file.
A6A1 YBR166C:E-2 20000.0

The ‘A6A1’ means that within the workspace, A6, there is an area, A1, in which there is 20
ml of the substance ‘YBR166C:E-2’ (A type of mutated Yeast – referred to as a knockout).
In order to model this situation correctly, it was decided that the 2-dimensional array
would consist of one array of 12 locations (one for each workspace) and the other array
representing the possible segments of the locations.
Consider the following entry from the surface file,
A6A1 YBR166C:E-2 20000.0

This would cause the system to place the substance ‘YBR166C:E-2’ into the array at [6][1].
Also the entry,
B4 96-well flat

This would cause the system to place the LabWare object referenced as ‘96-well flat’ into
the array at [10][0]. This is in location 10 (B4 = 10) and is referenced as segment 0,
indicating that the workspace is not segmented.
The following algorithm is used to set up the surface.

1. Create the StringTokenizer for string containing the line from the surface file,
using spaces as a delimiter.

2. Call nextToken() and pass the contents to a temporary string (coord). This string
should contain the coordinates for the surface object (e.g., A1, A22, or B6A4).

3. If the coord string is 2 characters long (e.g., A1)
a. If the 1st character is ‘B’, then the location = 6 + 2nd character.
b. Otherwise, the location = 2nd character.

4. If the coord string is 3 characters long (e.g., A22)
a. Same as 3.a.
b. Same as 3.b.
c. Segment = 3rd character.

5. If the coord string is 4 characters long (e.g., B6A4)
a. Same as 3.a.
b. Same as 3.b.
c. Segment = 4th character.

6. Call nextToken() and pass the contents to a temporary string (type).

Chapter 5 - Implementation

72

7. If the string ‘type’ is ‘VICTOR’, then the tool, victor, is added to the surface.
8. Check if ‘type’ is the name of a tool. If it is, then add the tool to the surface.
9. Check if ‘type’ is the name of a tip rack. If it is, then add the tip rack to the surface.
10. Check if ‘type’ is the name of a piece of labware. If it is, then add the labware to

the surface.
11. Check if ‘type’ is the name of a substance. If it is, then add the substance to the

surface.
12. Add the surface to the WorkStation.

Chapter 5 - Implementation

73

5.2.5 The Builder Subsystem
There are several parts of the Builder subsystem that need to be explained. The Builder
subsystem represents the greatest area of functionality in the system and, as such, contains
the locus of control for the rest of the system.
The first two areas of interest are from the StepBuilder class within the Builder subsystem.
The first method, createSteps(), is responsible for extracting the substances from the
Experiments and aligning them into Vectors of Steps. The second method, deploySteps(),
is responsible for taking these Vectors of Steps and executing the appropriate
LiquidTransfers in the correct order.
The third area of interest is the create() method with the LiquidTransfer class. This
method creates the bulk of the job file, which itself is constructed from many liquid
transfers.

5.2.5.1 createSteps()

The following algorithm forms the basis of the method, createSteps(). The full listing of
createSteps() can be found in Appendix B.

1. Retrieve a Vector containing all the Surface LabWare.
2. Create a Vector and populate it with the ExperimentPlates for the

LabWareSurfaceObject’s ExperimentPlate.
3. For each ExperimentPlate…

a. Retrieve the array of Experiments and copy it to a temporary array.
b. For each Experiment
i. Retrieve the array of MediaComponents
ii. For each MediaComponent…

· Create a Step for the MediaComponent.

· If the first letter is ‘m’, then place Step in Agar Vector.

· If the first letter is ‘C’, then place Step in Metabolite Vector.

· If the first letter is ‘Y’ or ‘w’, then place Step in the Yeast Vector.
4. Repeat 3 until all ExperimentPlates have been analysed.

Chapter 5 - Implementation

74

5.2.5.2 deploySteps()

deploySteps() is one of the simpler methods that is to be explicitly described in this
chapter, but is included due to its importance. The method, deploySteps(), takes all the
steps and creates liquid transfers for them in the correct order, meanwhile building up
jobString (JOB1.txt). The full listing of deploySteps() can be found in Appendix B. The
following algorithm documents the process of deploySteps().

1. Initialise the integer ‘id’ to 0.
2. For each Step in the Metabolite Step Vector…

a. Create a LiquidTransfer object, passing in ‘id’.
b. Call the method, create(), passing in the Step details.
c. Append the jobString with the liquid transfer (LiquidTransfer.toString()).
d. Increment ‘id’.

3. For each Step in the Agar Step Vector…
a. Create a LiquidTransfer object, passing in ‘id’.
b. Call the method, create(), passing in the Step details.
c. Append the jobString with the liquid transfer (LiquidTransfer.toString()).
d. Increment ‘id’.

4. For each Step in the Yeast Step Vector…
a. Create a LiquidTransfer object, passing in ‘id’.
b. Call the method, create(), passing in the Step details.
c. Append the jobString with the liquid transfer (LiquidTransfer.toString()).
d. Increment ‘id’.

Upon completion of this method, the string, jobString, should contain all the data for
creating the job file (JOB1.txt). The method, writeJobFile(), takes jobString and writes it
to a specified text file.

Chapter 5 - Implementation

75

5.2.5.3 Liquid Transfer

The LiquidTransfer class contains, arguably, the most important sections of
implementation, as it is responsible for the construction of the job file (JOB1.txt) that
controls the Biomek system. The basis for the LiquidTransfer method, create(), came
from two sources. The first was a description of a sample liquid transfer from the Biomek
User guide [4]. The second was a thorough analysis of the existing job file from the current
TCL Job Compiler. The second source proved distinctly more useful in the construction
of the new transfer process. This section will present the analysis of the existing job file
and the resultant algorithm for the new TCL Job Compiler.
The following analysis is from a sample job file from the operation of the current TCL Job
Compiler. It consists of a single liquid transfer and is described in [31].
Log "---- Step: Md"

Liquid_Transfer_Create
Log "Executing LiquidTransfer: Md"

Pipetting_Tool_Init
Tool attach P20

Tip_Attach
Log "Attaching tip 4W (row 1, column 1)"
Tip attach dispose P20 P20 P20
Log "Attaching to P20 tip in row 1, column 1"

Move Abs [Coord B5 A2] 46.869999

Well_CheckVolume
Log "Checking volumes: 19980.0, 23600.000000"

Pipetting_Tool_Aspirate
Log "Aspirating C00166:2E-1 from B5A2 (volume 20.0)"

PipettingTool_Prewet

PipettingTool_SuckAir
Move Abs T 15.6502

Move Abs Z 9.26959999

PipettingTool_SetDirty
putres system pod dirty_tip 1

Move Rel T 17.8872
Delay 0
Move Abs Z 44.869999
Move Abs T 15.6502
Delay 0

PipettingTool_SquirtAir
Move Abs T 9.000000

Delay 0

Chapter 5 - Implementation

76

PipettingTool_SuckAir
Move Abs T 15.6502

Move Abs Z 9.26959999

PipettingTool_SetDirty
putres system pod dirty_tip 1

Move Rel T 14.5822
Delay 0
Move Rel T -1.322
Move Abs Z 46.869999

Move Abs [Coord A4 A4] 22.17

Well_CheckVolume
Log "Checking volumes: 20.0, 362.760010"

PipettingTool_Dispense
PutVal tools P20 max_velocity 2
Move Abs Z 18.5725
Move Abs T 15.6502
PutVal tools P20 max_velocity 25.000000
Delay 0
Move Abs Z 20.170000

PipettingTool_SquirtAir
Move Abs T 9.000000

Delay 0

Well_AddSubstance
Log "Performing Well_AddSubstance; Well: A4A4; C00166:2E-1"

Log "Transfer from B5A2 to A4A4 complete, volume 20.0"

The arrows attempt to show the scope of each of the TCL functions used in the
construction of the liquid transfer. By analysing each of the functions in depth, it was
possible to establish exactly how the liquid transfer is composed. From there, an algorithm
for the construction of the transfer could be developed and this led to the development of
the code for the liquid transfer. The algorithm for a single liquid transfer can be seen
below. The full listing of create() (LiquidTransfer) can be found in Appendix B.
Variables Needed:
Source
Destination
Substance
Amount

Chapter 5 - Implementation

77

Start:
1. Find the appropriate tool based on the amount to be transferred.
2. Attach the tool.
3. Attach the tip for that tool.
4. Move the tool to the Source.
5. Check that there is enough substance at the source.
6. If a prewet is needed:

a. Suck some air in.
b. Move tip into the substance.
c. Suck up some substance.
d. Move tool up a bit.
e. Push out the substance.
f. Push out the air.

7. If a blowout is needed:
a. Suck some air in.

8. Suck up the appropriate amount of substance.
9. Move the tool up.
10. Move the tool the to the destination.
11. Check that there is enough room in the destination.
12. Move the tool down to an appropriate height.
13. Push the substance out.
14. Move the tool back up again.
15. Push all the air out of the tool.

Chapter 6 - Testing

78

hapter

6 Testing

6

Chapter 6 - Testing

79

6.1 Overview of the Chapter
The aim of this chapter is to provide a description of the testing phase for the project.
There are two formal documents, [33][34], which describe the processes of testing that are
expected to occur during the system development and it is expected that these be used in
conjunction with this chapter for a complete idea of the testing phase. During the chapter,
the details of the testing phase will be documented, followed by a description of the test
cases that were employed. Finally, some examples of the test cases will be presented.

6.2 What Will Be Tested?
As described in [32], there will be several layers of testing. The unit testing involves the
testing of each individual component, ensuring that not only are they syntactically correct,
but that they are semantically correct and they also meet their design specification. This
level of testing will not be documented in this chapter.
The second layer of testing is the Module testing. This involves the testing of a group of
related components in isolation. The need for this level is determined by the size of the
system as the module testing can sometimes overlap with the subsystem testing. However,
module testing can often take place during the implementation phase. Therefore, this
chapter does not cover it.
The third layer of testing is the subsystem testing. During this level, a set of test cases is
established, documenting the expected test results. This will constitute the start of the
documented testing for the system. The fourth layer deals with the testing of the overall
system and the fifth layer is concerned with the performance of the system within its target
environment (i.e., How well does it work?).

6.3 What Will Be Tested For?
Errors, bugs and faults are present in every system and the TCL Job Compiler is not
exception. The purpose of this testing phase is to uncover as many of them as possible
and, at the same time, possibly suggest feasible solutions. A selection of problems, likely to
be encountered in the TCL Job Compiler is as follows.

6.3.1 Typographical Errors
A missing semicolon or uneven brackets can cause significant program failures with
repercussions throughout the entire system. Errors, such as these are invariably present in
all code and can be detected adequately using static testing. These errors are generally
found and corrected during compilation in either the implementation or testing phases.
6.3.2 General Coding/Syntactic Errors
These errors include things such as having ‘for’ loops in the wrong place or that can never
terminate, or an ‘if’ statement that can never be reached. Calling methods with the wrong
parameters will also cause problems. Again, these problems can normally be detected at
compilation, however some will not. I.e., a ‘for’ loop that will never terminate.

Chapter 6 - Testing

80

6.3.3 Communication/Interfacing Errors
Communications between classes, modules, subsystems, systems, computers and users can
often cause problems due to errors in the code. These can often be difficult to find and
even more difficult to provide adequate solutions for. For the TCL compiler system,
parsing the configuration files may cause problems, when attempting to tokenise the
strings within the text files.
6.3.4 Design Flaws
Flaws that lie within the project may be the result of an inadequate or erroneous design. In
some cases as this, the design phase must be revisited to improve or modify the design as
is befitting.

6.4 How Will It Be Tested?
There are five types of testing to be used for the testing of the TCL Job Compiler are
described below here.
6.4.1 Static Testing
This would usually primarily involve code walkthroughs. However, due to the nature of
the project and the fact that there is only one developer (designer, tester, etc.),
walkthroughs may not be worthwhile or even possible. Even though there is only one
person involved in the project, some aspects of walkthroughs can still be observed. For
example, the code can still be examined as a series of paths and the most likely paths of the
system can be ascertained during this process. Static testing is usually the first method of
testing to be employed during a project and can be useful in spotting syntactical and
typographical errors.
6.4.2 Black box testing
Black box testing can be used as a follow up process to the static testing to further explore
possible paths through the system. Black box testing can be useful when the tester knows
the function of the component with respect to the operations on data inputs, but is unsure
as to how the component functions on the inside. Black box testing is most suitable for
testing top-level systems.
6.4.3 White box (Structural) testing
White box testing (glass box testing) is carried out when the inner workings of a
component are known and the test cases can be constructed with respect to this
knowledge. The tester uses knowledge about the structure of the component to derive test
data and test cases. White box testing allows the tester to use many of the possible paths
through a component, rather than simply the paths that are most likely to be used. It is not
possible to use every possible path, but a subset of test cases can be established given the
unit’s function and likely problems.

Chapter 6 - Testing

81

6.4.4 Interface testing
Interface testing is concerned with the communications between modules, subsystems and
subsystems. It is primarily concerned with the errors encountered during these periods of
communication and aims to monitor and improve the way that these components co-
operate.
6.4.5 Regression testing
The fixing and removing of bugs and errors can introduce new errors into the code and
the design. Therefore, the testing process must be iterative and repeated until the system is
adequately error-free.

6.5 Test Cases
For this section, one test case from each subsystem shall be documented as an example of
the types of test cases performed. The complete list of test cases has not been included in
the report for the sake of relevance. Please refer to Chapter 8 for a description of the
limitations with regards to the testing phase. As in the Implementation chapter, a complete
listing of the code used in this section can be found in Appendix B.
6.5.1 Substance Test Case
The objective of this test case is to test the internal structure of the Substance module, by
providing a setDetails() method. The values are entered as expected results and the output
is observed. Notice the translation of the integer to Boolean values for the prewet, tip
touch, blowout and knockout variables.
SubstanceTest.java - Initial test of the Substance sub-system. Involving:

o Substance.java
o MediaComponent.java
o SubstanceTest.java

SubstanceTest.java allows the user to input some data manually (using a setDetails()
method). The test harness will then present the data to the user in a formatted manner.
Below are some scripts relating to this process:
c:\project>java SubstanceTest

Entering Details...
Please enter the amount and all details
Enter amount 120

Enter Name: Minimal Agar

Enter Prewet Delay: 50

Enter Blow Delay: 100

Enter Dispense Delay: 120

Chapter 6 - Testing

82

Enter Aspirate Delay: 60

Prewet Needed?: 0

Tiptouch Needed?: 1

Blow Out Needed?: 1

Knockout Needed?: 0

Displaying Details...

Amount: 120
Name: Minimal Agar
Prewet Delay: 50
Blow Delay: 100
Dispense Delay: 120
Aspirate Delay: 60
Prewet Neeeded: false
Tiptouch Needed: true
Blowout Needed: true
Knockout Needed: false

Chapter 6 - Testing

83

6.5.2 Experiment Test Case
The objective of the following test case was to test the handling of the experiment file
(Expt.txt). The test harness that was used functioned much in the same way as the final
populateExperimentPlate() method in ExperimentPlate and was used as a prototype for
that method. The expected output was to provide on-screen details of the experiments and
their constituate parts that could be validated against the original experiment file.
Below is a selection of output referring to a single Experiment.

Well: 6 11
Time: 57600

Substance 1

Amount: 120
Name: minimal-agar
Prewet Delay: 0
Blow Delay: 0
Dispense Delay: 0
Aspirate Delay: 0
Prewet Neeeded: true
Tiptouch Needed: false
Blowout Needed: true
Knockout Needed: false

Substance 2

Amount: 20
Name: wild-type:E-2
Prewet Delay: 0
Blow Delay: 0
Dispense Delay: 0
Aspirate Delay: 0
Prewet Neeeded: true
Tiptouch Needed: false
Blowout Needed: true
Knockout Needed: true

Substance 3

Amount: 20
Name: C00166:2E-1
Prewet Delay: 0
Blow Delay: 0
Dispense Delay: 0
Aspirate Delay: 0
Prewet Neeeded: true
Tiptouch Needed: false
Blowout Needed: true
Knockout Needed: false

Chapter 6 - Testing

84

This can be compared against the following exert from the experiment file.
F11,
minimal-agar 120,
wild-type:E-2 20,
C00166:2E-1 20,
time 57600,

It can be seen that the two extracts are displaying the same experiment.
6.5.3 Configurator Test Case
The following is a basic test case that aims to test the internal structure of the TipList
module. The values of the Tips are entered in a test harness and the toString() for the
TipList was then outputted to the screen. This test harness also aimed to test the
compatibility of the toString() method for use in the configuration file (Notice the use of
‘CreateRes’ Statements.)
Below is a selection of output referring to a single TipList.
CreateRes tips P20
PutVal tips P20 maxvel 1.0
PutVal tips P20 minvol 0.25
PutVal tips P20 slowstep 0.0
PutVal tips P20 smargin 0.63
PutVal tips P20 length 38.1
PutVal tips P20 shldiam 6.86
PutVal tips P20 shoulder 9.78
PutVal tips P20 sensing false
PutVal tips P20 maxvol 23.0

6.5.4 Surface Test Case
The following test case tests the correct operation of the Surface subsystem and part of the
Configuration subsystem. The surface is propagated using the surface file (Surface.txt),
which is passed in using a test harness.
Below is a selection of output referring to the Surface.
A1 VICTOR -51.8 33.9 78.1 1
A21 P20L
A22 P200L
A24 Gripper
A3 P250
A4 96-well flat
A5 96-well flat
A6 quarter vertical
B2 P20
B3 96-well flat
B4 96-well flat
B5 quarter vertical
B6 half single
A6A1 YBR166C:E-2 20000.0
A6A2 C00078:2E-1 20000.0
A6A3 YDR035W:E-2 20000.0
A6A4 C00079:2E-1 20000.0
A6A5 YDR354W:E-2 20000.0

Chapter 6 - Testing

85

A6A6 wild-type:E-2 20000.0
A6A7 C00108:2E-1 20000.0
A6A8 C00108:2E-1 20000.0
B5A1 C00108:2E-1 20000.0
B5A2 C00166:2E-1 20000.0
B5A3 YDR007W:E-2 20000.0
B6A1 minimal-agar 120000.0

Log "--
Log "Setting up surface..."
Log "--
Log "Creating VICTOR."
Log "Line: A2 P20L"
Log "Creating surface object P20L"
PutVal loc A2 thang_type 2
PutVal loc A2 nLayer 0
Log "Line: A2 P200L"
Log "Creating surface object P200L"
PutVal loc A2 thang_type 2
PutVal loc A2 nLayer 0
Log "Line: A2 Gripper"
Log "Creating surface object Gripper"
PutVal loc A2 thang_type 2
PutVal loc A2 nLayer 0
Log "Line: A3 P250"
Log "Creating surface object P250"
PutVal loc A3 lid_status 0
PutVal loc A3 sl_dst_wedge 0
PutVal loc A3 last_tip_col 0
PutVal loc A3 sl_dst_stack 0
PutVal loc A3 sl_src_wedge 0
PutVal loc A3 sl_dst_shelf 0
PutVal loc A3 sl_src_stack 0
PutVal loc A3 group_tips_used 0

The test harness calls the toString() method for the Surface module. Notice how the
toString() method has been configured to be compatible for use in the configuration file.

Chapter 6 - Testing

86

6.5.5 Builder Test Case
The following test case for the Builder subsystem was expanded to provide the point of
execution for the entire system. In this case, the communication of all the subsystems is
tested with the expected output as the job file (JOB1.txt) being identical (to all intent and
purposes) to the job file constructed with the use of the current TCL Job Compiler. Below
is a selection of output from the job file from the new system.
Log "Executing LiquidTransfer: 0"
Tool attach P20L
Log "Attaching tip P20 with some grid reference (not sure yet)"
Tip attach dispose P20 P20 P20L
Log "Attaching to P20 with some grid reference (not sure yet)"
Move Abs [Coord B5 A2] 46.872
Log "Checking volumes: 19960.0 23600.0"
Log "Aspirating C00166:2E-1 from B5A2 (volume 20.0)"
Move Abs T 15.6502
Move Abs Z 9.2696
putres system pod dirty_tip 1
Move Rel T 17.8872
Delay 0
Move Abs Z 44.87
Move Abs T 15.6502
Delay 0
Move Abs T 9.0
Delay 0
Move Abs T 15.6502
Move Abs Z 9.2696
putres system pod dirty_tip 1
Move Rel T 14.5822
Delay 0
Move Rel T -1.322
Move Abs Z 46.872
Move Abs [Coord A4 A4] 22.167
Log "Checking volumes: 20.0 362.76"
PutVal tools P20L max_velocity 2
Move Abs Z 18.5725
Move Abs T 15.6502
PutVal tools P20L max_velocity 25.0
Delay 0
Move Abs Z 20.17
Move Abs T 9.0
Delay 0
Log "Transfer from B5 A2 to A4 A4, C00166:2E-1, Volume: 20.0
COMPLETE."

Chapter 6 - Testing

87

This must be compared to the same liquid transfer from the job file created by the current
TCL Job Compiler (see below).
Log "---- Step: Md"
Log "Executing LiquidTransfer: Md"
Tool attach P20
Log "Attaching tip 4W (row 1, column 1)"
Tip attach dispose P20 P20 P20
Log "Attaching to P20 tip in row 1, column 1"
Move Abs [Coord B5 A2] 46.869999
Log "Checking volumes: 19980.0, 23600.000000"
Log "Aspirating C00166:2E-1 from B5A2 (volume 20.0)"
Move Abs T 15.6502
Move Abs Z 9.26959999
putres system pod dirty_tip 1
Move Rel T 17.8872
Delay 0
Move Abs Z 44.869999
Move Abs T 15.6502
Delay 0
Move Abs T 9.000000
Delay 0
Move Abs T 15.6502
Move Abs Z 9.26959999
putres system pod dirty_tip 1
Move Rel T 14.5822
Delay 0
Move Rel T -1.322
Move Abs Z 46.869999
Move Abs [Coord A4 A4] 22.17
Log "Checking volumes: 20.0, 362.760010"
PutVal tools P20 max_velocity 2
Move Abs Z 18.5725
Move Abs T 15.6502
PutVal tools P20 max_velocity 25.000000
Delay 0
Move Abs Z 20.170000
Move Abs T 9.000000
Delay 0
Log "Performing Well_AddSubstance; Well: A4A4; Substance: C00166:2E-1"
Log "Transfer from B5A2 to A4A4 complete, transfer list 9V, volume
20.0"

It can be seen that, although there are differences between the two versions, these
differences are merely cosmetic (i.e., the Log entries). The numerical values for each
movement of the Biomek are identical, which indicates that the job file from the new TCL
Job Compiler could be successfully used in place of the current system. Please refer to
chapter 8 for limitations of the system.

Chapter 7 - Limitations and Evaluation

88

hapter

7 Limitations and
Evaluation

7

Chapter 7 - Limitations and Evaluation

89

7.1 Introduction
The purpose of this chapter is to provide an evaluation for the SEM49060 project. It is
necessary to once again examine the requirements, this time in parallel with the recognised
achievements of the project. Throughout the course of the project, various limitations
have been identified but not yet explored within this document. It is the aim of this
chapter to identify and describe the limitations encountered during the project, together
with a description of possible alternative approaches. This chapter will also attempt to
provide some of the abandoned approaches taken during the project. Having described the
limitations for the project, a more informed approach to the evaluation can be taken.
During this chapter, the limitations of each phase of the project will be discussed. It is
hoped that the discussion of the limitations of the project will also highlight some of the
author’s regrets regarding each phase of the project. This will be followed by a discussion
and evaluation of the project as a whole. Finally, there will be a section describing a look to
the future for the TCL Job Compiler.

7.2 Requirements Limitations
7.2.1 Vagueness of Requirements
One of the initial problems with the requirements phase of the project was the process of
requirement identification. Through initial meetings with supervisors, it was unclear as to
the exact specifications of the proposed system. After a time, the project requirement
emerged as “simply” to reengineer the current TCL Job Compiler. This was found to be
particularly disadvantageous for the requirements phase for the following reason. Whereas
in a more conventional project, the requirements would be constructed through customer-
liaising and technical knowledge, the requirements for the proposed system needed to be
developed from the requirements of the current system. The consequence was that there
needed to be an analysis of the current system before any requirements for the proposed
system could be developed.
Given that the current system needed to be analysed and, due to the nature of the current
system (7.2.2), the development of the requirements was delayed. This resulted in a knock-
on effect throughout the phases and was regrettably unavoidable. Having analysed the
current TCL Job Compiler and encountered the problems documented below, it was
found that nothing more than a requirements definition could be adequately composed
[30]. It would have been preferable to have had both a requirements definition and
specification, but this was not possible given the state of the current system.
7.2.2 The Current TCL Job Compiler
Given the initial requirement of reengineering the current TCL Job Compiler, it seemed
worthwhile to conduct an analysis of current system in order to extract the requirements
for the new system. Although the analysis of the current system undoubtedly contributed
in part towards the success of the project in other areas, it was found to be of limited use
for the construction of requirements for the following reasons.
Firstly, it was found that the analysis of the current system could not be completed. This
was due to the considerable complexity and readability of the current system. The current
TCL Job Compiler consists of approximately 4,000 lines of TCL (Tool Command

Chapter 7 - Limitations and Evaluation

90

Language); a language unfamiliar to the author at the time. There were also many more
lines of configuration data held in various files, which had to be considered. Comments
were extremely scarce. The only areas that contained readable comments were the sections
that had been maintained or revisedxiii. There were no supporting documents, formal or
otherwise, regarding the operation of the TCL Job Compiler. All the points of
functionality had to be extracted and analysed manually in order to construct an analysis of
the system. The formal document offered in this project [31] is by no means complete.
However, even this incomplete stage of analysis took many hours to achieve, due to the
lack of structure present in the current system.
It was deemed that an exhaustive analysis of the current system would take too long and
be of limited use. Therefore, the analysis was halted and an alternative method for the
development of requirements was sought. These included building on the analysis of the
current system and using input/output analysis, visualisation and conceptualisation, details
of which can be found in 4.2 (Approach to Design).
7.2.3 Current System Knowledge
One of the problems with analysing the current TCL Job Compiler was that there was
insufficient knowledge of the system. Not only were there were no supporting documents
available for the system, there were very few comments describing the functionality of the
system. To make matters worse, the author of the system had long since left the
department. The result was that there was no one with a complete knowledge of the
system. This made the job of analysing the current system extremely difficult. Ken Whelan
was responsible for maintaining the system and, as such, held knowledge on selected parts.
However for other parts, there was no point of contact for support. Consequently, the
majority of the system was analysed with no support of any kind.
This further impacted the speed of which the analysis could be conducted and the
commencements of the remaining project phases. It was this lack of support that
contributed to the incompleteness of [31].
7.2.4 System Accountability
One of the problems encountered during the construction of the requirements, was the
lack of accountability in the current TCL Job Compiler. It was difficult to know whether
the requirements were correct or complete when there were substantial parts of the current
system that were still not understood. It was very hard to understand the function of
certain parts of the system. This was partly due to the lack of comments, but also due to
other readability factors such as:

· Unhelpful naming,
· Redundant code mixed with working code,
· The use of multiple, complicated, similarly-named variables,
· Complicated data flow,
· Apparent duplication of functionality.

As a result of this, there is the danger that a potentially important design issue was
overlooked, simply because it could not be ‘deciphered’.
xiii Maintainence carried out by Ken Whelan.

Chapter 7 - Limitations and Evaluation

91

7.3 Project Planning Limitations
7.3.1 System Knowledge
As mentioned in 7.2, the inability to sufficiently analyse the current TCL Job Compiler
resulted in a difficulty of producing a set of adequate requirements. This had serious
implications for the planning of the project, as it was unclear exactly how much effort
would be needed in each phase, in particular the implementation phase. In fact, it only
became clear how much implementation would be needed when it was ‘too late’ to alter
the project requirements. The promise of delivering the system became considerably more
daunting when it was uncovered that it should generate around 30,000 lines of robot
instructions. With hindsight, a more achievable requirement would have been attempted
after a more vigorous inspection of the proposal.
7.3.2 External Time Planning
During the planning of the project, the inclusion and budgeting of other commitments was
largely ignored. Although there was time allowed for Christmas and for the January exams,
other activities, most notably the major survey paper (due in for late January), were not
accounted for in the original time plan. It was generally considered that any other activity
could be ‘fit’ around the project commitments. In most cases this proved a successful
strategy. In the case of the survey paper, it did not.
The survey paper, due in after the Christmas break, enveloped much of the time before
and after Christmas. This time had originally been scheduled for the development of the
design and testing documents. However, the time was not available for these and so the
design, testing and, by implication, the implementation phases were pushed back several
weeks. This was regrettable but unavoidable. The project phases were immediately re-
scheduled and the result was a higher workload and a reduced testing period (refer to 7.5).
7.3.3 Development Model
As described in 3.3.1 (Project Planning, Development Model), the selection of an
appropriate development model was a problematic task. It was originally hoped that the
reengineering of the TCL Job Compiler could be conducted using the Unified Process as a
development model [15]. However, little evidence could be found that the Unified Process
could be successfully employed for a reengineering project. Moreover the Unified Process
works primarily from use cases. For this project, there seemed to be an insufficient amount
of use cases due to the low number of actors (refer to [15] for details of use cases and
actors).
It would be difficult to class the project into a specific development model. As detailed in
3.3.1, it was intended that the project loosely conform to Boehm’s Spiral development
model. Looking back, it seems that the project took a different approach to the one
originally intended.

Chapter 7 - Limitations and Evaluation

92

The development of the project certainly contains elements of Boehm’s Spiral model, but
there are also significant similarities to the processes of XP (Extreme Programming) and
Agile methods in the way that each feature was designed and added without specific
requirements. One piece of evidence to support this was the way the formal design
document [32] was written retrospectively as each feature was developed.

7.4 Design Limitations
7.4.1 Size Estimation
One of the biggest limitations of the design phase was the estimation of the size of the
system. It was anticipated that the formal design document [32] would be reasonably large
but it was not expected to be as sizeable as it turned out to be. The number of modules
required for the implementation of the TCL Job Compiler was far greater than expected. It
is likely that there are considerable opportunities for optimising the finished system.
However, time constraints have shortened the amount of effort that could be spent on this
process. The erroneous estimations for the design and implementation phases resulted in
the phases running over the scheduled time, further infringing on the time set aside for
testing.
7.4.2 The Surface Subsystem
One of biggest surprises of the project was the need for the Surface subsystem. During the
conceptualisation of the bulk of the design, the need for the Surface subsystem was
overlooked. This was partly due to the reasons described in 7.2.2, 3 and 4. When it came to
creating the configuration file (JOB0.txt), it became necessary to place the various
experiment items (devices, tools, labware, etc.) into the Biomek workstation. The locations
of these items were held in a file called Surface.txt (See 5.2.4 for an example of
Surface.txt).
The manipulation of the surface file could not be found anywhere in the current TCL Job
Compiler and therefore, it was assumed that the file would not cause too much difficulty
and would not be complicated to implement. However, when it came to the
implementation of the configuration file, it was found that a separate subsystem would be
needed in order to place the items in the correct locations in silico. It was necessary to do
this for two reasons. Firstly, the surface locations were needed in order to successfully
create the configuration file. Secondly, the system needed to know the locations of the
experiment materials during the creation of the liquid transfers.
Even after establishing the need for the Surface subsystem, it proved very difficult to find
evidence of surface manipulation in the current system.
7.4.3 Locus of Control
One of the limitations of the design was that a control module was not specifically
designed to control the TCL Job Compiler. In retrospect, it would have been beneficial to
create a purpose-built module to control the operation of the system. Currently, the
control of operation lies with the test program, BigDemo.java (see Appendix B), which has
been adequately implemented to run the system. However, as the name suggests, it is
merely a test harness.

Chapter 7 - Limitations and Evaluation

93

7.5 Implementation Limitations
7.5.1 External Alterations
Given the initial requirement that the new TCL Job Compiler should offer exactly the
same functionality as the current version, it was particularly unfortunate to have to alter
any external entities. However, this was necessary in the case of the experiment file.
Section 5.2.2 documents the need to change the experiment file (Expt.txt) in order to
include a delimiter at the end of each line. It is unfortunate that the system has imposed a
change externally, but there appeared to be no other way of delimiting the experiment file
correctly.
7.5.2 Log Implementation
The Log subsystem is arguably the simplest of all the subsystems within the TCL Job
Compiler. Implementing the Log subsystem was not considered as important as some
other areas of the system, given its simplicity. For this reason, the Log subsystem has yet
to be included in the system. It is important to note that the Log subsystem is fully
functioning and ready to be integrated into the system.
The Log subsystem was omitted for two reasons. Firstly, the construction of a log should
be a thoughtful and important process. The log is designed to give the user feedback on
program activity, possibly notifying of any failures. It is important that the log should
contain clear, concise and readable information. It is the feeling of the author that there
was not sufficient time to provide a high quality log. It was therefore considered better
practice to omit the log and let someone else give it the proper time it deserves. Secondly,
for the purposes of this project, the job file (JOB1.txt) gave sufficient feedback as to the
state of the project. For example, during a program crash, it would be clear exactly where
the program failed by analysing the job file, seeing the last item recorded.
7.5.3 Front End
It is regrettable that an adequate front-end to the TCL Job Compiler could not be
implemented. It was secretly hoped that this would be possible but due to the time
constraints, it was not. A GUI (Graphical User Interface) would not have brought
anything other than aesthetic benefits to the system, as there is very little user interaction.
This will doubtlessly be a development for the future, where the TCL Job Compiler will
hopefully be expanded to include other functions and options(see 7.9).

7.6 Testing Limitations
7.6.1 Time Constraints
As mentioned previously in the preceding descriptions of phase limitations, the various
time constraints played a part in the shaping of the development of the TCL Job Compiler,
as would be expected. Unfortunately, it was the testing phase that suffered the most
through changes and revision of the schedule. There were two main reasons for this.
Firstly, the completion of the system was of paramount importance to the project and
therefore, it took priority. The level of importance on completing the finished system is a
result of the level of credit given for ‘Achievement’ in the marking of the SEM490 project.

Chapter 7 - Limitations and Evaluation

94

It was decided that the design and implementation phases were the most important to
complete with whatever time left available for testing. This approach was further
reinforced by the relatively low credit available for the testing phase.
Upon completion of the design and implementation phases, it transpired that there was
ample time to conduct an adequate testing process, given the credit available for the phase.
7.6.2 Test Cases
It is important to note that although there is less credit awarded, the testing phase remains
a very important part of the development of the TCL Job Compiler. Given the importance
of the experiments and the costs of the equipment, it is important to have a fully tested
implementation of the TCL Job Compiler. However, due to time constraints and for the
reasons mentioned above, the TCL Job Compiler was not tested to the fullest extent
possible. Moreover, one of the limitations of the testing phase is the thoroughness of the
test cases. There simply wasn’t enough time to complete the necessary number of test
cases needed to constitute a release stage for the system.

7.7 System Limitations
7.7.1 Pipette Changes
All of the experiments within the Biomek system are created using minimal agar as growth
media. Minimal agar is a jelly at room temperature. This creates the problem of
transferring the minimal agar into each well. To achieve this, the agar is heated until it
turns to a liquid and can be therefore transferred as such. The problem is that, having
heated the agar to liquid form, it will slowly cool to jelly and block the tip of the pipette.
This will impede any further liquid transfers. The current TCL Job Compiler solves this
problem by explicitly changing the tip every number of transfers. This prevents the tips
from blocking.
Currently, the new TCL Job Compiler has no function for preventing a tip blockage for
the following reason. After examining the Biomek documentation [4], it states that the
workstation detects whether a tip is blocked and automatically replaces the blocked tip
with a clean one. It will then resume normal operation. Presently, it is unconfirmed as to
whether this is the case. However, if not, then the original tip-blocking method can be
applied to the new system easily enough.
7.7.2 Completeness of the System
Apart from the limitations stated above (pipette changes and testing), the TCL Job
Compiler is ready to be integrated into the existing system. The configuration file
(JOB0.txt) is grammatically sound and the author is confident that it can be used without
further modification (maintenance when necessary). The job file (JOB1.txt) is more
difficult to validate. The size of the job file (30,000 lines) makes it very difficult to say
whether it is correct or not. It is certain that the system should undergo further testing
before the job file is used with the Biomek system.

Chapter 7 - Limitations and Evaluation

95

7.8 System Evaluation
7.8.1 Metrics
It was originally intended that metrics would be used to evaluate the final TCL Job
Compiler. Metrics can be used to measure various attributes of a software system in order
to achieve an idea of overall quality. It is particularly applicable for a project that is
concerned with the reengineering of an older system. Presumably, a requirement for a
reengineering project is the improvement of quality. Therefore, it would be prudent to try
and prove that an improvement of quality has taken place.
It was not possible to employ metrics during this project for two reasons. Firstly, time
constraints resulted in there being insufficient time to conduct an adequate suite of
metrics. The idea of metricsxiv was presented to the year through a semester one module.
Unfortunately, the time plan for the project had already been established by the time
metrics had been introduced to the year. Although the time plan could have been altered
to include metrics, it was decided that there were other more important areas to focus on,
particularly in light of the increased time constraint (refer to 7.3.2).
Secondly, the comparison of metrics relies on having one value to compare to each other.
Although the author acknowledges that it would have been possible to conduct metrics on
the current TCL Job Compiler, it would have been extremely difficult to do so, particularly
for some of the more complex metrics, such as LCOM (Lack of Cohesion Of Methods).
Therefore, it would not be possible to compare the systems using metrics in any case.
7.8.2 System Discussion
The previous sections have focused on the limitations on the reengineering of the TCL
Job Compiler. It is therefore likely that the previous sections may have painted the project
in an unsuccessful light. However, this is not the case.
As a whole the project was a success, given the ambitious requirement of reengineering the
current TCL Job Compiler. Please refer to 7.7.2 above for details of the project
completeness. The system resulted in being larger than had originally been thought. It was
feared that it would not be possible to produce a working version of the TCL Job
Compiler. At one point of the project, it seemed only probable to have the functionality to
produce the configuration file for the final product.
However, with much hard work, it was possible to implement the fully working system,
quite an accomplishment when considering the lack of support and technical knowledge
for the original system. It is the opinion of the author that many of the shortcomings of
the project (those already identified) are of little significance when considering the overall
achievement of the system (i.e., developing a fully working system).

xiv Metrics taught as part of SEM3510 (Semester 1) by eds.

Chapter 7 - Limitations and Evaluation

96

7.9 The Future for the TCL Job Compiler
It is hoped that the reader understands the difficulty associated with the reengineering of
the TCL Job Compiler. In reading this chapter, as well as the rest of the report, it should
be clear as to the downfalls of the original system. The fact that no one fully understands
the current system is a testament to its user-unfriendly complexity. The state of the current
system destined it to lifecycle of maintenance by code hacking.
In comparison the new system endevours to provide a more maintainable environment. It
does this by offering improved:

· Readability
· Portability
· Versatility
· and as a consequence, Maintainability.

These improved attributes allow the TCL Job Compiler to be more easily maintained,
upgraded and appended. As mentioned in 2.7, the Biomek system can operate up to 8
pipettes at a time. This introduces the possibility of increasing productivity by up to 8
times. Although this has not been implemented in the existing new system, it should not
represent too much of a problem if someone should decide to include this in the future.
There are other possibilities for improving the productivity of the TCL Job Compiler.
Other heuristic approaches can be researched and explored and then implemented with
greater ease thanks to the new TCL Job Compiler. These kinds of alterations would be
unheard of when using the current TCL Job Compiler.

REFERENCES

97

hapter

References

8

REFERENCES

98

[1] ARNOLD 93 – dictionary definition (translated from French)
[2] Attwood T.K, Parry-Smith D.J – Introduction to Bioinformatics, Cell and Molecular
Biology in Action Series, Pearson Education Limited, 1999.
[3] Bartow, G. Custom LIMS Help Maximize Laboratory Productivity. Scientific Computing
and Instrumentation Online (Oct 1998) Available www.scamag.com.
[4] BioScript Pro Programmer’s Guide, Document 609848-AA.
[5] Boeijen, F.P.M. The Total Qualified Laboratory. Scientific Computing and Instrumentation
Online (Nov 1999) Available www.scamag.com.
[6] Botstein D., Chervitz S.A. & Cherry J.M. Genetics: Yeast as a model organism. Science,
277, (1997).
[7] Bryant C.H., Muggleton S.H., Oliver S.G., Kell D.B., Reiser P., King R.D. – Combining
Inductive Logic Programming, Active Learning and Robotics to Discover the Function of
Genes. Linkoping University Electronic Press, Linkoping, Sweden. December 2001.
[8] Coles, S. An XML Interface to LIMS. Scientific Computing and Instrumentation Online (Nov
1999) Available www.scamag.com.
[9] Dugdale, D. Web Services Come of Age. DevX Online Articles (Dec 2000). Available
www.devx.com.
[10] I.J. Farkas, H. Jeong, T. Vicsek, A.-L. Barabási3 & Z.N. Oltvai1 - The topology of the
transcription regulatory network in the yeast, S. cerevisiae - http://xxx.lanl.gov/ftp/cond-
mat/papers/0205/0205181.pdf
[11] Ganjei, J.K & Bergen, A.W. LIMS Customization for Biomedical Research. Scientific
Computing and Instrumentation Online (May 2001) Available www.scamag.com.
[12] A. Goffeau et al – Life with 6000 Genes. From Science Magazine: Enhanced Perspectives.
[13] Heiter P., Boguski M. - Functional Genomics: It’s all how you read it., Viewpoints,
Science, Vol 278, pp601, 24th October 1997.
[14] Hunkapiller, T & Hood, L. LIMS and the Human Genome Project. Bio/Technology Vol
9 p1344-1345 (Dec 1991).
[15] Hunt J. – The Unified Process for Practitioners, Object Oriented Design, UML and
Java. Springer – Practitioner Series, 2000.
[16] IMS World Review 2001, OECD http://www.oecd.org/std/nahome.htm,
downloaded August 2001, Office for National Statistics.
[17] Jones, J.H. Extending Laboratory Data Management with Web Services. Scientific
Computing and Instrumentation Online (Nov 2001) Available www.scamag.com.

http://www.scamag.com
http://www.scamag.com
http://www.scamag.com
http://www.devx.com.
http://xxx.lanl.gov/ftp/cond-
http://www.scamag.com
http://www.oecd.org/std/nahome.htm
http://www.scamag.com.

REFERENCES

99

[18] Joyce, J.R. Searching for the Service in ASP. Scientific Computing and Instrumentation
Online (Nov 2001) Available www.scamag.com.
[19] Mcdowall, R.D. A Matrix for the Development of a Strategic Laboratory Information
Management System. Analytical Chemistry Vol 69 No.20 p896A – 901A (Oct 1993).
[20] Miller, S. A Practical Approach to LIMS Selection. Scientific Computing and
Instrumentation Online (May 2001) Available www.scamag.com.
[21] Muggleton S.H., Bryant C.H. – Theory Completion using Inverse Entailment, In Proc.
of the 10th International Workshop on Inductive Logic Programming (ILP-00), Berlin, 2000.
Springer-Verlag.
[22] O’Reilly –Wireless Java Opens the Door for New Handheld Applications: O'Reilly's
"Learning Wireless Java" Brings Developers Up to Speed, O’Reilly Press Room, January 17th
2002, available at: http://press.oreilly.com/wirelessjava.html
[23] Redman, J. The Laboratory Equipment Control Interface Specification. Scientific
Computing and Instrumentation Online (Nov 1999) Available www.scamag.com.
[24] Reiser P.G.K., King R.D., Kell D.B., Muggleton S.H., Bryant C.H., Oliver S.G. –
Developing a Logical Model of Yeast Metabolism. Linkoping University Electronic Press,
Linkoping, Sweden. August 1998.
[25] Rofrano J.J. – Java Portability by Design, Dr. Dobb's Journal, June 1999 – available at:
http://www.ddj.com/documents/s=902/ddj9906c/9906c.htm
[26] ScreamingMedia – Chordiant Software Inc - Sails Through Java Portability Tests,
Market News Publishing, March 28th 2002.
[27] Smith, K. Data Transfer Using XML. Scientific Computing and Instrumentation Online (Nov
2000) Available www.scamag.com.
[28] Sommerville I. – Software Engineering 5th Edition. Addison-Wesley. 1995
[29] Staab, T.A. Next Generation LIMS. Scientific Computing and Instrumentation Online (Nov
1999) Available www.scamag.com.
[30] Tagger B. – Requirements Definition, Available in Appendix A, 25/11/02
[31] Tagger B. – Analysis of the Current TCL Job Compiler, Available in Appendix A,
1/12/02
[32] Tagger B. – System Design Specification, Available in Appendix A, 27/02/03
[33] Tagger B. – Basic Test Plan, Available in Appendix A, 14/01/03
[34] Tagger B. – Subsystem Test Specification, Available in Appendix A, 28/02/03
[35] Tamaddoni A., Muggleton S.H. – Closed Loop Machine Learning: Complexity of
ASE-Progol. Jan 2002

http://www.scamag.com
http://www.scamag.com.
http://press.oreilly.com/wirelessjava.html
http://www.scamag.com
http://www.ddj.com/documents/s=902/ddj9906c/9906c.htm
http://www.scamag.com
http://www.scamag.com

REFERENCES

100

[36] The Association of the British Pharmaceutical Industry, www.abpi.org.uk/statistics/section
[37] Thein S.L. – Thalassaemia Prototype of a Single Gene Disorder with Multiple
Phenotypes. Department of Haematological Medicine - www.ish2002.org/main1/pdf/822.pdf
[38] Webber, J. A survey of LIMS Satisfaction. Scientific Computing and Instrumentation Online
(Nov 2000) Available www.scamag.com.
[39] Website - http://www.scms.rgu.ac.uk/staff/chb/closedloop.html
[40] Website - http://tcl.sourceforge.net/faqs/tcl/part1.html
[41] Wired - Microsoft Says Java Is Best on Windows, June 17th 1997, available at:
http://www.wired.com/news/technology/0,1282,4491,00.html
[42] XREFdb – Data held in from the National Center for Biotechnology. Information at:
http://www.ncbi.nlm.nih.gov/Bassett/cerevisiaie/index.html.
[43] Fowler, M. – Refactoring: Improving the Design of Existing Code. Booch, Jacobson and
Rumbaugh Object Technology Series, 2000.

http://www.abpi.org.uk/statistics/section
http://www.ish2002.org/main1/pdf/822.pdf
http://www.scamag.com
http://www.scms.rgu.ac.uk/staff/chb/closedloop.html
http://tcl.sourceforge.net/faqs/tcl/part1.html
http://www.wired.com/news/technology/0,1282,4491,00.html
http://www.ncbi.nlm.nih.gov/Bassett/cerevisiaie/index.html

101

ppendix

Part A: Requirements Definition
Part B: Analysis of the Current TCL Job Compiler
Part C: System Design Specification
Part D: Basic Test Plan
Part E: Subsystem Test Specification

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 1 of 8

REQUIREMENTS DEFINITION

Author: Ben Tagger (bnt8)
Date: 25/11/2002
Version: 2.0
Status: Release

Department of Computer Science
University of Wales
Aberystwyth
Ceredigion
SY23 3DB
Copyright © University of Wales, Aberystwyth 2003

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 2 of 8

CONTENTS

1. Introduction..3
1.1 Purpose of the Document...3
1.2 Scope..3
1.3 Objectives ..3

2. Basic Requirements ...3
2.1 Functional Requirements ...3
2.2 Non-functional Requirements ..4

3. Functional Requirements ...4
3.1 Input Requirements ..4

3.1.1 Experiments ... 4
3.1.2 Tools .. 5
3.1.3 Substances.. 5
3.1.4 Surfaces.. 5

3.2 Output Requirements ...6
3.2.1 Job files .. 6
3.2.2 Log ... 6

3.3 Error handling ..7
4. Non-Functional Requirements ...7

4.1 Efficiency...7
4.2 Versatility...7
4.3 Portability...7
4.4 Job files ..8

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 3 of 8

1. INTRODUCTION

1.1 Purpose of the Document

This document aims to provide a requirements definition of the TCL compiler system.
This software requirements definition will provide an abstract description of the
services that the system should provide, taking into account the constraints under
which the system must operate.

1.2 Scope

This document should only describe the external behaviour of the TCL compiler and
should not be concerned with design characteristics or any of the internal
complexities. Consequently, the requirements should not be written with the use of an
implementation model.

1.3 Objectives

This document should be written in such a way that it is understandable for a
customer with no specialised knowledge of the system/industry. It is therefore
preferable for the requirements definition to be expressed in natural language and
intuitive diagrams. From this document, the reader should be able to establish the
primary functions of the TCL compiler and be able to identify some of the constraints
of the proposed system. One of the objectives of this document is to achieve a level of
clarity for the reader to completely understand the requirements of this TCL compiler.
It is also important to achieve a distinct difference between functional and non-
functional requirements.

2. BASIC REQUIREMENTS

The most basic and all-encompassing requirement for this project is that the new
system completely mimics the old system. That it, there should be no functional
difference, externally. This section will describe some of the different types of
requirement and then section 3 will describe the requirements in more detail.

2.1 Functional Requirements

The functional requirements describe the services that the system will provide. It
should describe how the system should react under certain data inputs and in certain
situations. It will also describe the output that is expected from the system.

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 4 of 8

2.2 Non-functional Requirements

The non-functional requirements state the constraints that are placed upon the system.
These can include timing constraints, constraints on the development process and
implications of possible safety-related hazards. It will also include some of the
standards that are applicable to the project.

3. FUNCTIONAL REQUIREMENTS

This section will describe some of the functional requirements. For a description of
what is meant by functional requirements, please refer to 2.1. Below is an overview of
the inputs and outputs that are relevant to the TCL compiler.

3.1 Input Requirements

Below is a description of the inputs that will be required to be handled by the TCL
compiler system. These files will be made available by the ASE-Progol system and
will placed in specific directories to be accessed by the TCL compiler. The four input
files that can be seen above are all that is required for the operation of the TCL
compiler. These four files must be implemented and integrated into the new TCL
compiler system. There must be some process of “reading in” the information
contained within these configuration files and then this data must be handled in some
appropriate way.

3.1.1 Experiments

Expt.txt

RsConfig.txt

Substances.txt

Surface.txt

TCL
Job

Compiler

Job0.txt
.
.
.
JobN.txt

LOG

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 5 of 8

The experiments constructed during the ASE-Progol phase of operation are placed in
the file, Expt.txt. This file contains the details of all the experiments that are to be
prepared by the Biomek station. It contains information of every experiment that is to
be conducted in every single well. An example of an experiment, as documented
within Expt.txt, can be seen below:

E11
minimal-agar 120
wild-type:E-2 20
C00166:2E-1 20
time 57600

The above data set would constitute a single experiment. ‘E11’ constitutes the well in
which the experiment is to be performed. Then, there is a list of the substances and
amounts that comprises the experiment. Lastly, the time dictates the length of time
taken for the experiments.

3.1.2 Tools

The configurations of all the tools that are to be used within the Biomek station are
contained within the RsConfig.txt file. The contents of this file will need to be passed
on to the Biomek workstation by some means.

3.1.3 Substances

A description of all the possible substances that can be used in the experiments are
supplied within the Substances.txt file. The substances named within this file need to
match up with the substances documented for the experiments in Expt.txt. If they do
not, then the attributes of some substances in the Expt.txt, will be missing. An
example of the Substances file is shown below:

minimal-agar 0 0 0 0 1 0 1 0
YDR007W:E-2 0 0 0 0 1 0 1 1
C00166:2E-1 0 0 0 0 1 0 1 0
C00108:2E-1 0 0 0 0 1 0 1 0

3.1.4 Surfaces

The configuration of the work surface of the Biomek workstation is contained within
the Surfaces.txt file. This file is for use within the TCL compiler in order to process
the experimentation steps correctly. For example, the following line:

B3 96-well flat

indicates that in the B3 section of the work surface, there is a flat-based plate with the
standard 96 wells (8x12).

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 6 of 8

3.2 Output Requirements

Below is a description of the files that are to be outputted from the TCL compiler
system.

3.2.1 Job files

The job files are created within the TCL compiler and passed to the Biomek
processing system. The creation of these job files constitutes the main function of the
TCL compiler. These job files consist of lines of instructions written in a scripting
TCL language, called BioScript PRO. The way these files are created and the order in
which the commands are written will have a bearing effect on the correctness of
operation as well as the speed and efficiency of operation of the Biomek workstation.
The job files are created as a set of files, the first being called JOB0.txt and each
subsequent files being JOB1.txt, JOB2.txt and so on. JOB0.txt is concerned with
setting up the Biomek workstation, containing all the parameters and configuration
material needed. Subsequent job files then contain the commands for the operation of
the robot scientist. An example of a command contained within the job files is shown
below:

Log "Aspirating C00166:2E-1 from B5A2 (volume 20.0)"
Move Abs T 15.6502
Move Abs Z 9.26959999
putres system pod dirty_tip 1
Move Rel T 14.5822
Delay 0
Move Rel T -1.322
Move Abs Z 46.869999
Move Abs [Coord A4 B4] 22.17

This selection of files describes an aspiration process. The details of this process will
not be explained explicitly here (largely as they are not themselves fully understood),
but it is clear that coordinates and measurements are placed into the system to control
various parts of the robot. The job files are constructed using these basic commands
(Move, Delay, Put, etc).

3.2.2 Log

A log will be kept as part of the output process. To a degree, the job files can be used
as a log to the extent that they record the output of the TCL compiler. The log file will
contain purpose-built log information, but will be most useful when used in
conjunction with the job files.

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 7 of 8

3.3 Error handling

The system should provide some error handling. There is no sign of any kind of error
handling in the present TCL compiler. The system should, at the very least, be capable
of detecting that an error has occurred, inform the user, and prevent the system from
performing any further actions that could constitute a danger. Although, the TCL
compiler should not be described as a safety-critical (or even a safety-related) system,
it is important to note that there are some safety implications to be taken into
consideration. The control of any kind of machine should be considered from a safety-
oriented point of view and the TCL compiler is no exception. For example, the robot
scientist has the capability to pour a liquid (possibly hazardous) onto parts of itself.
This has an obvious economic implication and is clearly undesirable. Adequate error
handling can have a direct effect on these kinds of scenarios.

4. NON-FUNCTIONAL REQUIREMENTS

The following section describes the non-functional requirements identified to date for
the TCL compiler system. For a description of what is covered by the term non-
functional requirements, please see 2.2.

4.1 Efficiency

The system will need to plan the sets of experiments in such a way that allows the
Biomek machine to work in a sufficiently efficient manner, which does not endanger
either itself, or any potential users. The Biomek robot works with hazardous materials
and as such, must be provided with adequate protection.

4.2 Versatility

Versatility involves providing a system that can operate on more than one level. The
solution it provides should be able to be applied to more than one domain (the domain
it was primarily designed for). The more versatile a system can be made, the more
useful it can be for future use.

4.3 Portability

Portability is concerned with providing a system that can be used in a different
domain, without the requirement of too much reworking. The system should be able
to be moved between systems easily and with as little low-level work as possible.

SEM49060 Major Project – Requirements Definition

UW Aberystwyth/Computer Science Page 8 of 8

4.4 Job files

There are some constraints on the way the job files are written. Firstly, the job files
must be written using BioScript PRO (TCL). Although there are no current time
constraints, it is beneficial to have the job files completed in the fastest time possible.
The current system completes in about five minutes, so it shouldn’t be too difficult to
undercut that time. However, it is the experimentation process that takes the greatest
amount of time. This can take times up to two days, so any time that can be saved here
is extremely desirable. The job files should be engineered so that the experiments can
be completed in the fastest time possible.

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 1 of 12

ANALYSIS OF THE CURRENT TCL COMPILER

Author: Ben Tagger (bnt8)
Date: 01/12/2002
Version: 3.0
Status: Release

Department of Computer Science
University of Wales
Aberystwyth
Ceredigion
SY23 3DB
Copyright © University of Wales, Aberystwyth 2003

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 2 of 12

CONTENTS

1. Introduction... 3
1.1 Purpose of the Document ..3
1.2 Scope..3
1.3 Objectives...3
1.4 Constraints of the Document ...3

2. Analysis of the Current TCL Compiler ... 3
2.1 Overview ..3
2.2 Starting the Compiler ..4
2.3 The ‘Create’ Process ...5
2.4 Setting up of the Experiments ...7
2.5 Creating the Experiment Steps ..9
2.6 A Liquid Transfer ...11

3. Further Work.. 12

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 3 of 12

1. INTRODUCTION

1.1 Purpose of the Document

This document aims to provide an analysis of the current TCL Job Compiler. This
document endevours to explain and describe some of the processes encountered in the
current system, providing some flow control diagrams where appropriate. It was
hoped that this analysis would provide some useful information for the construction of
a new system and potentially form some basis for the design of the new system.

1.2 Scope

This document will only attend to specific points of operation of the current TCL Job
Compiler. It will only be concerned with certain areas of useful functionality and is
not intended to be complete.

1.3 Objectives

This document aims to provide assistance in the conception, design and
implementation of the new TCL Job Compiler. The document will probably only be
useful for those people who have worked, or are familiar with, the current TCL Job
Compiler. Upon reading this document, the reader should be aware of some of the
functionality and workings of the current TCL Job Compiler and also should be
aware, first hand, to some of its shortcomings.

1.4 Constraints of the Document

Upon reading this document, it should be obvious that it is not a complete analysis
and should not be considered as such. The original intention was that this document
would be complete and exhaustive, but upon starting the analysis, it was concluded
that a complete analysis would be difficult, time-consuming and be of limited value.

2. ANALYSIS OF THE CURRENT TCL COMPILER

2.1 Overview

Creating an idea of the whole system in this case has proved to be extremely difficult.
There are over 4000 lines of TCL code as well as many more lines of configuration
data, which have to be thoroughly worked through in order to ascertain a complete
picture of the system. There appears to be little definite structure within the code and
there are very few useful comments. This makes the design of the system very hard to

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 4 of 12

represent, both through initial understanding of the system and when trying to
demonstrate it on paper. However, the following section provides an attempt to
present the design of the existing system and hopefully provide the reader with an
insight into why the current system needs to be professionally reengineered.

It is important to remember that the following section does not aim to provide a
complete analysis of the workings of the TCL Job Compiler, but simply a brief
analysis on what is considered to be the most important areas.

2.2 Starting the Compiler

The compiler is started using a shell file (or batch file when using MSDOS). This
basically just specifies some working directories for the compiler to use and also
starts the compiler system with the line;

$TCLSH $RS_HOME/Compiler/compiler.tcl $RS_HOME $EXPT

This line calls the TCL analyzing tool and passes Compiler.txt to it with some
parameters. Compiler.txt is the first TCL file that is called. Its purpose is largely to
provide configuration details for the system, setup the system, and to set the system
running. It also cleans up the arrays and registers used during the system process,
deleting all of the elements of the various variables. It then calls a serious of definition
files, which provide descriptions and measurements of various parts of the system.
For example, it provides the dimensions of the various pipetting tools and details of
the volumes of liquid that they can manipulate. Finally, the System_Run() procedure
is called.

The System_Run() procedure has two main functions. The first is the creation and
setting up of the experiments. The second is concerned with performing the
experiments. These will be discussed concurrently. This is also the order in which the
functions occur in the system.

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 5 of 12

2.3 The ‘Create’ Process

The experiments are arranged in an informal hierarchy. An ExperimentSet contains a
number of ExperimentPlates and in turn, a ExperimentPlate contains a number of
Experiments. It should be made clear that there are no formal connections between
these three items, only a methodological idea. The following is an extremely
simplified graphical representation of how the experiments are initialised and set up,
and how the entities are seen to be given an impression of hierarchy.

The following diagram is an illustration of the data flow for the current system
regarding the setting up of the experiments. It would have been preferable to use
UML to demonstrate this. However this was not possible as the current system does
not employ use of the entities that UML is generally used for (classes, class attributes,
objects, etc.). It is hoped that the diagram is comprehendible nonetheless.

The boxes represent the various groups of procedures found in the current system. At
first glance, these may look like classes and the procedures below them, relating to the
class. However this is slightly misleading. The current system groups common
procedures according to their function and placement. For example, the procedures
that control the properties and functionality of the Experiments are all listed in a file
called Experiment.tcl. This gives the impression of a kind of structure without
explicitly defining it. So, for example, the create procedure within the Experiment.tcl
file is not called create() as it is suggested in the diagram, rather it is called
Experiment_Create().

The terminology can therefore be thought of as the following;

ExperimentSet_Create(Expt.txt)

ExperimentPlate_Create(ID, Expt.txt, current_line)

Experiment_Create(Expt.txt, line, plate, well)

x.tcl – e.g. Experiment.tcl

Filename

Procedure1()

Procedure2() Procedures within the
File (e.g.
Experiment_Create())

Points
representing
inputs or
outputs to the
corresponding
procedures

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 6 of 12

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 7 of 12

2.4 Setting up of the Experiments

The following is a step-by-step account of how the experiments are set up in the
current system. The experiment creation is initiated from the System_Run()
procedure.

1. The System_Run() procedure calls ExperimentSet_Create() procedure and
passes to it a link to the Experiment data outputted by the ASE-Progol system
(Expt.txt). Expt.txt is a text file that lists each and every experiment to be
completed. It is assumed that each experiment contained in Expt.txt will
occupy on well in one plate.

2. The ExperimentSet_Create() procedure creates a ExperimentSet variable
which is a 2-dimensional array consisting of an ID and a number of
ExperimentPlates. The procedure then creates a number of ExperimentPlates
using the ExperimentPlate_Create() procedure, passing to it an ID, Expt.txt,
and a pointer to the first line of Expt.txt. The procedure will continue to create
ExperimentPlates until there are no more left to create.
ExperimentSet_Create() must create an ExperimentPlate before adding it to
the ExperimentSet.

3. The ExperimentPlate_Create() procedure creates an ExperimentPlate, with
various attributes. After a labware tools check, it retrieves a pointer to the first
available well of the plate (this is referred to as A1). The procedure then calls
the Experiment_Create() procedure passing to it, Expt.txt, the current line of
Expt.txt, the plate and the well. The idea is to create the experiment in that line
of Expt.txt in the designated well (indicated by the variable inputs- plate,
well). The procedure will continue to call Experiment_Create() until there are
no more Experiments to create.

4. The Experiment_Create() procedure creates and sets up an Experiment using
the details from the given line in Expt.txt. The procedure creates a
MediaComponent using the name and amount of the substance specified
within Expt.txt. The system keeps a record of all the substances used (possibly
within Substance.tcl).

5. Finally, a pointer to the experiment is added to the substance and a record of
the substance used is passed to the ExperimentPlate.

In this way, a whole set of experiments are built up. Again, it is necessary to mention
that this description is by no means a complete analysis of the process involved, but
does strive to capture the most important areas of design.

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 8 of 12

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 9 of 12

2.5 Creating the Experiment Steps

Looking at the diagram on the previous page is no easy task. It seems very convoluted
and the reason for that is that it simply easy convoluted. It differs from the previous
diagram in that there are no labels documenting the variables passed between
procedures. It was deemed that this would make the diagram even more cluttered and
serious reduces its readability. The variables will be mentioned during the following
textual analysis of this process.

The creation of the experiment steps is initiated from the ExperimentPlate_Create ()
procedure with the line;

ExperimentPlate_MakeExperimentSteps $curId

An ID to an ExperimentPlate (that contains a substance list) is passed to the
procedure, MakeExperimentSteps.

1. The substance list of the ExperimentPlate is sorted into three different
categories. These are lknockout (Yeast), lagar, and lgrowthmedia.

2. Each item from the lgrowthmedia category is passed to the
MakeSubstancePipetting procedure along with its ExperimentPlate.

3. Within MakeSubstancePipetting(), Substance_GetExperimentList is called.
This returns a list of all the experiments that the given substance is used in. So,
MakeSubstancePipetting() now has a record of all the experiments that involve
this specific substance.

4. For each experiment that uses the substance, Experiment_GetWell and
MediaComponent_GetAmount() are called to return the target well that the
substance is to be deposited in and the required amount that is to be deposited.

5. The target well, amount and substance variables are passed to the
LiquidTransfer_Create() procedure. This procedure creates an
ExperimentStep, which is passed back to MakeSubstancePipetting().

6. ExperimentPlate_AddExperimentStep is called and the newly created
ExperimentStep is passed to it, thus adding the experiment step to the
experiment plate.

7. Steps 2 – 6 are repeated, but using the lagar category.

8. ExperimentPlate_AgarDelay is called as the agar needs time to cool down
before other operations can take place.

9. Steps 2 – 6 are repeated, but using the Lknockout category.

In this way, a series of experiment steps are sequentially built up in the right order
until a complete set exists.

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 10 of 12

Another part of the system worth mentioning here is the ExperimentSet_
ExecuteSubstances() procedure. This seems to be a fairly linear procedure that runs
through the various experiment steps of each of the mediums. It is here that the
experiment steps are actually executed for all the plates in the entire experiment set.

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 11 of 12

2.6 A Liquid Transfer

Arguably the most important part of the TCL Job Compiler is the process of
transferring a liquid. The robot, a Beckman Coulter 2000, is a workstation primarily
for the transferring of liquids. The experiments are built and exectued using sequences
of liquid transfers. The job file consists of many hundreds of liquid transfers and,
therfore, it seems prudent to explore the creating of a liquid transfer within the current
TCL Job Compiler.

The following analysis is from a sample job file from the operation of the current
TCL Job Compiler. The arrows attempt to display the scope of each of the TCL
functions.

Log "---- Step: Md"

Liquid_Transfer_Create
Log "Executing LiquidTransfer: Md"

Pipetting_Tool_Init
Tool attach P20

Tip_Attach
Log "Attaching tip 4W (row 1, column 1)"
Tip attach dispose P20 P20 P20
Log "Attaching to P20 tip in row 1, column 1"

Move Abs [Coord B5 A2] 46.869999

Well_CheckVolume
Log "Checking volumes: 19980.0, 23600.000000"

Pipetting_Tool_Aspirate
Log "Aspirating C00166:2E-1 from B5A2 (volume 20.0)"

PipettingTool_Prewet

PipettingTool_SuckAir
Move Abs T 15.6502

Move Abs Z 9.26959999

PipettingTool_SetDirty
putres system pod dirty_tip 1

Move Rel T 17.8872
Delay 0
Move Abs Z 44.869999
Move Abs T 15.6502
Delay 0

PipettingTool_SquirtAir
Move Abs T 9.000000

Delay 0

SEM49060 Major Project – Analysis of the Current TCL Compiler

UW Aberystwyth/Computer Science Page 12 of 12

PipettingTool_SuckAir
Move Abs T 15.6502

Move Abs Z 9.26959999

PipettingTool_SetDirty
putres system pod dirty_tip 1

Move Rel T 14.5822
Delay 0
Move Rel T -1.322
Move Abs Z 46.869999

Move Abs [Coord A4 A4] 22.17

Well_CheckVolume
Log "Checking volumes: 20.0, 362.760010"

PipettingTool_Dispense
PutVal tools P20 max_velocity 2
Move Abs Z 18.5725
Move Abs T 15.6502
PutVal tools P20 max_velocity 25.000000
Delay 0
Move Abs Z 20.170000

PipettingTool_SquirtAir
Move Abs T 9.000000

Delay 0

Well_AddSubstance
Log "Performing Well_AddSubstance; Well: A4A4; C00166:2E-1"

Log "Transfer from B5A2 to A4A4 complete, volume 20.0"

3. FURTHER WORK

Please refer to the chapters 4 and 5 of the report (3) for details of how the analysis of
the current TCL Job Compiler contributed to the project.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 1 of 74

SYSTEM DESIGN SPECIFICATION

Author: Ben Tagger (bnt8)
Date: 27/02/2003
Version: 4.0
Status: Release

Department of Computer Science
University of Wales
Aberystwyth
Ceredigion
SY23 3DB
Copyright © University of Wales, Aberystwyth 2003

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 2 of 74

CONTENTS

1. Introduction... 4
1.1 Purpose of this Document ...4
1.2 Scope..4
1.3 Objectives...4

2. Outline of structure... 4
2.1 Introduction ..4
2.2 Outline of System Function...4
2.3 Module Descriptions...5

2.3.1 Substance Class.. 5
2.3.2 MediaComponent Class.. 5
2.3.3 SubstanceList Class.. 5
2.3.4 Experiment Class ... 5
2.3.5 ExperimentPlate Class.. 5
2.3.6 LogItem Class .. 5
2.3.7 Log Class ... 5
2.3.8 Tip Class .. 5
2.3.9 TipRack Class .. 6
2.3.10 LabWare Class ... 6
2.3.11 Tool Class .. 6
2.3.12 TipList Class .. 6
2.3.13 TipRackList Class .. 6
2.3.14 LabWareList Class ... 6
2.3.15 ToolList Class .. 6
2.3.16 Surface Class.. 6
2.3.17 SurfaceObject Class ... 6
2.3.18 TipRackSurfaceObject Class .. 6
2.3.19 LabWareSurfaceObject Class ... 6
2.3.20 ToolSurfaceObject Class .. 7
2.3.21 SubstanceSurfaceObject Class.. 7
2.3.22 WorkStation Class.. 7
2.3.23 Configurator Class ... 7
2.3.24 LiquidTransfer Class .. 7
2.3.25 StepBuilder Class ... 7
2.3.26 Step Class .. 7

2.4 Detailed Description of each Module ..8
2.4.1 Substance Class.. 8
2.4.2 MediaComponent Class.. 10
2.4.3 SubstanceList Class.. 12
2.4.4 Experiment Class ... 14
2.4.5 ExperimentPlate Class.. 16
2.4.6 LogItem Class .. 18
2.4.7 Log Class ... 19
2.4.8 Tip Class .. 21
2.4.9 TipRack Class .. 22
2.4.10 LabWare Class ... 24
2.4.11 Tool Class .. 26
2.4.12 TipList Class .. 28
2.4.13 TipRackList Class .. 30

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 3 of 74

2.4.14 LabWareList Class ... 32
2.4.15 ToolList Class .. 34
2.4.16 Surface Class.. 36
2.4.17 SurfaceObject Class ... 38
2.4.18 TipRackSurfaceObject Class .. 40
2.4.19 LabWareSurfaceObject Class ... 42
2.4.20 ToolSurfaceObject Class .. 44
2.4.21 SubstanceSurfaceObject Class.. 45
2.4.22 WorkStation Class.. 47
2.4.23 Configurator Class ... 49
2.4.24 LiquidTransfer Class .. 51
2.4.25 StepBuilder Class ... 54
2.4.26 Step Class .. 56

3. Analysis of Subsystems ... 57
3.1 The Experiment Creation Subsystem...57

3.1.1 The Substance Subsystem .. 57
3.1.1.1 Overview.. 57
3.1.1.2 Functionality .. 58
3.1.1.3 Dependencies ... 58

3.1.2 The Experiment Subsystem .. 58
3.1.2.1 Overview.. 58
3.1.2.2 Functionality .. 59
3.1.2.3 Dependencies ... 59

3.2 The Log Subsystem...59
3.2.1.1 Overview.. 59
3.2.1.2 Functionality .. 59
3.2.1.3 Dependencies ... 60

3.3 The Configurator Subsystem...60
3.3.1.1 Overview.. 60
3.3.1.2 Functionality .. 60
3.3.1.3 Dependencies ... 61

3.4 The Surface Subsystem...61
3.4.1.1 Overview.. 61
3.4.1.2 Functionality .. 62
3.4.1.3 Dependencies ... 62

3.5 The Builder Subsystem ...63
3.5.1.1 Overview.. 63
3.5.1.2 Functionality .. 63
3.5.1.3 Dependencies ... 64

4. Subsystem Sequence Diagrams .. 65
4.1 The Experiment Creation Subsystem...66
4.2 The Log Subsystem...67
4.3 The Configurator Subsystem...68
4.4 The Surface Subsystem...69
4.5 The Builder Subsystem ...70

5. TCL Job Compiler .. 71
5.1 Overview ..71
5.2 Illustration ..72
5.3 Description of TCL Job Compiler ...73

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 4 of 74

1. INTRODUCTION

1.1 Purpose of this Document

The purpose of this document is to provide the reader with an outline of the system. It
should provide a detailed plan from which a system can be implemented. It should
address the system in a logical, progressive fashion detailing the sub-systems one by
one until a complete picture of the whole system is achieved. This document should
also be of use for subsequent alterations and maintenance of the system when
required.

1.2 Scope

This document specifies the design outlines so that the analysis, implementation and
testing phases can be conducted completely and correctly. As this document is not
required as part of the SEM490 project, there may be absent or erroneous items
contained within the document. Apologies are made in advance for this, but it should
be noted that the workload for a SEM490 project is such that a complete, exhaustive
set of documents is quite impossible (as they are not directly required as deliverables).

1.3 Objectives

To provide an outline of the system that is to be implemented and to provide a
historical reference/manual for the current system.

2. OUTLINE OF STRUCTURE

2.1 Introduction

The following section will describe the system design of the TCL compiler.

2.2 Outline of System Function

The following are requirements for the TCL compiler system:

1. Establish a connection with the various configuration files: Substances.txt,
Expt.txt, RSConfig.txt, etc.

2. Analyse the data contained within these files, parse and tokenize the files to a
logical representation of the experiment configuration within the system.

3. Create a series of JOB files (JOB0.txt, JOB1.txt…..JOBN.txt) and populate
them with the Bioscript pro (TCL) used by Biomek Workstation to conduct
the experiments.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 5 of 74

2.3 Module Descriptions

The following section provides a brief description of all the modules that will be
implemented in the final TCL Compiler system.

2.3.1 Substance Class
A class representing a single substance as described by the configuration file,
Substances.txt. There are ten substances described in this file, each with nine
attributes each and the class Substance aims to represent a single one.

2.3.2 MediaComponent Class
An experiment that contains a certain substance will have a corresponding amount of
the substance. The class, MediaComponent represents a component within a single
experiment – so, a substance and an amount.

2.3.3 SubstanceList Class
A class that represents the list of the ten substances described in the configuration file,
Substances.txt.

2.3.4 Experiment Class
A class representing a single experiment contained within a single well of an
experiment plate. The class Experiment will contain information regarding the
experiment, including the media components used, the location (well) and the length
of the experiment.

2.3.5 ExperimentPlate Class
A class representing a plate of experiments. The plate can be of any size, but the
default is 8 X 12, in accordance with the plate standard (insert standard). This class
provides methods for adding experiments and also for populating an ExperimentPlate
with Experiments.

2.3.6 LogItem Class
A class that represents a single Log entry. LogItem will contain a single string relating
to the log entry.

2.3.7 Log Class
This class handles the LogItem objects. It provides a single log item and provides the
user with the ability to write the log to a file.

2.3.8 Tip Class
A class that represents a single type of tip used in the experiments.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 6 of 74

2.3.9 TipRack Class
A class that represents the tip racks used in the experiments.

2.3.10 LabWare Class
A class that represents the types of labware used in the experiments. (i.e., the plates
and wells)

2.3.11 Tool Class
A class that represents the different types of tool used in the experiments. (i.e., the
grippers and the pipettes).

2.3.12 TipList Class
A class that holds a list of the types of tips.

2.3.13 TipRackList Class
A class that holds a list of the types of tip racks.

2.3.14 LabWareList Class
A class that holds a list of the types of lab ware.

2.3.15 ToolList Class
A class that holds a list of the types of tools.

2.3.16 Surface Class
A class that represents the surface area of the Biomek robot work station. This surface
area is split into 12 sub-areas, each of which may be partitioned again. The details of
the surface are supplied in the file, Surface.txt. The Surface will hold an array of
SurfaceObjects (See 2.3.17).

2.3.17 SurfaceObject Class
A class that represents a type of surface object that can be placed in the surface.
SurfaceObject is to be the super class of several other types of more specific surface
object.

2.3.18 TipRackSurfaceObject Class
A class that represents a tip rack as a surface object. It extends SurfaceObject.

2.3.19 LabWareSurfaceObject Class
A class that represents a piece of lab ware a surface object. It extends SurfaceOBject.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 7 of 74

2.3.20 ToolSurfaceObject Class
A class that represents a tool as a surface object. It extends SurfaceObject.

2.3.21 SubstanceSurfaceObject Class
A class that represents a substance as a surface object. It extends SurfaceObject.

2.3.22 WorkStation Class
A class that represents the entire experiment environment.This class will contain
details of tools, tips, tipracks, labware, substances and surface. It will also contain
some parameters attributed to the current state of the robot (Biomek environment).

2.3.23 Configurator Class
This class is primarily responsible for the creation of the configuration file (JOB0.txt).
It will be responsible for handling the substance and surface configuration files,
setting up the substances and the surface correctly and writing JOB0.txt to a specified
location.

2.3.24 LiquidTransfer Class
This class will be responsible for creating the liquid transfers that form the basis of
the job file (JOB1.txt).

2.3.25 StepBuilder Class
This class isolates all the steps (liquid transfers) needed to create the experiment
platform, separates the steps into various vectors based on their substance and then
executes a liquid transfer for each step in a pre-defined order.

2.3.26 Step Class
This class represents a single step (liquid transfer) in the experiment process.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 8 of 74

2.4 Detailed Description of each Module

2.4.1 Substance Class

Module Name : Substance
Type of Module : Data Structure
Module Description : A class representing a single substance as described by the
configuration file, Substances.txt. There are ten substances described in this file, each
with nine attributes each and the class Substance aims to represent a single one.

Constructors
· Default Constructor – takes no parameters
· Alternative Constructor – takes all attributes to create a Substance.

Attributes
· String name – the name of the substance (e.g. minimal agar)..
· int prewetDelay – time in hundreth second for liquid to rise into tip when

prewetting.
· int blowDelay – time in hundreth second for draining, when blowing.
· int dispenseDelay – delay after dispensing.

attributes class methods input/output

Substance
private String name;
private int prewetDelay;
private int blowDelay;
private int dispenseDelay;
private int aspirateDelay;
private boolean prewetNeeded;
private boolean tiptouchNeeded;
private boolean blowoutNeeded;
private boolean knockoutNeeded;

Substance
(default constructor)

Substance

set<Attribute>

get<Attribute>

toString

ß All attributes

ß <attribute_value>

à <attribute_value>

à String Substance

setDetails

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 9 of 74

· int aspirateDelay – delay after aspirating.
· boolean prewetNeeded – Is a prewet needed ?
· boolean tiptouchNeeded – Is a tip touch needed ?
· boolean blowoutNeeded – Is a blow out needed ?
· boolean knockout – not actually sure right now…

Methods
· gets and sets for all class attributes
· setDetails for use in debugging and testing
· toString – returns a formatted string of a single substance

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 10 of 74

2.4.2 MediaComponent Class

Module Name : MediaComponent
Type of Module : Data Structure
Module Description : An experiment that contains a certain substance will have a
corresponding amount of the substance. The class, MediaComponent represents a
component within a single experiment – so, a substance and an amount.

Constructors
· Default Constructor – takes no parameters
· Alternative Constructor – takes two parameters – theAmount and theSubstance

Attributes
· int amount– the amount of the substance (e.g. minimal agar 120)
· Substance substance – the substance attributed to the Media Component

attributes class methods input/output

MediaComponent
private int amount
private Substance substance

MediaComponent
(default constructor)

MediaComponent

setAmount

getAmount

toString

setDetails

getSubstance

setSubstance

ß int theAmount
ß Substance theSubstance

ß int theAmount

à amount

à substance

ß theSubstance

à String
MediaComponent

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 11 of 74

Methods
· gets and sets for all class attributes
· setDetails for use in debugging and testing
· toString – returns a formatted string of a Media Component – consisting of the

Substance toString and the amount.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 12 of 74

2.4.3 SubstanceList Class

Module Name : MediaComponent
Type of Module : Data Structure
Module Description : A class that represents the list of the ten substances described
in the configuration file, Subsances.txt.

Constructors
· Default Constructor – takes no parameters – creates theList using

DEFAULT_SIZE
· Alternative Constructor – takes one parameter, theSize, and creates theList with

size specified in theSize.

Attributes
· Substance []theList – array of Substances.
· int nextFreeLocation – integer used as a pointer to keep track of the array and

where the next substance to be added would go.
· final int DEFAULT_SIZE – integer used to specify the size of the array of

theList. The default is ten, as there are ten substances in Substances.txt.

attributes class methods input/output

SubstanceList

private Substance [] theList
private int nextFreeLocation = 0
private final int DEFAULT_SIZE = 10

SubstanceList
(default constructor)

SubstanceList

addSubstance

findByName

toString

removeSubstanceByName

populateSubstances

ß int theSize

ß theSubstance

ß String substanceName
à Substance theSubstance

ß String substanceName

ß String (Substances.txt)

à String substances

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 13 of 74

Methods
· addSubstance – Takes in a substance as an argument and appends it to theList,

updating nextFreeLocation appropriately.
· findByName – a method that takes in a String representing the name of a

substance (e.g. minimal-agar) and returns the Substance object relating to that
name.

· removeSubstanceByName – a method that takes in a String representing the
name of the substance to be removed. The Substance object relating to the
string is then removed from theList (not sure if this method is needed).

· populateSubstances – a method that takes in a file name (most likely to be
Substances.txt) and, with the use of a string tokenizer, populates theList with
the substances found in the file given as an argument.

· toString – returns a formatted string of the set of substances (most likely from
a file, such as Substances.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 14 of 74

2.4.4 Experiment Class

Module Name : Experiment
Type of Module : Data Structure
Module Description : A class representing a single experiment contained within a
single well of an experiment plate. The class Experiment will contain information
regarding the experiment, including the media components used, the location (well)
and the length of the experiment.

Constructors
· Default Constructor – takes no parameters – creates theList using

DEFAULT_SIZE
· Alternative Constructor – takes three parameters – theRow and theCol specify the

well that the experiment is to take place in. theSize specifies the size of the array
for the media components.

Attributes
· MediaComponent [] theList – representing all the media components that are

being used for the experiment
· int nextFreeLocation – integer used as a pointer to keep track of the array and

where the next media component to be added would go.
· in length – integer used to represent the length of time for the experiment.
· int row – the row of the experiment
· int col – the column value of the experiment

attributes class methods input/output

Experiment

private MediaComponent [] theList
private int nextFreeLocation = 0
private int length

private int row
private int col

private final int DEFAULT_SIZE = 5

Experiment
(default constructor)

Experiment

addMediaToList

toString

ß int theRow, theCol, theSize

ß theMedia

à String substances

sets and gets…

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 15 of 74

· final int DEFAULT_SIZE – integer used to specify the size of the array of
theList. The default is five, as there are at most five media components used in
any given experiment.

Methods
· gets and sets for some class attributes (length, row, col)
· addMediaToList – takes a MediaComponent and adds it to theList, updating

nextFreeLocation appropriately.
· toString – returns a formatted string of an Experiment– consisting of the

experiment length, then a list of the Media Components used in the
experiment.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 16 of 74

2.4.5 ExperimentPlate Class

Module Name : Experiment
Type of Module : Data Structure
Module Description : A class representing a plate of experiments. The plate can be
of any size, but the default is 8 X 12, in accordance with the plate standard (insert
standard). This class provides methods for adding experiments and also for populating
an ExperimentPlate with Experiments.

Constructors
· Default Constructor – takes no parameters – creates thePlate using MAX_ROWS

and MAX_COLUMNS
· Alternative Constructor – takes two parameters – length represents the total length

of the whole experiment plate (should be the greatest length of any of the
experiments in the plate?) startTime represents the start time of the experiment
plate – this could be a counter – not sure yet. Creates thePlate using MAX_ROWS
and MAX_COLUMNS

· Alternative Constructor – takes four parameters – length, startTime as described
for the constructor above. thePlate is created using the value of ‘rows x cols’ as
length.

attributes class methods input/output

ExperimentPlate

private Experiment [] thePlate
private int nextFreeLocation = 0

private int length
private int startTime

private final int MAX_ROWS = 8;
private final int MAX_COLUMNS = 12

ExperimentPlate
(default constructor)

ExperimentPlate

addExperimentToPlate

toString

ß int length, startTime

ß int length, startTime
ß int rows, cols

ß theExperiment

ß String fileName

à String expPlate

ExperimentPlate

populateExperimentPlate

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 17 of 74

Attributes
· Experiment [] thePlate – representing all the experiments that are being

conducted in this experiment plate.
· int nextFreeLocation – integer used as a pointer to keep track of the array and

where the next experiment to be added would go.
· in length – integer used to represent the length of time for this experiment

plate.
· startTime – of the experiment plate – maybe a counter.
· final int MAX_ROWS, MAX_COLUMNS – integers used to specify the size

of the array of thePlate. The default values are eight and twelve respectively
(indicating a 8 X 12 plate)

Methods
· addExperimentToPlate – takes an Experiment and adds it to thePlate, updating

nextFreeLocation appropriately.
· populateExperimentPlate - a method that takes in a file name (most likely to

be Expt.txt) and, with the use of a string tokenizer, populates thePlate with the
experiments found in the file given as an argument.

· toString – returns a formatted string of an Experiment plate– consisting of the
details of each experiment in the plate, their media components and attributes.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 18 of 74

2.4.6 LogItem Class

Module Name : LogItem
Type of Module : Data Structure
Module Description : A class that represents a single Log entry. LogItem will
contain a single string relating to the log entry.

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes one parameter – description which is the log entry

Attributes
· description – represents the log entry

Methods
· toString method returns a string representing the log entry

attributes class methods input/output

LogItem

private String description
LogItem

(default constructor)

LogItem ß String description

à String theLogEntrytoString

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 19 of 74

2.4.7 Log Class

Module Name : Log
Type of Module : Data Structure
Module Description : This class handles the LogItem objects. It provides a single log
item and provides the user with the ability to write the log to a file.

Constructors
· Default Constructor – takes no parameters. The Default constructor initialises the

attributes, file and directory, using the default attributes, DEFAULT_DIR and
DEFAULT_FILE.

· Alternative Constructor – takes two parameters, which are used to intialise the
variables, file and directory.

Attributes
· DEFAULT_DIR will be set to something such as “c:/test” for debugging

purposes.
· DEFAULT_FILE will be set to something such as “log” for debugging

purposes.
· directory – a string representing the directory of the log file.
· file – a string representing the name of the log file.
· theLog – a String representing the whole of the log file.

attributes class methods input/output

Log

Log
(default constructor)

Log

protected final static String DEFAULT_DIR

protected final static String DEFAULT_FILE

protected String directory
protected String file

private String theLog

writeLog

appendLogItem

ß String directory, file

ßLogItem theItem

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 20 of 74

Methods
· appendLogItem – take in a LogItem object (consisting of a descrption, see

2.4.6) and append it to the string, theLog.
· writeLog – takes the string, theLog, and writes it to a text file (stipulated by
‘file’ and ‘directory’).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 21 of 74

2.4.8 Tip Class

Module Name : Tip
Type of Module : Data Structure
Module Description : A class that represents a single type of tip used in the
experiments.

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes ten parameters corresponding to the class

attributes and are used to intialise them.

Attributes
· String name – represents the name of the Tip. I.e., P20, P250, etc.
· Please refer to the Biomek BioScript Pro Programmer’s Guide for further

information for the other attributes.

Methods
· Sets and Gets for the class attributes.
· toString() – a string representing the tip, compatable for direct use within the

configuration job file (JOB0.txt)

attributes class methods input/output

Tip

Tip
(default constructor)

Tip

private String name;
private float shoulder;
private float shldiam;
private float length;
private float smargin;
private float slowstep;
private float minvol;
private float maxvol;
private float maxvel;
private boolean sensing;

Sets()

Gets()

toString()

ß All Class attributes

ßthe_Class_Var

àthe_Class_Var

à String “The Tip"

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 22 of 74

2.4.9 TipRack Class

Module Name : TipRack
Type of Module : Data Structure
Module Description : A class that represents a single tip rack used in the
experiments. Tip racks typically hold a set of tips.

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes 19 parameters corresponding to the class attributes

and are used to intialise them.

Attributes
· String name – represents the name of the tip rack. I.e., P20, P250, etc.
· Please refer to the Biomek BioScript Pro Programmer’s Guide for further

information for the other attributes.

attributes class methods input/output

TipRack

TipRack
(default constructor)

TipRack

private String name;
private int nRows;
private int nCols;
private float deltaX;
private float deltaY;
private float tip1X;
private float tip1Y;
private float tip2X;
private float tip2Y;
private float topZ;
private float bottomLength;
private float bottomWidth;
private float tip1ToSide;
private float tip1ToFront;
private float lidOnZ;
private float fWidth;
private float fLength;
private float fHeight;
private float fGripDepth;

Sets()

Gets()

toString()

ß All Class attributes

ßthe_Class_Var

àthe_Class_Var

à String “The Tip Rack"

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 23 of 74

Methods
· Sets and Gets for the class attributes.
· toString() – a string representing the tip rack, compatable for direct use within

the configuration job file (JOB0.txt)

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 24 of 74

2.4.10 LabWare Class

Module Name : LabWare
Type of Module : Data Structure
Module Description : A class that represents piece of lab ware used in the
experiments (i.e., the plates and wells).

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes 50 parameters corresponding to the class attributes

and are used to intialise them.

Attributes
· String name – represents the name of the Lab ware. I.e., 96-Well Deep, quarter

horizontal, etc.
· Please refer to the Biomek BioScript Pro Programmer’s Guide for further

information for the other attributes.

attributes class methods input/output

LabWare

LabWare
(default constructor)

LabWare

private String labwLabel;

private boolean material, washable,
multiTip

private int nModule, id, rows, cols,
quadrants,
nGripMode, mxCol, mxRow,
quadsPerTraymod

private float p250Param, p1000Param,
singleBulk, multiBulk, srcMax, destMax,
ulX, ulY, cTop, cDepth, xSp, ySp, rad,
well1ToBack, well1ToSide, bottomLength,
bottomWidth, topWidth, fLabwareHeight,
lidOnZ, fLipHeight, fLifterHeight,
fGripHeight, fSloshFactor, radius0, radius1,
radius2, bound0, bound1, bound2, theta0,
theta1, theta2. length, fWidth, fLength,
fHeight, fGripDepth

Sets()

Gets()

toString()

ß All Class attributes

ßthe_Class_Var

àthe_Class_Var

à String “The Lab Ware"

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 25 of 74

Methods
· Sets and Gets for the class attributes.
· toString() – a string representing the Lab ware, compatable for direct use

within the configuration job file (JOB0.txt)

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 26 of 74

2.4.11 Tool Class

Module Name : Tool
Type of Module : Data Structure
Module Description : A class that represents the different types of tool used in the
experiments. (i.e., the grippers and the pipettes).

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes 37 parameters corresponding to the class attributes

and are used to intialise them.

Attributes
· String name – represents the name of the Tool. I.e., Gripper, P250L, etc.
· Please refer to the Biomek BioScript Pro Programmer’s Guide for further

information for the other attributes.

attributes class methods input/output

Tool

Tool
(default constructor)

Tool

private String name;

private int tip_factor, tip_type, alt_p,
tool_num, n_tips, pickup_delay, fill_delay,
blowout_delay, eject_delay,
mix_delay_in_s, mix_delay_out_s,
mix_delay_in_d, mix_delay_out_d,
prewet_delay, ll_sense, tp_touch_delay_s,
tip_touch_delay_d

private float volume_min, volume_max,
max_velocity, tool_x_offset, tool_y_offset,
tool_reach, snout_x, snout_y, body_length,
body_x, body_y, tool_length,
tip_on_length, tip_eject_height, tip_depth,
fill_v, blowout_v, steps_per_microliter,
volume_offset, contain_v, bias_v;

Sets()

Gets()

toString()

ß All Class attributes

ßthe_Class_Var

àthe_Class_Var

à String “The Lab Ware"

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 27 of 74

Methods
· Sets and Gets for the class attributes.
· toString() – a string representing the Tool, compatable for direct use within the

configuration job file (JOB0.txt)

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 28 of 74

2.4.12 TipList Class

Module Name : TipList
Type of Module : Data Structure
Module Description : A class that holds all the tips available for the experiment.

Constructors
· Default Constructor – takes no parameters. Initiates the array using the

DEFAULT_SIZE.
· Alternative Constructor – takes one parameter, the Size, which allows the user to

define the size of theList.

Attributes
· theList – an array that holds all of the available Tips for the experiment

process.
· DEFAULT_SIZE – the size that theList is initiated with when the default

constructor is invoked.

attributes class methods input/output

TipList

TipList
(default constructor)

TipList

private Tip [] theList

private final int DEFAULT_SIZE = 5

addTipToList()

getTipByVolume()

toString()

ß theSize

ßObject Tip

ß float volume
àTip

ß String name
à Tip

à String “All Tips”

getTipByName()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 29 of 74

Methods
· AddTipToList – takes a tip and adds it to theList. Tips are added in no

particular order, other than the order in which they are added by the user.
· getTipByVolume – passes in a volume as a parameter and returns the tip that

is appropriate for use for that volume.
· getTipByName – passes in a string representing the name of the tip needed

and returns the tip with that name.
· toString() – returns the toString of all the tips contained within theList.

Compatable for use in the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 30 of 74

2.4.13 TipRackList Class

Module Name : TipRackList
Type of Module : Data Structure
Module Description : A class that holds all the tip racks available for the experiment.

Constructors
· Default Constructor – takes no parameters. Initiates the array using the

DEFAULT_SIZE.
· Alternative Constructor – takes one parameter, the Size, which allows the user to

define the size of theList.

Attributes
· theList – an array that holds all of the available Tip racks for the experiment

process.
· DEFAULT_SIZE – the size that theList is initiated with when the default

constructor is invoked.

attributes class methods input/output

TipRackList

TipRackList
(default constructor)

TipRackList

private TipRack [] theList

private final int DEFAULT_SIZE = 5

addTipRackToList()

toString()

ß theSize

ßObject TipRack

ß String name
à TipRack

à String “All Tip Racks”

getTipRackByName()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 31 of 74

Methods
· AddTipRackToList – takes a tip rack and adds it to theList. Tip racks are

added in no particular order, other than the order in which they are added by
the user.

· getTipRackByName – passes in a string representing the name of the tip rack
needed and returns the tip rack with that name.

· toString() – returns the toString of all the tip racks contained within theList.
Compatable for use in the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 32 of 74

2.4.14 LabWareList Class

Module Name : LabWareList
Type of Module : Data Structure
Module Description : A class that holds all of the lab ware available for the
experiment.

Constructors
· Default Constructor – takes no parameters. Initiates the array using the

DEFAULT_SIZE.
· Alternative Constructor – takes one parameter, the Size, which allows the user to

define the size of theList.

Attributes
· theList – an array that holds all of the available Lab ware for the experiment

process.
· DEFAULT_SIZE – the size that theList is initiated with when the default

constructor is invoked.

attributes class methods input/output

LabWareList

LabWareList
(default constructor)

LabWareList

private LabWare [] theList

private final int DEFAULT_SIZE = 5

addLabWareToList()

toString()

ß theSize

ßObject LabWare

ß String name
à LabWare

à String “All LabWare”

getLabWareByName()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 33 of 74

Methods
· AddLabWareToList – takes a lab ware object and adds it to theList. Lab ware

objects are added in no particular order, other than the order in which they are
added by the user.

· getLabWareByName – passes in a string representing the name of the lab ware
needed and returns the lab ware object with that name.

· toString() – returns the toString of all the lab ware contained within theList.
Compatable for use in the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 34 of 74

2.4.15 ToolList Class

Module Name : ToolList
Type of Module : Data Structure
Module Description : A class that holds all the tools available for the experiment.

Constructors
· Default Constructor – takes no parameters. Initiates the array using the

DEFAULT_SIZE.
· Alternative Constructor – takes one parameter, the Size, which allows the user to

define the size of theList.

Attributes
· theList – an array that holds all of the available Tools for the experiment

process.
· DEFAULT_SIZE – the size that theList is initiated with when the default

constructor is invoked.

attributes class methods input/output

ToolList

ToolList
(default constructor)

ToolList

private ToolList [] theList

private final int DEFAULT_SIZE = 5

addToolToList()

getToolByVolume()

toString()

ß theSize

ßObject Tool

ß float volume
àTool

ß String name
à Tool

à String “All Tools”

getToolByName()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 35 of 74

Methods
· AddToolsToList – takes a Tool and adds it to theList. Tools are added in no

particular order, other than the order in which they are added by the user.
· getToolByVolume – passes in a volume as a parameter and returns the tool

that is appropriate for use for that volume.
· getToolByName – passes in a string representing the name of the tool needed

and returns the tool with that name.
· toString() – returns the toString of all the tools contained within theList.

Compatable for use in the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 36 of 74

2.4.16 Surface Class

Module Name : Surface
Type of Module : Data Structure
Module Description : A class that represents the surface area of the Biomek robot
work station. This surface area is split into 12 sub-areas, each of which may be
partitioned again. The details of the surface are supplied in the file, Surface.txt. The
Surface will hold an array of SurfaceObjects (See 2.3.17).

Constructors
· Default Constructor – takes no parameters. Initiates the array using the LOCS and

SEGS.
· Alternative Constructor – takes two parameters, locs and segs, which allows the

user to define the size of theList.

attributes class methods input/output

Surface

Surface
(default constructor)

Surface

addToSurface()

ß int locs, segs

ßObject SurfaceObject
ß int locs, segs

ßObject SurfaceObject
ß int locs
ßString name
àSurfaceObject

ßint location
àSurfaceObject

àVector SurfaceObject

à String “The Surface”

private SurfaceObject [][] theList

private int locations
private int segments

private final int LOCS = 12
private final int SEGS = 9

returnByLocation()

returnLabWareVector()

getByName()

addToSurface()

toString()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 37 of 74

Attributes
· theList – a 2D array that holds all of the objects in the Biomek work station

surface. Objects are held of type SurfaceObject.
· int locations – the surface is split into 12 parts as below:

The rows are signed alphabetically and the columns are numbered. Therefore
the surface illustrated above would range from A1 to B6. For simplification
purposes, the coordinates of the surface locations have been transferred to a
single integer value. So, the integer location would be used to signify the
coordinates as follows:

· int segments – each location can be partitioned again into a number of
segments. This integer represents the number of segments that may be
attached to a certain location.

Methods
· AddToSurface – adds a SurfaceObject to theList – passed with an explicit

location and segment to place the object.
· AddToSurface – adds a SurfaceObject to theList – passed with only a location

and is added to theList at the specified location and at the next available
segment.

· getByName – passes in a string as a parameter and returns the surface object
with that name.

· returnByLocation – passes an integer corresponding to the location of the
desired surface object. This method is useful when trying to get the labware of
a certain location.

· returnLabWareVector – returns a Vector, consisting of all the labware held on
the surface. Useful when populating experiment plates.

· toString() – returns the toString of all the materials contained in the surface.
Compatable for use in the configuration file (JOB0.txt).

A

B

1 2 3 4 5 6

1 2 3 4 5 6

7 8 9 10 11 12

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 38 of 74

2.4.17 SurfaceObject Class

Module Name : SurfaceObject
Type of Module : Data Structure
Module Description : A class that represents a type of surface object that can be
placed in the surface. SurfaceObject is to be the super class of several other types of
more specific surface object.

Constructors
· Default Constructor – takes no parameters.
· 2nd Constructor – takes two parameters, loc and seg, which indicate where on the

surface the surface object is residing.
· 3rd Constructor – takes three parameters, loc and seg (described above) and name,

which is the name taken from a subclass to indicate the nature of the Surface
object.

· 4th Constructor – takes five parameters, to initialise all of the class attributes.

attributes class methods input/output

SurfaceObject

SurfaceObject
(default constructor)

SurfaceObject

private int location
private int segment

private int thangType
private int nLayer

private String name

SurfaceObject

SurfaceObject

toString()

ß int loc, seg

ß int loc, seg
ß String name

ß int loc, seg, nlayer
ß String name, int thang

à String Coords

à String SurfaceObject

sets and gets

getCoords()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 39 of 74

Attributes
· location – indicates the location of the surface object within the surface. For

details of the nature of location, please refer to 2.4.16.
· segment – indicates the segment of the surface object within the location in the

surface. For details of the nature of location and segment, please refer to
2.4.16.

· thangType and nLayer are two common attributes for surface objects. For
details, please refer to the BioScript Pro programmers’s guide.

Methods
· getCoords – returns a formatted string representing the coordinates of the

surface object. This method is primarily used in the construction of JOB1.txt
and is called from within LiquidTransfer.

· toString() – returns the toString of the surface object. Compatable for use in
the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 40 of 74

2.4.18 TipRackSurfaceObject Class

Module Name : TipRackSurfaceObject
Type of Module : Data Structure
Module Description : A class that represents a tip rack as a surface object. It extends
SurfaceObject.

Constructors
· Default Constructor – calls the super default constructor and init().
· 2nd Constructor – takes three parameters, loc and seg, described in 2.4.16, and the

TipRack object. This is the object that is to occupy the surface location. Calls the
super constructor passing in loc and seg, and the name of the tip rack from
TipRack.getName().

· 3rd Constructor – same as the second constructor, but also takes thangType and
nLayer (described in 2.4.16).

Attributes
· TipRack – this is the tip rack that is to occupy the surface location represented

by the SurfaceObject.
· Other surface variables – included for completeness.

attributes class methods input/output

TipRackSurfaceObject
<<extends SurfaceObject>>

TipRackSurfaceObject
(default constructor)

TipRackSurfaceObject

private TipRack surfaceTipRack

private int lid_status, sl_dst_wedge,
last_tip_col, sl_dst_stack, sl_src_wedge,
sl_dst_shelf, sl_src_stack, group_tips_used,
sl_src_shelf, last_tip_row TipRackSurfaceObject

toString()

ß int loc, seg, TipRack

ß int loc, seg, TipRack
ßint thang, nLayer

à String SurfaceObject

init()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 41 of 74

Methods
· init() – initialises all the additional surface attributes.
· toString() – returns the toString of the surface object. Compatable for use in

the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 42 of 74

2.4.19 LabWareSurfaceObject Class

Module Name : LabWareSurfaceObject
Type of Module : Data Structure
Module Description : A class that represents a piece of lab ware as a surface object.
It extends SurfaceObject.

Constructors
· Default Constructor – calls the super default constructor and init().
· 2nd Constructor – takes three parameters, loc and seg, described in 2.4.16, and the

LabWare object. This is the object that is to occupy the surface location. Calls the
super constructor passing in loc and seg, and the name of the tip rack from
LabWare.getName().

· 3rd Constructor – same as the second constructor, but also takes thangType and
nLayer (described in 2.4.16).

Attributes
· surfaceLabWare – this is the lab ware that is to occupy the surface location

represented by the SurfaceObject.
· experimentPlate – this is the experiment plate that is to reside within the

labware.

attributes class methods input/output

LabWareSurfaceObject
<<extends SurfaceObject>>

LabWareSurfaceObject
(default constructor)

LabWareSurfaceObject

private LabWare surfaceLabWare

private int src_mark_row, dst_mark_row,
lid_status, sl_dst_wedge, quad0,
pause_index, lw_name1, sl_dst_stack,
quad2, src_mark_col, lw_name3,
lw_duration, lw_pause, sl_src_wedge,
dst_mark_col, sl_dst_shelf, sl_src_stack,
lw_name0, quad1, lw_name2, src_shelf,
quad3

private ExperimentPlate experimentPlate

LabWareSurfaceObject

toString()

ß int loc, seg, LabWare

ß int loc, seg, LabWare
ßint thang, nLayer

à String SurfaceObject

init()

sets and gets

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 43 of 74

· Other surface variables – included for completeness.

Methods
· init() – initialises all the additional surface attributes.
· toString() – returns the toString of the surface object. Compatable for use in

the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 44 of 74

2.4.20 ToolSurfaceObject Class

Module Name : ToolSurfaceObject
Type of Module : Data Structure
Module Description : A class that represents a tool as a surface object. It extends
SurfaceObject.

Constructors
· Default Constructor – calls the super default constructor.
· 2nd Constructor – takes three parameters, loc and seg, described in 2.4.16, and the

Tool object. This is the object that is to occupy the surface location. Calls the
super constructor passing in loc and seg, and the name of the tool from
Tool.getName().

· 3rd Constructor – same as the second constructor, but also takes thangType and
nLayer (described in 2.4.16).

Attributes
· surface Tool – this is the tool that is to occupy the surface location represented

by the SurfaceObject.

Methods
· toString() – returns the toString of the surface object. Compatable for use in

the configuration file (JOB0.txt).

attributes class methods input/output

ToolSurfaceObject
<<extends SurfaceObject>>

ToolSurfaceObject
(default constructor)

ToolSurfaceObject

private Tool surfaceTool

ToolSurfaceObject

toString()

ß int loc, seg, Tool

ß int loc, seg, Tool
ßint thang, nLayer

à String SurfaceObject

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 45 of 74

2.4.21 SubstanceSurfaceObject Class

Module Name : SubstanceSurfaceObject
Type of Module : Data Structure
Module Description : A class that represents a substance as a surface object. It
extends SurfaceObject.

Constructors
· Default Constructor – calls the super default constructor.
· 2nd Constructor – takes four parameters, loc and seg, described in 2.4.16, and the

Substance. This is the object that is to occupy the surface location. Calls the super
constructor passing in loc and seg, and the name of the substance from
surfaceSubstance.getName().

Attributes
· surface Tool – this is the tool that is to occupy the surface location represented

by the SurfaceObject.
· volume – this indicates the volume of substance that is available. This class is

primarily intended to be used to represent the substances when they form
reservoirs for the creation of the experiments.

attributes class methods input/output

SubstanceSurfaceObject
<<extends SurfaceObject>>

SubstanceSurfaceObject
(default constructor)

SubstanceSurfaceObject

private Substance surfaceSubstance
private float volume

adjustVolume()

toString()

ß int loc, seg, volume
ßSubstance

ßamount

à String SurfaceObject

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 46 of 74

Methods
· adjustVolume() takes an amount and adjusts the volume by that amount. This

method is used when keeping track of the levels of substances during the
experiment creation process.

· toString() – returns the toString of the surface object. Compatable for use in
the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 47 of 74

2.4.22 WorkStation Class

Module Name : WorkStation
Type of Module : Data Structure
Module Description : A class that represents the entire experiment environment.This
class will contain details of tools, tips, tipracks, labware, substances and surface. It
will also contain some parameters attributed to the current state of the robot (Biomek
environment).

Constructors
· Default Constructor – takes no parameters.

Attributes
· surface – represents the surface of the BioMek work station.
· tipList – the list of tips.
· tipRackList – the list of tip racks.
· labWareList – the list of lab ware.

attributes class methods input/output

WorkStation

WorkStation
(default constructor)private Surface surface

private TipList tipList
private TipRackList tipRackList
private LabWareList labWareList
private ToolList toolList
private SubstanceList substanceList

private Tool currentTool
private Tip currentTip
private Substance lastSubstancePipetted

private float additionalHeight
private float aspirationHeight
private float dispenseHeight
private float surfaceTouchDelay

sets and gets

toString() à String WorkStation

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 48 of 74

· toolList – the list of tools.
· substanceList – the list of substances.
· currentTool – the tool currently held by the arm.
· currentTip – the tip currently being used by the system.
· lasSubstancePipetted – keeps a record of the last substance to be pipetted, so

that the system can tell if a tip is contaminated.
· float variables – specified by the system in RSConfig.txt.

Methods
· toString() – method that initiates the call to all attributed classes and produces

a string that forms the basis of the configuration file (JOB0.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 49 of 74

2.4.23 Configurator Class

Module Name : Configurator
Type of Module : Data Builder
Module Description : This class is primarily responsible for the creation of the
configuration file (JOB0.txt). It will be responsible for handling the substance and
surface configuration files, setting up the substances and the surface correctly and
writing JOB0.txt to a specified location.

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes a workstation as a parameter

Attributes
· ws – the workstation that is being currently used.
· surfaceFileName – the name of the surface filename (i.e., Surface.txt)
· substanceFileName – the name of the substance filename (i.e., Substance.txt)

attributes class methods input/output

Configurator

Configurator
(default constructor)private WorkStation ws

private String surfaceFileName
private String substanceFileName

setup()

ß WorkStation

ß Surfcace.txt
ßSubstance.txt

ßString directory
àJOB0.txt

Configurator

writeJobFile()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 50 of 74

Methods
· setup() – This method is responsible for the intiation of the entire workstation.

Currently, the details of all the tips, tip racks, devices and labware are to be
located within the setup() method. This method will also setup the surface of
the WorkStation. Details of how this is achieved along with further details of
the workings of setup() can be found in the project report.

· writeJobFile() – This method is responsible for the output of the configuration
file (JOB0.txt). It does this simply by calling the toString() method from the
WorkStation object (ws) and writes the resultant string into the file, JOB0.txt
(within the directory passed as a string to the method).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 51 of 74

2.4.24 LiquidTransfer Class

Module Name : LiquidTransfer
Type of Module : Data Builder
Module Description : This class will be responsible for creating the liquid transfers
that form the basis of the job file (JOB1.txt).

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes an ID as a parameter. This id will be used in the

JOB file to identify a specific liquid transfer.

Attributes
· id - will be used in the JOB file to identify a specific liquid transfer.
· transfer – the string that will form the Liquid transfer and form part of the JOB

file.

attributes class methods input/output

LiquidTransfer

LiquidTransfer
(default constructor)private int id

private String transfer ß id

ß Dest Coordinate
ß Dest Plate
ß Volume
ß Substance
ß WorkStation

à transfer

LiquidTransfer

create()

toString()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 52 of 74

Methods
· create() – This method is responsible for the creation of the liquid transfer.

Parameters that specify the transfer are passed into the method, as well as the
workstation that is to host the transfer. The algorithm for the create method
can be seen below. This algorithm was created with the use of two major
sources. There was a liquid transfer algorithm in the oringinal system, which
can be seen in [31]. There is also a rough guide for a liquid transfer contained
in [4].

Variables Needed:

1. Source
2. Destination
3. Substance
4. Amount

Start:

1. Find the appropriate tool based on the amount to be
transferred.

2. Attach the tool.

3. Attach the tip for that tool.

4. Move the tool to the Source.

5. Check that there is enough substance at the source.

6. If a prewet is needed:

a. Suck some air in.
b. Move tip into the substance.
c. Suck up some substance.
d. Move tool up a bit.
e. Push out the substance.
f. Push out the air.

7. If a blowout is needed:

a. Suck some air in. (?)

8. Suck up the appropriate amount of substance.

9. Move the tool up.

10. Move the tool the to the destination.

11. Check that there is enough room in the destination.

12. Move the tool down to an appropriate height.

13. Push the substance out.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 53 of 74

14. Move the tool back up again.

15. Push all the air out of the tool.

· toString() – during the create() method, the string ‘transfer’ is created and
appended. When the liquid transfer algorithm (seen above) has completed,
then the toString() of the LiquidTransfer object is passed back, returning the
transfer string.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 54 of 74

2.4.25 StepBuilder Class

Module Name : StepBuilder
Type of Module : Data Builder
Module Description : This class isolates all the steps (liquid transfers) needed to
create the experiment platform, separates the steps into various vectors based on their
substance and then executes a liquid transfer for each step in a pre-defined order.

Constructors
· Default Constructor – takes no parameters. Initialises the vectors metSteps,

agarSteps, and yeastSteps. Creates vectors with an intitial size of 30 elements with
a growth factor of one element.

Attributes
· metSteps, agarSteps, and yeastSteps – the steps (liquid transfers) that

constitute the experiment.
· jobString – the string that will represent the whole of the job file (JOB1.txt)
· theWs – the work station that is to host the experiments.

attributes class methods input/output

StepBuilder

StepBuilder
(default constructor)private Vector metSteps

private Vector agarSteps
private Vector yeastSteps

private String jobString

private WorkStation theWs deploySteps()

ß WorkStation

ßString filename
àJOB1.txt

createSteps()

writeToFile()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 55 of 74

Methods
· createSteps() – this method iterates over every single susbtance for every well

contained within the experiment. A step is created for each of these substances
and placed in the appropriate vector depending on whether the substance is
agar, yeast or another metabolite.

· deploySteps() – this method takes the step vectors one-by-one (in a
designated order) and creates the liquid transfers for each one at a time,
passing and appending the resulting liquid transfer string to jobString.

· writeToFile() – write the contents of jobString to the designated file
(JOB1.txt).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 56 of 74

2.4.26 Step Class

Module Name : Step
Type of Module : Data Structure
Module Description : This class represents a single step (liquid transfer) in the
experiment process.

Constructors
· Default Constructor – takes no parameters.
· Alternative Constructor – takes and intialises four parameters – substance,

amount, plate, coords.

Attributes
· subtance – the substance that is to be transferred.
· amount – the volume of substance that is to be transferred.
· plate – the destination plate of the transfer.
· coords – the destination coordinates of the transfer.

attributes class methods input/output

Step

Step
(default constructor)private Substance substance

private float amount
private Well plate
private Well coords ß substance

ß amount
ß plate
ß coords

sets and gets

Step

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 57 of 74

3. ANALYSIS OF SUBSYSTEMS

The following section will describe the various subsystems that comprise the TCL
compiler system. The subsystems will be described in turn until a picture of the whole
system is built up, whereupon an analysis of the whole system will be provided. It is
always difficult to know exactly at what level to break up a system into subsystems. A
subsystem (or package) is usually characterised by the set of services it provides. A
subsystem can of course contain other subsystems.

3.1 The Experiment Creation Subsystem

The experiment subsystem is primarily concerned with the creation of a set of
experiment plates, within those plates a set of experiments and within those plates, a
set of substances. The experiment subsystem can be divided into two subsystems: the
Subtance subsystem and the Experiment subsystem. These are described below.

3.1.1 The Substance Subsystem

3.1.1.1 Overview

The substance subsystem is concerned with the creation and instantiation of the
collection of substances that are to be used in the experiments. A diagrammatic
representation of the substance subsystem is shown below.

As can be seen in the above diagram, the substance subsystem consists of the classes,
SubstanceList, Substance and the text file Substance.txt.

Substance

SubstanceListSubstance.txt

Substance …………Substance

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 58 of 74

3.1.1.2 Functionality

The function of the substance subsystem is to read a list of substances from the text
file, Substances.txt, and create the appropriate amount of substances, held in an array
within SubstanceList, and populate the Substance objects with the data from
Substances.txt. The method populateSubstances() in SubstanceList will tokenize the
file Substances.txt and create an array of Substances in accordance with that file.

3.1.1.3 Dependencies

The substance subsystem is connected with the experiment subsystem alone and
provides access to substances that are used in the experiment subsystem. The
operation of the substance subsystem requires the availability of the Substances.txt
file.

3.1.2 The Experiment Subsystem

3.1.2.1 Overview

The experiment subsystem is concerned with the creation of the sets of experiments
and, as such, is primarily designed around the implementation of the experiment data
file, namely Expt.txt. A diagrammatic representation of the experiment subsystem is
shown below.

Expt.txt ExperimentPlate

Experiment

MediaComponent MediaComponent

The Substance
Subsystem

Experiment …………

…………

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 59 of 74

ExperimentPlate contains an array of Experiments. Experiment contains an array of
MediaComponents. A MediaComponent consists of a substance and an amount.

3.1.2.2 Functionality

The populateExperimentPlate() method in the class ExperimentPlate, will tokenize the
file Expt.txt and create an array of Experiments in accordance with that file.

3.1.2.3 Dependencies

To date, there is only a dependency with the Substance subsystem (co-dependency).
There will undoubtedly be other dependencies.

3.2 The Log Subsystem

The log subsystem is concerned with the creation and maintenance of a log with
regard to the TCL compiler in the creation of the experiment process. When a
significant event occurs, the log subsystem will be used to make a note of the event,
along with any other information that may be considered important, such as possible
errors and faults detected at that point. The log is an important part of the system as it
allows the user to follow the trace of the program whilst it is running. Were the
system to fail, there would be a record of exactly (or approximately) where it failed.

3.2.1.1 Overview

The log subsystem is constructed with two modules. These are Log and LogItem. The
diagram below illustrates the relationship between the two modules.

3.2.1.2 Functionality

When something is to be added to the log, an object of type LogItem is created.
LogItem simply contains a formatted log string with the description of the log entry
embedded. The LogItem is added to the Log. At certain time intervals (namely at
program completion, or a halt), the Log writes its contents (all the LogItems) to a file,
here named ‘Log.txt’.

Log

LogItem Log.txt

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 60 of 74

3.2.1.3 Dependencies

The Log subsystem has no external dependencies.

3.3 The Configurator Subsystem

The main function of the Configurator subsystem is the preparation and construction
of the configuration file, namely JOB0.txt. There are other functions. The
Configurator subsystem is responsible for setting up all the variables for the devices
employed throughout the experimentation process. These classes and objects are
therefore used elsewhere in the system as will be detailed accordingly.

3.3.1.1 Overview

The following diagram illustrates how the Configurator subsystem is constructed. The
Configurator susbystem deals with all the available devices and tools that can be used
in the experimentation process. It does not contain information as to what devices and
tools are actually being used in the current experiment implementation.

3.3.1.2 Functionality

The Configurator subsystem is responsible for the construction of the configuration
job file (JOB0.txt). To do this, the data for the different devices, labware and tools for
the experiment must be available. In this implementation, this data is supplied in
Configurator. The Configurator creates and intitialises each piece of labware, device
and tool one at a time, with the variables expicitly defined within the code. The
Configurator controls the variables for the WorkStation upon which it was called for.

Configurator

Tool

ToolList

LabWare

LabWareList

TipRack

TipRacklist

Tip

TipList

JOB0.txt

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 61 of 74

3.3.1.3 Dependencies

To be announced…
3.4 The Surface Subsystem

The surface subsystem deals with the initialising and maintaining of the surface of the
biomek workstation. It will contain the information on exactly what devices and tools
are being used in the current experiment implementation.

3.4.1.1 Overview

The biomek workstation has a set of 12 “workspaces”. These workspaces can be again
split into a number of separate areas. There are some restrictions as to what can be
placed where. For example, the optical density reader (VICTOR) must be situated in
the workspace, designated as A1. The diagram below illustrates the entire workspace
of the Biomek environment.

The system must know the exact contents of each of these workspaces and this is the
purpose of the Surface subsystem. The diagram below illustrates the structure of the
Surface subsystem.

A

B

1 2 3 4 5 6

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 62 of 74

3.4.1.2 Functionality

Surface contains a 2D array of SurfaceObjects. This 2D array should represent the
surface of the Biomek environement (as displayed on the previous page). Four
classes, LabWareSurfaceObject, SubstanceSurfaceObject, TipRackSurfaceObject, and
ToolSurfaceObject, all extend SurfaceObject.

It is necessary to initialise the surface for two main reasons. Firstly, the configuration
file (JOB0.txt) contains the details of the surface configuration so that the Biomek
workstation knows the locations of all its equipment. Secondly, when constructing the
liquid transfers for the job file (JOB1.txt), the system must know the surface
configuration in order to construct the details of the liquid transfers. I.e., where to get
the substance from, where to move the robot handler to, etc.

3.4.1.3 Dependencies

To be announced.

Tool
SurfaceObject

TipRack
SurfaceObject

Substance
SurfaceObject

LabWare
SurfaceObject

LabWare Substance TipRack Tool

SurfaceObject

denotes <<extends>>

Surface

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 63 of 74

3.5 The Builder Subsystem

The Builder subsystem is responsible for the construction of the job file (JOB1.txt).
Within the Builder subsystem is the class WorkStation. This module contains the
representation of the entire Biomek environment.

3.5.1.1 Overview

The Builder subsystem functions by passing in all the experiment plates (labware),
identifying all of the different substances used in each well of each plate and
separating all of these into steps. The result is an amount of steps that can be
segregated according to their type (whether they are metabolite, yeast or agar steps).

3.5.1.2 Functionality

The functionality of the Builder subsystem is illustrated in the diagram below.

StepBuilder

LiquidTransfer

Step

WorkStation

StepBuilder

[] metSteps
[] agarSteps

[] yeastSteps

createSteps()

deploySteps()

toString()

Step

LiquidTransfer

SurfaceLabWare

ExperimentPlate

Exp1
Exp2
.
.
ExpN

…………..

Job1.txt
Job2.txt
.
.
JobN.txt

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 64 of 74

createSteps() identifies each piece of labware located on the surface of the current
work station. It parses through each experiment of each experiment plate of each
piece of labware, identifying each liquid transfer and creating a Step object for that
transfer and storing it in the appropriate Vector (according to whether it is a
metabolite, agar or yeast step).

deploySteps() passes each step (in a designated order) to the create() method in
LiquidTransfer. Here, the liquid transfer is created as a set of instructions, and passed
back and appended to a job string contained within StepBuilder. After deploySteps()
has completed, the job String is passed to an appropriate job file. In this way, the job
files are constructed.

3.5.1.3 Dependencies

To be announced

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 65 of 74

4. SUBSYSTEM SEQUENCE DIAGRAMS

The following section contains sequence diagrams for each of the five subsystems.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 66 of 74

4.1 The Experiment Creation Subsystem

ExperimentPlate Experiment MediaComponent Substance

well_data

MediaComponent

MediaComponent

MediaComponent

Substance

Substance

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 67 of 74

4.2 The Log Subsystem

Showing two complete log entries.

LogItem Log

log_entry

log_entry

external

log_entry

log_entry

flush

Log.txt

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 68 of 74

4.3 The Configurator Subsystem

SubstanceList SurfaceConfigurator TipList TipRackList LabWareList ToolList

TipRack_data

LabWare_data

Tool_data

Tip_data

Substance_data

Surface_data

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 69 of 74

4.4 The Surface Subsystem

Configurator SurfaceWorkStation

Call to Init

Surface data

SurfaceObject (Appropriate)
SurfaceObject

create()

create()

SurfaceObject

the ‘Surface’

setSurface()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 70 of 74

4.5 The Builder Subsystem

ExperimentPlate StepBuilder

request for exps

experiment data…

Step

createSteps()

return steps to
Vectors

LiquidTransfer

steps…

transfer string

Job1.txt
Job2.txt
.
.
JobN.txt

writeJobFile()

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 71 of 74

5. TCL JOB COMPILER

5.1 Overview

The following is a diagram of the entire TCL Job Compiler. It shows the subsystems
connected to each other and attempts to display the flow of data within the system. As
the system becomes more complex, it becomes more difficult to adequately represent
the system graphically. The following diagram has been simplified in terms of the
level of communication that is expected to occur between the subsystems. However,
given the constraints of the graphical representation, there is an ample level of detail.

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 72 of 74

5.2 Illustration

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 73 of 74

5.3 Description of TCL Job Compiler

Colours have been used to signify the subsystem boundaries. These are:

· Red – Experiment Subsystem
· Brown – Substance Subsystem
· Yellow – Surface Subsystem
· Blue – Configurator Subsystem
· Green – Builder Subsystem

The following is a step-by-step guide to the intended operation of the TCL Job
Compiler. It was necessary to simplify some of the processes at this stage in order
retain an understanding of the system.

1. A WorkStation is initialised, using the default constructor.

2. A Configurator object is created, passing to it a reference to the WorkStation.

3. The setup() method from Configurator is called, passing to it the substance
and surface filenames.

a. TipList, TipRackList, LabWareList and ToolList are initialised and
added to the WorkStation.

b. SubstanceList is initialised and the array of substances is populated by
the method, populateSubstances(). The SubstanceList is then added to
the WorkStation.

c. The Surface is initialised and the 2-dimensional array is created by
parsing the surface file. The surface is then added to the WorkStation.

4. The method, writeJobFile() is called passing in the directory in which to place
the job file. This method calls the toString() method for the WorkStation and
writes the result to a file called JOB0.txt in the specified directory.

5. A Vector containing the labware (i.e., the ExperimentPlates) is returned from
the WorkStation.

6. For each experiment plate, the mehod, populateExperimentPlate(), is called.
This populates the ExperimentPlate with Experiments in accordance with the
file Expt.txt. The ExperimentPlates are added to the relevant
LabWareSurfaceObjects.

7. The substances from each experiment are passed into an object of type Step.
This will contain data such as: Substance, amount, source and destination.

8. The Steps are sorted into Vectors by the type of Substance that is being
transferred. These are metabolites, agar and yeast.

9. The Vectors are passed into deploySteps() one-at-a-time in a specific order
(metabolites, agar and then yeast).

SEM49060 Major Project – System Design Specification

UW Aberystwyth/Computer Science Page 74 of 74

10. deploySteps() creates a LiquidTransfer object for each Step and executes the
create() method for the Step. The toString() of the LiquidTransfer is captured
and appended to a string, maintained within StepBuilder.

11. When all the LiquidTransfers have completed, the string is outputted to a file
called JOB1.txt.

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 1 of 7

BASIC TESTING PLAN

Author: Ben Tagger (bnt8)
Date: 14/01/2003
Version: 2.0
Status: Release

Department of Computer Science
University of Wales
Aberystwyth
Ceredigion
SY23 3DB
Copyright © University of Wales, Aberystwyth 2003

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 2 of 7

CONTENTS

1. Introduction..3
1.1 Purpose of this Document..3
1.2 Scope..3
1.3 Objectives ..3

2. Levels of Testing..3
2.1 Unit Testing – 1st Level..3
2.2 Module Testing – 2nd Level ...4
2.3 Subsystem Testing – 3rd Level ...4
2.4 Testing against Requirements – 4th Level ..4
2.5 Acceptance Testing – 5th Level ..4

3. Test Cases ..4
4. Error, Bug and Problem Types...5

4.1 Typographical Errors ...5
4.2 General Coding/Syntactic Errors ...5
4.3 Communication/Interfacing Errors ..5
4.4 Design Flaws..5

5. Types of Testing...6
5.1 Static Testing ...6

5.1.1 Suitability of method.. 6
5.2 Black box testing..6

5.2.1 Suitability of method.. 6
5.3 White box (Structural) testing..6

5.3.1 Suitability of method.. 7
5.4 Interface testing..7
5.5 Regression testing ..7

6. Documentation of Results of Testing ..7

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 3 of 7

1. INTRODUCTION

1.1 Purpose of this Document

The purpose of this document is to outline the basic testing strategy to be followed
throughout the course of this project. This document will not provide an exhaustive
outline, rather a tactical plan of the general approach to be adopted.

1.2 Scope

This document is intended to provide guidelines for the planning and executing of the
testing of the TCL Compiler system and subsystems.

1.3 Objectives

This document aims to describe the processes to be employed throughout the testing
of the TCL compiler system. The document should provide a basic guideline for the
construction of individual test cases. The test cases may differ in accordance with the
application. Various strategies are to be employed, including: black box (input/output)
testing, path testing and white box (structural) testing. The objectives of testing will
include the location and removal or masking of as many errors as possible, to ensure
correct operation and compliance with the system requirements. One of the objectives
of the testing process is to determine the causes of as many errors as possible and to
possibly suggest some solutions.

2. LEVELS OF TESTING

Testing will usually occur on various levels in order to ensure thorough testing of the
whole system at all levels of operation. These levels of testing are not mutually
exclusive and all relate to one another. Therefore, it is necessary that testing occur in
an explicit manner, however it is important that testing occur in a general sequence.
This section endeavours to describe the testing processes that are to be followed
during the course of this project.

2.1 Unit Testing – 1st Level

This level of testing involves testing the individual components, ensuring that they
meet their design specification. This level of testing can be carried out during the
implementation phase and will not require the use of formal testing plans or
specifications. Some standard testing strategies should be adhered to in this process.

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 4 of 7

2.2 Module Testing – 2nd Level

The level of module testing will involve the testing of a group of related components
in isolation. Again, this level of testing can be carried out during the implementation
phase and does not require the use of formal testing plans or specifications. Some
standard testing strategies should nevertheless be adhered to during this process.

2.3 Subsystem Testing – 3rd Level

This level of testing will involve producing a test specification for the subsystem,
establishing a series of test cases with their expected test results. This plan is then to
be followed precisely. Separate interfaces may be used in order to test the various
subsystems, as there may not be adequate built-in interfaces.

2.4 Testing against Requirements – 4th Level

This level will test the overall level of functionality of the whole system, as well as the
non-functional aspects of the system, such as the speed and safety of the system. The
safety can be weighed against a safety specification (not yet supplied) and the speed
can be ascertained through assessment by benchmarking.

2.5 Acceptance Testing – 5th Level

The final stage of testing will involve integrating and testing the new system within
the overall project environment. In this case, the environment will be the Progol
experimentation environment. The TCL compiler will take in configuration files
produced by the ASE-Progol system and operate correctly to produce the job files to
be used by the Biomek workstation. Acceptance testing will involve the correct
operation of these processes in an adequately safe, fast and informative manner.

3. TEST CASES

Each test case will consist of the input data, output data, and behaviour of any given
test run. During formal testing, a test case must be established before it is executed.
The test case will be selected by the user/developer, who will select appropriate data
based on the type of testing that is to occur.

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 5 of 7

4. ERROR, BUG AND PROBLEM TYPES

Errors, faults and bugs can arise in programs for many different reasons and from
many different sources. The purpose of the testing phase is to uncover as many of
these as possible and to suggest possible solutions. This section will describe some of
the different types of problems typically encountered in a project.

4.1 Typographical Errors

A missing semicolon or uneven brackets can cause significant program failures with
repercussions throughout the entire system. Errors, such as these are invariably present
in all code and can be detected adequately using static testing. These errors are
generally found and corrected during compilation in either the implementation or
testing phases.

4.2 General Coding/Syntactic Errors

These errors include things such as having ‘for’ loops in the wrong place or that can
never terminate, or an ‘if’ statement that can never be reached. Calling methods with
the wrong parameters will also cause problems. Again, these problems can normally
be detected at compilation, however some will not. i.e., a ‘for’ loop that will never
terminate.

4.3 Communication/Interfacing Errors

Communications between classes, modules, subsystems, systems, computers and
users can often cause problems due to errors in the code. These can often be difficult
to find and even more difficult to provide adequate solutions for. For the TCL
compiler system, parsing the configuration files may cause problems, when attempting
to tokenise the strings within the text files.

4.4 Design Flaws

Flaws that lie within the project may be the result of an inadequate or erroneous
design. In some cases as this, the design phase must be revisited to improve or modify
the design as is befitting.

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 6 of 7

5. TYPES OF TESTING

There are five types of testing described below here. All are applicable for use during
the testing phase for this project. However to what extent each is to be used has yet to
be established.

5.1 Static Testing

This would usually primarily involve code walkthroughs. However, due to the nature
of the project and the fact that there is only one developer (designer, tester, etc.),
walkthroughs may not be worthwhile or even possible. Even though there is only one
person involved in the project, some aspects of walkthroughs can still be observed.
For example, the code can still be examined as a series of paths and the most likely
paths of the system can be ascertained during this process.

5.1.1 Suitability of method

Static testing is usually the first method of testing to be employed during a project and
can be useful in spotting syntactical and typographical errors.

5.2 Black box testing

Black box testing can be used as a follow up process to the static testing to further
explore possible paths through the system. Black box testing can be useful when the
tester knows the function of the component with respect to the operations on data
inputs, but is unsure as to how the component functions on the inside.

5.2.1 Suitability of method

Black box testing is most suitable for testing top-level systems.

5.3 White box (Structural) testing

White box testing (glass box testing) is carried out when the inner workings of a
component are known and the test cases can be constructed with respect to this
knowledge. The tester uses knowledge about the structure of the component to derive
test data and test cases.

SEM49060 Major Project – Basic Testing Plan

UW Aberystwyth/Computer Science Page 7 of 7

5.3.1 Suitability of method

White box testing allows the tester to use many of the possible paths through a
component, rather than simply the paths that are most likely to be used. It is not
possible to use every possible path, but a subset of test cases can be established given
the unit’s function and likely problems.

5.4 Interface testing

Interface testing is concerned with the communications between modules, subsystems
and subsystems. It is primarily concerned with the errors encountered during these
periods of communication and aims to monitor and improve the way that these
components co-operate.

5.5 Regression testing

The fixing and removing of bugs and errors can introduce new errors into the code
and the design. Therefore, the testing process must be iterative and repeated until the
system is adequately error-free.

6. DOCUMENTATION OF RESULTS OF TESTING

At this time, it is unclear exactly how the results of the testing phase are to be
documented. It is not clear to what depth the testing results are to be described within
the ‘story’ report at this time. At this point in time, it seems likely that only the most
prudent areas of testing completed will be documented within the final report.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 1 of 19

SUBSYSTEM TEST SPECIFICATION

Author: Ben Tagger (bnt8)
Date: 28/02/2003
Version: 3.0
Status: Release

Department of Computer Science
University of Wales
Aberystwyth
Ceredigion
SY23 3DB
Copyright © University of Wales, Aberystwyth 2003

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 2 of 19

CONTENTS

1. Introduction... 4
1.1 Purpose of this Document ...4
1.2 Scope..4
1.3 Objectives...4

2. Test Items .. 4
2.1 Subsystems ...4

2.1.1 The Substance Subsystem .. 5
2.1.2 The Experiment Subsystem .. 5
2.1.3 The Log Subsystem.. 5
2.1.4 The Configurator Subsystem .. 5
2.1.5 The Surface Subsystem .. 6
2.1.6 The Builder Subsystem .. 6

3. Features to be Tested .. 6
3.1 Features of the Substance Subsystem ..6

3.1.1 Compliance with design specification... 7
3.1.1.1 Substance ... 7
3.1.1.2 SubstanceList ... 7
3.1.1.3 Substance and SubstanceList .. 7
3.1.1.4 Input/Output... 7

3.1.2 Handling of expected parameters.. 7
3.1.3 Handling of extreme parameters ... 7
3.1.4 Handling of invalid parameters... 8

3.2 Features of the Experiment Subsystem..8
3.2.1 General Compliance with the design specification.............................. 8

3.2.1.1 Experiment... 8
3.2.1.2 ExperimentPlate ... 8
3.2.1.3 MediaComponent ... 8
3.2.1.4 Experiment and ExperimentPlate.. 9
3.2.1.5 Input/Output... 9

3.2.2 Handling of expected parameters.. 9
3.2.3 Handling of extreme parameters ... 9
3.2.4 Handling of invalid parameters... 9

3.3 Features of the Log Subsystem..10
3.3.1 General Compliance with the design specification............................ 10

3.3.1.1 LogItem.. 10
3.3.1.2 Log... 10
3.3.1.3 LogItem and Log.. 10
3.3.1.4 Input/Output... 10

3.3.2 Handling of expected parameters.. 10
3.3.3 Handling of extreme parameters ... 10
3.3.4 Handling of invalid parameters... 10

3.4 Features of the Configurator Subsystem ..11
3.4.1 General compliance with design specification 11

3.4.1.1 Configurator... 11
3.4.1.2 Tip ... 11
3.4.1.3 TipList ... 11
3.4.1.4 TipRack.. 11
3.4.1.5 TipRackList.. 12

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 3 of 19

3.4.1.6 LabWare .. 12
3.4.1.7 LabWareList .. 12
3.4.1.8 Tool ... 12
3.4.1.9 ToolList.. 12
3.4.1.10 Communication .. 12
3.4.1.11 Input/Output ... 12

3.4.2 Handling of expected parameters.. 12
3.4.3 Handling of extreme parameters ... 13
3.4.4 Handling of invalid parameters... 13

3.5 Features of the Surface Subsystem ..13
3.5.1 General compliance with design specification 13

3.5.1.1 Surface ... 13
3.5.1.2 SurfaceObject... 14
3.5.1.3 LabWareSurfaceObject .. 14
3.5.1.4 SubstanceSurfaceObject ... 14
3.5.1.5 TipRackSurfaceObject.. 14
3.5.1.6 ToolSurfaceObject ... 14
3.5.1.7 Communication .. 14
3.5.1.8 Input/Output... 14

3.5.2 Handling of expected parameters.. 15
3.5.3 Handling of extreme parameters ... 15
3.5.4 Handling of invalid parameters... 15

3.6 Features of the Builder Subsystem ..15
3.6.1 General compliance with design specification 15

3.6.1.1 WorkStation ... 15
3.6.1.2 StepBuilder .. 16
3.6.1.3 Step .. 16
3.6.1.4 LiquidTransfer ... 16
3.6.1.5 Communication .. 16
3.6.1.6 Input/Output... 16

3.6.2 Handling of expected parameters.. 16
3.6.3 Handling of extreme parameters ... 16
3.6.4 Handling of invalid parameters... 17

4. Approach ... 17
4.1 Static Testing ..17

4.1.1 Suitability of method.. 17
4.2 Black box testing ..17

4.2.1 Suitability of method.. 18
4.3 White box (Structural) testing ...18

4.3.1 Suitability of method.. 18
4.4 Interface testing ..18
4.5 Regression testing ...18

5. Pass/Fail Criteria .. 18

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 4 of 19

1. INTRODUCTION

1.1 Purpose of this Document

The purpose of this document is to identify the items that are to be tested and the tasks
to be performed. This document is concerned with the testing of the subsystems of the
TCL Job Compiler. A basic testing plan for the overall system can be found in [33].
Each subsystem must be clearly understood so that this testing strategy can be carried
out in a correct fashion. A detailed analysis of the design of the subsystems can be
found in [32].

1.2 Scope

This document aims to set out clearly and precisely the items that are to be tested and
the approach to the subsystem testing. It should provide a more specific test plan than
[33]. The idea is that this document is derived from [32] in response to the design
outline of the subsystems and overall system. This document also makes the test
specification for the system possible. Although there is no formal time constraint for
the completion of subsystem testing, it is obvious that this part must be completed in
due time to allow sufficient time for system testing.

1.3 Objectives

The objective of this document is to provide a plan of testing to ensure that all TCL
Job Compiler subsystems fulfil the design and requirement specifications in order to
minimise errors. Criteria that the TCL Job Compiler must meet are listed in section 3
of this document

2. TEST ITEMS

A test item can be thought of as a subsystem of the TCL Job Compiler. This may be
composed of one or more classes. The following section endevours to identify and
describe the test items that are to be dealt with in this document.

2.1 Subsystems

The following subsystems represent a section of the TCL Job Compiler, which, where
possible, can be tested independently from the rest of the system. Listed below are the
subsystems.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 5 of 19

2.1.1 The Substance Subsystem

The substance subsystem is concerned with the creation and instantiation of the
collection of substances that are to be used in the experiments. The substance
subsystem contains the following classes:

· Substance class – [32], section 2.4.1
· SubstanceList class – [32], section 2.4.3
· The substance subsystem also employs use of the substance file

(Substance.txt).

2.1.2 The Experiment Subsystem

The experiment subsystem is concerned with the creation of the sets of experiments
and, as such, is primarily designed around the implementation of the experiment data
file, Expt.txt. The experiment subsystem contains the following classes:

· Experiment class – [32], section 2.4.4
· ExperimentPlate class – [32], section 2.4.5
· MediaComponent class – [32], section 2.4.2
· Expt.txt – the file that contains the details of the experiments.

2.1.3 The Log Subsystem

The log subsystem is concerned with the creation and maintenance of a log with
regard to the operation of the TCL Job Compiler in the creation of the experiment
process. When a significant event occurs, the log subsystem will be used to make note
of the event, along with any other points of information that may be important. The
Log subsystem contains the following classes:

· LogItem class - [32], section 2.4.6
· Log class – [32], section 2.4.7
· Log.txt – the text file that the log will be kept.

2.1.4 The Configurator Subsystem

The configurator subsystem is concerned with the preparation and construction of the
configuration file, namely JOB0.txt. The configurator subsystem is also responsible
for the setting up of all the devices and tools that can be used in the experiment
process. The configurator subsystem contains the following classes.

· Configurator class – [32], section 2.4.23
· Tip class – [32], section 2.4.8
· TipList class – [32], section 2.4.12
· TipRack class – [32], section 2.4.9
· TipRackList class – [32], section 2.4.13

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 6 of 19

· LabWare class – [32], section 2.4.10
· LabWareList class – [32], section 2.4.14
· Tool class – [32], section 2.4.11
· ToolList class – [32], section 2.4.15
· JOB0.txt - the text file that contains the configuration data for the Biomek

workstation.

2.1.5 The Surface Subsystem

The surface subsystem deals with the initialising and maintaining of the surface of the
Biomek workstation. It will handle information on exactly what devices and tools are
being used in the current experiment implementation. The surface subsystem contains
the following classes.

· Surface class – [32], section 2.4.16
· SurfaceObject class – [32], section 2.4.17
· LabWareSurfaceObject class – [32], section 2.4.19
· SubstanceSurfaceObject class – [32], section 2.4.21
· TipRackSurfaceObject class – [32], section 2.4.18
· ToolSurfaceObject class – [32], section 2.4.20

2.1.6 The Builder Subsystem

The Builder subsystem is responsible for the construction of the job file (JOB1.txt).
Within the builder susbystem is the class WorkStation. This module contains the
representation of the entire Biomek environment. The builder subsystem contains the
following classes.

· WorkStation class – [32], section 2.4.22
· StepBuilder class – [32], section 2.4.25
· Step class – [32], section 2.4.26
· LiquidTransfer –[32], section 2.4.24

3. FEATURES TO BE TESTED

The subsystem testing process must ensure that the software is functional, reasonably
error-free, and complies with the design specification. The following section will
identify the features of each subsystem that are to be tested.

3.1 Features of the Substance Subsystem
Design specification [32] references for detailed module descriptions.

· Substance class – section 2.4.1
· SubstanceList class – section 2.4.3

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 7 of 19

3.1.1 Compliance with design specification

3.1.1.1 Substance
The Substance must:

· Contain the appropriate variables.
· Provide an adequate toString() method for a formatted representation of the

substance.

3.1.1.2 SubstanceList
The SubstanceList must:

· Hold an array of Substance.
· Provide methods for maintaining the array.
· Provide a method for reading from a file (Substance.txt) and populating the

array.

3.1.1.3 Substance and SubstanceList
The Substance and SubstanceList classes must communicate with each other.

3.1.1.4 Input/Output
The subsystem should be able to deal with the file input of the substances text file.
This should include abnormal file detection, missing file detection and other IO
errors.

3.1.2 Handling of expected parameters

Substance has two constructors; a default constructor and an alternative constructor
that takes eight parameters (1 string, 4 integers, 4 booleans). SubstanceList also has
two constructors; a default constructor and an alternative constructor that takes one
parameter (an integer) to establish the size of the array. These constructors must all
function with the passing of normal paramaters in standard order.

· Correct storage of variables.
· The SubstanceList should hold an array of Substances.

3.1.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.
· Test that the subsystem can deal with large and zero integers.
· Test the correct handling of a large or zero array of Substance.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 8 of 19

3.1.4 Handling of invalid parameters

The Substance subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.
· Correct handling of non-boolean variables passed in where booleans are

expected.
· Correct handling of non-integer variables passed in where integers are

expected.
· Correct handling of parameters passed in an unexpected order.
· Correct handling of non-Substance items being added to the array (such as

Strings).

3.2 Features of the Experiment Subsystem

The experiment subsystem contains the following classes:

· Experiment class – [32], section 2.4.4
· ExperimentPlate class – [32], section 2.4.5
· MediaComponent class – [32], section 2.4.2

3.2.1 General Compliance with the design specification

3.2.1.1 Experiment
The Experiment must:

· Hold an array of MediaComponent.
· Provide a method for adding a MediaComponent to the array.
· Provide an adequate toString() method for a formatted representation of the

Experiment.

3.2.1.2 ExperimentPlate
The ExperimentPlate must:

· Hold an array of Experiment.
· Provide methods for maintaining the array.
· Provide a method for reading from a file (Expt.txt) and populating the array.

3.2.1.3 MediaComponent
The MediaComponent must:

· contain an instance of a Substance as a class attribute.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 9 of 19

3.2.1.4 Experiment and ExperimentPlate
The Experiment and ExperimentPlate classes must communicate with each other.

3.2.1.5 Input/Output
The subsystem should be able to deal with the file input of the experiments text file.
This should include abnormal file detection, missing file detection and other IO
errors.

3.2.2 Handling of expected parameters

Experiment has two constructors; a default constructor and an alternative constructor
that takes three parameters (3 integers). ExperimentPlate has three constructors; a
default constructor and two alternative constructors; one that takes two parameters (2
integers), the other takes four parameters (4 integers). These constructors must all
function with the passing of normal paramaters in standard order.

· Correct storage of variables.
· The Experiment should hold an array of MediaComponent.
· The ExperimentPlate should hold an array of Experiment.

3.2.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.
· Test that the subsystem can deal with large and zero integers.
· Test the correct handling of a large or zero array of Substance.

3.2.4 Handling of invalid parameters

The Experiment subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.
· Correct handling of non-boolean variables passed in where booleans are

expected.
· Correct handling of non-integer variables passed in where integers are

expected.
· Correct handling of parameters passed in an unexpected order.
· Correct handling of non-Experiment or non-MediaComponent items being

added to the arrays (such as Strings).

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 10 of 19

3.3 Features of the Log Subsystem

The Log subsystem contains the following classes:

· LogItem class - [32], section 2.4.6
· Log class – [32], section 2.4.7

3.3.1 General Compliance with the design specification

3.3.1.1 LogItem
The LogItem must:

· Contain a string that will represent the log entry.

3.3.1.2 Log
The Log must:

· Write to the log file.
· Maintain a string that will represent the entire log and be able to append items

(of text) to it.

3.3.1.3 LogItem and Log
The LogItem and Log classes must communicate with each other.

3.3.1.4 Input/Output
The output file should be standardised, coherent, delimited in some way.

3.3.2 Handling of expected parameters

LogItem has two constructors; a default constructor and an alternative constructor that
takes one parameters (String). Log has two constructors; a default constructor and an
alternative constructor that takes two parameters (2 strings). These constructors must
all function with the passing of normal paramaters in standard order.

· Correct storage of variables.

3.3.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.

3.3.4 Handling of invalid parameters

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 11 of 19

The subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.

3.4 Features of the Configurator Subsystem

The configurator subsystem contains the following classes.

· Configurator class – [32], section 2.4.23
· Tip class – [32], section 2.4.8
· TipList class – [32], section 2.4.12
· TipRack class – [32], section 2.4.9
· TipRackList class – [32], section 2.4.13
· LabWare class – [32], section 2.4.10
· LabWareList class – [32], section 2.4.14
· Tool class – [32], section 2.4.11
· ToolList class – [32], section 2.4.15

3.4.1 General compliance with design specification

3.4.1.1 Configurator
The Configurator must:

· Provide a method that prepares the WorkStation for the implementation of the
configuration file.

· Be able to read from a file.
· Be able to write to a file.

3.4.1.2 Tip
The Tip must:

· Contain the appropriate variables.
· Provide a formatted string of a tip for the configuration file through the

object’s toString() method.

3.4.1.3 TipList
The TipList must:

· Hold an array of Tip.
· Provide a method to add a Tip to the array.
· Provide a method that returns a Tip based on its volume.
· Provide a method that returns a Tip by its name.

3.4.1.4 TipRack
The TipRack must:

· Contain the appropriate variables.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 12 of 19

· Provide a formatted string of a TipRack for the configuration file through the
object’s toString() method.

3.4.1.5 TipRackList
The TipRackList must:

· Hold an array of TipRack.
· Provide a method to add a TipRack to the array.
· Provide a method that returns a TipRack by its name.

3.4.1.6 LabWare
The LabWare must:

· Contain the appropriate variables.
· Provide a formatted string of a LabWare for the configuration file through the

object’s toString() method.

3.4.1.7 LabWareList
The LabWareList must:

· Hold an array of LabWare.
· Provide a method to add a LabWare to the array.
· Provide a method that returns a LabWare by its name.

3.4.1.8 Tool
The Tool must:

· Contain the appropriate variables.
· Provide a formatted string of a Tool for the configuration file through the

object’s toString() method.

3.4.1.9 ToolList
The ToolList must:

· Hold an array of Tool.
· Provide a method to add a Tool to the array.
· Provide a method that returns a Tool by its name.

3.4.1.10 Communication
The classes must be able to communicate correctly between each other.

3.4.1.11 Input/Output
The subsystem should be able to deal with the file input of the experiments text file.
This should include abnormal file detection, missing file detection and other IO
errors. The output file should be standardised, coherent, delimited in the correct way.

3.4.2 Handling of expected parameters

The constructors of each of the modules described above must all function correctly
with the passing of normal parameters in the correct order.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 13 of 19

· Correct storage of variables.
· The arrays should be tested with respect to holding their intended objects.

3.4.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.
· Test that the subsystem can deal with large and zero integers.
· Test the correct handling of a large or zero array of the appropriate type.

3.4.4 Handling of invalid parameters

The subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.
· Correct handling of non-boolean variables passed in where booleans are

expected.
· Correct handling of non-integer variables passed in where integers are

expected.
· Correct handling of parameters passed in an unexpected order.
· Correct handling of non-intended items being added to the arrays (such as

Strings).

3.5 Features of the Surface Subsystem

The Surface subsystem contains the following classes.

· Surface class – [32], section 2.4.16
· SurfaceObject class – [32], section 2.4.17
· LabWareSurfaceObject class – [32], section 2.4.19
· SubstanceSurfaceObject class – [32], section 2.4.21
· TipRackSurfaceObject class – [32], section 2.4.18
· ToolSurfaceObject class – [32], section 2.4.20

3.5.1 General compliance with design specification

3.5.1.1 Surface
The Surface must:

· Hold a 2-dimensional array representing the surface of the Biomek
Workstation.

· Provide a method of adding SurfaceObject to the array in the correct fashion
(i.e., in the correct place).

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 14 of 19

· Provide a method that returns the SurfaceObject by its name.
· Provide a method that returns the SurfaceObject by its location in the array.
· Provide a method that returns a vector consisting of all the LabWare currently

residing in the surface.
· Provide a toString() method that is used to provide the string for the

configuration file (JOB0.txt).

3.5.1.2 SurfaceObject
The SurfaceObject must:

· Contain the appropriate variables.
· Provide a method that returns the surface coordinates of the SurfaceObject.
· Provide a formatted string of a SurfaceObject for the configuration file

through the object’s toString() method.

3.5.1.3 LabWareSurfaceObject
The LabWareSurfaceObject must:

· Extend SurfaceObject.
· Contain the appropriate variables.
· Contain an ExperimentPlate.

3.5.1.4 SubstanceSurfaceObject
The SubstanceSurfaceObject must:

· Extend SurfaceObject.
· Contain the appropriate variables.
· Contain a Substance.

3.5.1.5 TipRackSurfaceObject
The TipRackSurfaceObject must:

· Extend SurfaceObject.
· Contain the appropriate variables.
· Contain a TipRack.

3.5.1.6 ToolSurfaceObject
The ToolSurfaceObject must:

· Extend SurfaceObject.
· Contain the appropriate variables.
· Contain a Tool.

3.5.1.7 Communication
The classes must be able to communicate correctly between each other.

3.5.1.8 Input/Output
The subsystem should be able to deal with the file input of the experiments text file.
This should include abnormal file detection, missing file detection and other IO
errors. The output file should be standardised, coherent, delimited in the correct way.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 15 of 19

3.5.2 Handling of expected parameters

The constructors of each of the modules described above must all function correctly
with the passing of normal parameters in the correct order.

· Correct storage of variables.
· The arrays should be tested with respect to holding their intended objects.

3.5.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.
· Test that the subsystem can deal with large and zero integers.
· Test the correct handling of a large or zero array of the appropriate type.

3.5.4 Handling of invalid parameters

The subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.
· Correct handling of non-boolean variables passed in where booleans are

expected.
· Correct handling of non-integer variables passed in where integers are

expected.
· Correct handling of parameters passed in an unexpected order.
· Correct handling of non-intended items being added to the arrays (such as

Strings).

3.6 Features of the Builder Subsystem

The Builder subsystem contains the following classes.

· WorkStation class – [32], section 2.4.22
· StepBuilder class – [32], section 2.4.25
· Step class – [32], section 2.4.26
· LiquidTransfer –[32], section 2.4.24

3.6.1 General compliance with design specification

3.6.1.1 WorkStation
The WorkStation must:

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 16 of 19

· Contain all the appropriate variables for modelling the Biomek environment,
according to [32].

3.6.1.2 StepBuilder
The StepBuilder must:

· Contain the appropriate variables.
· Provide a method that creates the steps (liquid transfers) from the Substances

in the ExperimentPlates.
· Provide the functionality to use Vectors.
· Provide a method that executes the appropriate LiquidTransfers and appends

them to the jobString.
· Be able to write to a file.

3.6.1.3 Step
The Step must:

· Contain the appropriate variables.

3.6.1.4 LiquidTransfer
The LiquidTransfer must:

· Contain the appropriate variables.
· Contain an id.
· Provide a method that creates a Liquid transfer operation, given the necessary

data to assimilate a string and to pass that string back.

3.6.1.5 Communication
The classes must be able to communicate correctly between each other.

3.6.1.6 Input/Output
The subsystem should be able to deal with the file input of the experiments text file.
This should include abnormal file detection, missing file detection and other IO
errors. The output file should be standardised, coherent, delimited in the correct way.

3.6.2 Handling of expected parameters

The constructors of each of the modules described above must all function correctly
with the passing of normal parameters in the correct order.

· Correct storage of variables.
· The Vectors should be tested with respect to holding their intended objects.

3.6.3 Handling of extreme parameters

The subsystem must be able to handle the input of values in excess or less than likely
values.

· Test that the subsystem can deal with long strings.
· Test that the subsystem can deal with large and zero integers.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 17 of 19

· Test the correct handling of a large or zero array of the appropriate type.

3.6.4 Handling of invalid parameters

The subsystem must be able to handle invalid parameters.

· Correct handling of non-string variables passed in where strings are expected.
· Correct handling of non-boolean variables passed in where booleans are

expected.
· Correct handling of non-integer variables passed in where integers are

expected.
· Correct handling of parameters passed in an unexpected order.
· Correct handling of non-intended items being added to the arrays (such as

Strings).

4. APPROACH

The following section describes the testing approaches that will be employed whilst
testing the TCL Job Compiler. It is important to note that not all the approaches will
be suitable for every testing occurrence, and each must be applied where most
appropriate.

4.1 Static Testing

This would usually primarily involve code walkthroughs. However, due to the nature
of the project and the fact that there is only one developer (designer, tester, etc.),
walkthroughs may not be worthwhile or even possible. Even though there is only one
person involved in the project, some aspects of walkthroughs can still be observed.
For example, the code can still be examined as a series of paths and the most likely
paths of the system can be ascertained during this process.

4.1.1 Suitability of method

Static testing is usually the first method of testing to be employed during a project and
can be useful in spotting syntactical and typographical errors.

4.2 Black box testing

Black box testing can be used as a follow up process to the static testing to further
explore possible paths through the system. Black box testing can be useful when the
tester knows the function of the component with respect to the operations on data
inputs, but is unsure as to how the component functions on the inside.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 18 of 19

4.2.1 Suitability of method

Black box testing is most suitable for testing top-level systems.

4.3 White box (Structural) testing

White box testing (glass box testing) is carried out when the inner workings of a
component are known and the test cases can be constructed with respect to this
knowledge. The tester uses knowledge about the structure of the component to derive
test data and test cases.

4.3.1 Suitability of method

White box testing allows the tester to use many of the possible paths through a
component, rather than simply the paths that are most likely to be used. It is not
possible to use every possible path, but a subset of test cases can be established given
the unit’s function and likely problems.

4.4 Interface testing

Interface testing is concerned with the communications between modules, subsystems
and subsystems. It is primarily concerned with the errors encountered during these
periods of communication and aims to monitor and improve the way that these
components co-operate.

4.5 Regression testing

The fixing and removing of bugs and errors can introduce new errors into the code
and the design. Therefore, the testing process must be iterative and repeated until the
system is adequately error-free.

5. PASS/FAIL CRITERIA

This section is used to identify explicitly what is meant by ‘passing’ or ‘failing’ a
certain item of testing. For this project, an explicit list of pass/fail criteria is not called
for and, indeed, time certainly not permit one. Please refer to the report (Story) for
more details of the testing process. The previous sections adequately demonstrate the
direction of the test process that is to be carries out. Furthermore, the exact criteria for
a pass or fail should seem clear, given the nature of the layout of the previous
sections.

SEM49060 Major Project – Subsystem Test Specification

UW Aberystwyth/Computer Science Page 19 of 19

222

ppendix

populateSubstances()
populateExperimentPlate()
setup()
createSteps()
deploySteps()
create()
SubstanceTest.java
ExperimentTokenizer.java
TipListDemo.java
SurfaceDemo.java
BigDemo.java

APPENDIX B

223

populateSubstances()
/*
* A method that loads a list of substances from a given file
* @param String fileName - the name of the file with the
* substances (i.e. Substances.txt)
*/

public void populateSubstances(String fileName)
throws TextIOException, Exception

{
TextFileReader tReader = new TextFileReader(fileName);

// Load the substances into a temporary array as sets of
// Strings from Substances.txt
String [] tmp = new String [theList.length];
for (int i = 0; i < tmp.length; i++)
{

String temp = new String(tReader.readString());
tmp[i] = temp;

}

// Load the description of the Substances into individual
// Substance objects.
for (int i = 0; i < tmp.length; i++)
{

// Using string tokenizer with space as delimiter
StringTokenizer st = new StringTokenizer(tmp[i], " ");

Substance temp = new Substance();

temp.setName(st.nextToken());

// Must deal with the String - needs INT!
String a = st.nextToken();
int ai = Integer.parseInt(a);
temp.setPrewetDelay(ai);

String b = st.nextToken();
int bi = Integer.parseInt(b);
temp.setBlowDelay(bi);

String c = st.nextToken();
int ci = Integer.parseInt(c);
temp.setDispenseDelay(ci);

String d = st.nextToken();
int di = Integer.parseInt(d);
temp.setAspirateDelay(di);

// Dealing with the String - need Boolean
String e = st.nextToken();
int eb = Integer.parseInt(e);
if (eb == 1)
{

temp.setPrewetNeeded(true);
}

APPENDIX B

224

else
{

temp.setPrewetNeeded(false);
}

String f = st.nextToken();
int fb = Integer.parseInt(f);
if (fb == 1)
{

temp.setTiptouchNeeded(true);
}
else
{

temp.setTiptouchNeeded(false);
}

String g = st.nextToken();
int gb = Integer.parseInt(g);
if (gb == 1)
{

temp.setBlowoutNeeded(true);
}
else
{

temp.setBlowoutNeeded(false);
}

String h = st.nextToken();
int hb = Integer.parseInt(h);
if (hb == 1)
{

temp.setKnockoutNeeded(true);
}
else
{

temp.setKnockoutNeeded(false);
}

addSubstance(temp);
}

}

APPENDIX B

225

populateExperimentPlate()
/*
* A method to populate a plate with experiments using a file
* e.g. Expt.txt
*/

public void populateExperimentPlate(String fileName, SubstanceList substanceList)
throws TextIOException, Exception

{

File myFile = new File(fileName);

BufferedInputStream a = new BufferedInputStream(new FileInputStream(myFile));
InputStreamReader b = new InputStreamReader(a);
BufferedReader d = new BufferedReader(b);

String temp = "";
for (int i = 0; i<512; i++)
{

temp += d.readLine();
temp.trim();

}

// First, break the file into single experiments. - array
// Using string tokenizer with # as delimiter
StringTokenizer st = new StringTokenizer(temp, "#");

// create an array with the number of tokens as a size
String[] subStr = new String[st.countTokens()];
for (int i = 0; i<subStr.length; i++)
{

subStr[i] = st.nextToken();
}

// Setup Substances
//SubstanceList substanceList = new SubstanceList();
//substanceList.populateSubstances("C:/test/substances.txt");

// Create an Experiment Plate
ExperimentPlate plate = new ExperimentPlate();
// Loop that builds the experiments
for (int i = 0; i< subStr.length;i++)
{

Experiment exp = new Experiment();
// Create new String tokenizer to tokenize the experiment
StringTokenizer tz = new StringTokenizer(subStr[i], ", ");

//**********************WELL*****************************//

// First token is the well - split into characters
char [] wellArray = tz.nextToken().toCharArray();
// sort out row

if (wellArray[0] == 'A')
{

APPENDIX B

226

exp.setRow(1);
}
if (wellArray[0] == 'B')
{

exp.setRow(2);
}
if (wellArray[0] == 'C')
{

exp.setRow(3);
}
if (wellArray[0] == 'D')
{

exp.setRow(4);
}
if (wellArray[0] == 'E')
{

exp.setRow(5);
}
if (wellArray[0] == 'F')
{

exp.setRow(6);
}
if (wellArray[0] == 'G')
{

exp.setRow(7);
}
if (wellArray[0] == 'H')
{

exp.setRow(8);
}

// sort out column
if (wellArray.length > 2)
{

// column is greater than 9
String tempInt = new String

(Character.toString(wellArray[1]) +
Character.toString(wellArray[2]));

int ti = Integer.parseInt(tempInt);
exp.setCol(ti);

}
else
{

// column is between 1 and 9
String tempInt = new String

(Character.toString(wellArray[1]));
int ti = Integer.parseInt(tempInt);
exp.setCol(ti);

}
exp.initWell();

/*******************Substances****************************/
// "time" represents the end of the Substances
// gets the first token

APPENDIX B

227

String next = tz.nextToken();
do
{

// create instance of new Media component
MediaComponent media = new MediaComponent();
// uses the first token
next.trim();
media.setSubstance(substanceList.findByName(next));
// set amount of media component
// move onto next token
next = tz.nextToken();
next.trim();
media.setAmount(Integer.parseInt(next));

exp.addMediaToList(media);
//move onto next token
next = tz.nextToken();

} while (!next.equals("time"));

/***********************Time******************************/
// the above nextToken() purges the String - 'time'
exp.setLength(Integer.parseInt(tz.nextToken()));
this.addExperimentToPlate(exp);

}
System.out.println("Populated Experiment Plate");

}

APPENDIX B

228

A Selected Section of setup()
// Going to start adding things to the surface

// so we need to create a surface.
Surface theSurface = new Surface();

TextFileReader tReader = new TextFileReader(surfFileName);

// Load the substances into a temporary array as sets of
// Strings from Substances.txt
String [] tmp = new String [25];
for (int ni = 0; ni < tmp.length; ni++)
{

String temp = new String(tReader.readString());
tmp[ni] = temp;
System.out.println(tmp[ni]);

}

for (int mi = 0; mi < tmp.length; mi++)
{

// Using string tokenizer with space as delimiter
StringTokenizer st = new StringTokenizer(tmp[mi], " ");

// First, get the coordinates - the first token
String coord = st.nextToken();
System.out.println(coord);
int locNum = 0; // will be a number between 1 and 12.
int segNum = 0; // will be between 1 and 8
// If the token is only 2 characters, then A1 etc...
if (coord.length() <= 2)
{

if (coord.charAt(0) == 'B')
{

locNum = 6 + Integer.parseInt(coord.valueOf(coord.charAt(1)));
}
else
{

locNum = Integer.parseInt(coord.valueOf(coord.charAt(1)));
}

}

if (coord.length() == 3) // means there is a segement as well
{

if (coord.charAt(0) == 'B')
{

locNum = 6 + Integer.parseInt(coord.valueOf(coord.charAt(1)));
}
else
{

locNum = Integer.parseInt(coord.valueOf(coord.charAt(1)));
}
segNum = Integer.parseInt(coord.valueOf(coord.charAt(2)));

}

if (coord.length() >= 4) // means there is a segement as well
{

APPENDIX B

229

if (coord.charAt(0) == 'B')
{

locNum = 6 + Integer.parseInt(coord.valueOf(coord.charAt(1)));
}
else
{

locNum = Integer.parseInt(coord.valueOf(coord.charAt(1)));
}
segNum = Integer.parseInt(coord.valueOf(coord.charAt(3)));

}

// ok, so we've got the coordinates - location on surface.

String type = st.nextToken();

// Need to check the line for each different possible surface object.

// If it's VICTOR - will always be first?
if (type.equals("VICTOR"))
{

// we want a new SurfaceObject
SurfaceObject victor = new
SurfaceObject(locNum, segNum, "VICTOR");

// Add the victor to the surface
theSurface.addToSurface(victor, locNum, segNum);
}

// Now, do the tools
if (type.equals("Gripper"))
{

ToolSurfaceObject gripper = new ToolSurfaceObject
(locNum, segNum, 2, 0, ws.getToolList().getToolByName(type));

theSurface.addToSurface(gripper, locNum, segNum);
}

if(type.equals("P20L"))
{

ToolSurfaceObject p20L = new ToolSurfaceObject
(locNum, segNum, 2, 0, ws.getToolList().getToolByName(type));

theSurface.addToSurface(p20L, locNum, segNum);
}
if(type.equals("P200L"))
{

ToolSurfaceObject p200L = new ToolSurfaceObject
(locNum, segNum, 2, 0, ws.getToolList().getToolByName(type));

theSurface.addToSurface(p200L, locNum, segNum);
}
if(type.equals("P1000L"))
{

ToolSurfaceObject p1000L = new ToolSurfaceObject
(locNum, segNum, 2, 0, ws.getToolList().getToolByName(type));

theSurface.addToSurface(p1000L, locNum, segNum);
}

// Now the tip racks

APPENDIX B

230

if(type.equals("P20"))
{

TipRackSurfaceObject p20 = new TipRackSurfaceObject
(locNum, segNum, 4, 0, ws.getTipRackList().getTipRackByName(type));

theSurface.addToSurface(p20, locNum, segNum);
}
if(type.equals("P250"))
{

TipRackSurfaceObject p250 = new TipRackSurfaceObject
(locNum, segNum, 4, 0, `ws.getTipRackList().getTipRackByName(type));

theSurface.addToSurface(p250, locNum, segNum);
}
if(type.equals("P1000"))
{

TipRackSurfaceObject p1000 = new TipRackSurfaceObject
(locNum, segNum, 4, 0, ws.getTipRackList().getTipRackByName(type));

theSurface.addToSurface(p1000, locNum, segNum);
}

// Now the labware...

if(type.equals("96-well") | type.equals("half") |
type.equals("quarter") | type.equals("reservoir"))

{
String ext = st.nextToken();
LabWareSurfaceObject well = new LabWareSurfaceObject

(locNum, segNum, 3, 0, ws.getLabWareList().getLabWareByName
("{" + type + " " + ext+ "}"));

theSurface.addToSurface(well, locNum, segNum);
}

// Now, the subtances
// Is it a substance?
if (theSubstanceList.findByName(type)!= null)
{

// First, get the amount
float am = Float.parseFloat(st.nextToken());
SubstanceSurfaceObject subSurObj = new

SubstanceSurfaceObject(locNum, segNum,
theSubstanceList.findByName(type),am);

theSurface.addToSurface(subSurObj, locNum, segNum);
}

}

ws.setSurface(theSurface);

APPENDIX B

231

createSteps()
/*
* A method that takes the Surface labware one-by-one of the surface
* and iterates throught the Experiment plate, creating the
* liquid transfer steps.
*/

public void createSteps(WorkStation ws)
{

theWs = ws;

// Need to get the Experiment plates...
Vector expPlates = new Vector(1,1);

// Need all the relevant labware objects from surface
// extract experiment plates from labware surface objects
Vector labWareSurface = ws.getSurface().returnLabwareVector();
for (int i = 0; i < labWareSurface.size(); i++)
{

LabWareSurfaceObject temp = (LabWareSurfaceObject)labWareSurface.get(i);
expPlates.add(temp.getExperimentPlate());

}

// go through plates and create the liquid transfer steps
for (int i = 0; i < expPlates.size(); i++)
{

if(((LabWareSurfaceObject)labWareSurface.get(i)).getName().equals("{96-well
flat}"))
{

// get a link to the experiment array
ExperimentPlate temp = (ExperimentPlate)expPlates.get(i);

// set up a Well for the plate
Well thePlateWell = new Well();
int thePlateLoc = ((LabWareSurfaceObject)labWareSurface.get(i)).getLocation();
if (thePlateLoc > 6)
{

thePlateWell.setRow(2);
thePlateWell.setCol(thePlateLoc-6);

}
else
{

thePlateWell.setRow(1);
thePlateWell.setCol(thePlateLoc);

}
System.out.println(thePlateWell);

try
{

Experiment [] tmp = temp.getPlate();

// sort into various vectors
for (int n = 0; n < tmp.length; n++)
{

// get the Medias - they will form the Liquid transfers

APPENDIX B

232

MediaComponent [] mediaList = tmp[n].getList();

for (int p = 0; p < mediaList.length; p++)
{

if (mediaList[p] != null)
{

Step theStep = new Step(mediaList[p].getSubstance(),
mediaList[p].getAmount(), thePlateWell, [n].getWell());
// step is a agar step
if (theStep.getSubstance().getName().charAt(0) == 'm')
{

agarSteps.add(theStep);
}
// step is a metabolite step
if (theStep.getSubstance().getName().charAt(0) == 'C')
{

metSteps.add(theStep);
}
// step is a yeast step
if (theStep.getSubstance().getName().charAt(0) == 'Y' |
theStep.getSubstance().getName().charAt(0) == 'w')
{

yeastSteps.add(theStep);
}

}
}

}
}
catch (Exception e)
{

System.out.println("Error/Fault/Exception in Step Creation" + e);
}

}
}
System.out.println("Created Steps.");

}

APPENDIX B

233

deploySteps()
/*
* A method that takes all the steps and creates liquid transfers

* for them in the correct order and builds up jobString (JOB1.txt)
*/
public void deploySteps()
{

LiquidTransfer temp;
Step theStep;
int id = 0;

// First, the metabolite steps.
System.out.println("\nStarting Metabolite Steps.\n");
for (int i= 0; i< metSteps.size(); i++)
{

// create the Liquid Transfer for the step
temp = new LiquidTransfer(id);
theStep = (Step)metSteps.get(i);

temp.create(theStep.getCoords(),
theStep.getPlate(),

theStep.getAmount(),
theStep.getSubstance(),

theWs);
jobString += temp;
id++;

}
System.out.println("\nFinished Metabolite Steps.");

// First, the metabolite steps.
System.out.println("\nStarting Agar Steps.\n");
for (int i= 0; i< agarSteps.size(); i++)
{

// create the Liquid Transfer for the step
temp = new LiquidTransfer(id);
theStep = (Step)agarSteps.get(i);

temp.create(theStep.getCoords(),
theStep.getPlate(),

theStep.getAmount(),
theStep.getSubstance(),

theWs);
jobString += temp;
id++;

}
System.out.println("\nFinished Agar Steps.");

// First, the metabolite steps.
System.out.println("\nStarting Yeast Steps.\n");
for (int i= 0; i< yeastSteps.size(); i++)
{

// create the Liquid Transfer for the step
temp = new LiquidTransfer(id);
theStep = (Step)yeastSteps.get(i);

APPENDIX B

234

temp.create(theStep.getCoords(),
theStep.getPlate(),

theStep.getAmount(),
theStep.getSubstance(),

theWs);
jobString += temp;
id++;

}
System.out.println("\nFinished Yeast Steps.");

}

APPENDIX B

235

create() (LiquidTransfer)
/*
* The create() method for when the LiquidTransfer object exists
* but is not yet instantiated.
* @param theSource - the well that contains the source liquid
* @param theDest - the well that is to receive the liquid
* @param theVolume - the amount of liquid that is to be transferred
* @param theSubst - the substance that is to be transferred
* @param theWs - the Work Station (environment)
*/
public void create(Well theDestCoord,

Well theDestPlate,
float theVolume,
Substance theSubst,
WorkStation theWs)

{
/**
* IMPORTANT NOTE: *
* The "transfer +=" parts *
* are adding the string together that will form JOB1.txt *
**/

// start the transfer string
transfer += "\nLog \"Executing LiquidTransfer: " + id + "\"";

/************************** 1.*****************************/
// Find the appropriate tool based on the amount to be transferred.
Tool theTool;
theTool = theWs.getToolList().getToolByVolume(theVolume);

/************************** 2.*****************************/
// Attach the tool.
// We may already have the correct tool... Check
if (theWs.getCurrentTool() == null ||

!theTool.getName().equals(theWs.getCurrentTool().getName()))
{

// we don't have the correct one so we must change it.
transfer += "\nTool attach " + theTool.getName();
theWs.setCurrentTool(theTool);

}

/************************** 3.*****************************/
// Attach the tip for that tool.
// First, get the tip...
// If the last tip is dirty with the substance for this liquid
// transfer, then we can use it again?
if (theWs.getLastSubstancePipetted() == null ||

!theWs.getLastSubstancePipetted().getName().equals(theSubst.getName()))
{

// then we must attach a new tip
Tip theTip = new Tip();
theTip = theWs.getTipList().getTipByVolume(theVolume);
theWs.setCurrentTip(theTip);

transfer += "\nLog \"Attaching tip " + theWs.getCurrentTip().getName() +

APPENDIX B

236

" with some grid reference (not sure yet)\"";
transfer += "\nTip attach dispose " + theWs.getCurrentTip().getName() + " " +

theWs.getCurrentTip().getName() + " " + theWs.getCurrentTool().getName();

transfer += "\nLog \"Attaching to " + theWs.getCurrentTip().getName() +
" with some grid reference (not sure yet)\"";

}

theWs.setLastSubstancePipetted(theSubst);

/************************** 4.*****************************/
// Move the tool to the Source. This command always occurs.
// Get the source surface object - should be a substance.

SubstanceSurfaceObject src =
(SubstanceSurfaceObject)theWs.getSurface().getByName(theSubst.getName());

LabWareSurfaceObject temp1 =
(LabWareSurfaceObject)theWs.getSurface().returnByLocation(src.getLocation());

LabWare theSrcLabWare = temp1.getSurfaceLabWare();

transfer+= "\nMove Abs [Coord " + src.getCoords() + " A" +
src.getSegment() + "] " + (theWs.getAdditionalHeight() +

theSrcLabWare.getFLabwareHeight());

/************************** 5.*****************************/
// Check that there is enough substance at the source.

src.adjustVolume(- theVolume);

if (src.getVolume() < 0)
{

System.out.println("Ran out of substance at the source. Should quit!");
}
else
{

transfer+= "\nLog \"Checking volumes: " + (src.getVolume() - theVolume) +
" " + theSrcLabWare.getSrcMax() + "\"";

}

// Start of the Aspiration process....
transfer+= "\nLog \"Aspirating " + src.getSurfaceSubstance().getName() +

" from " + src.getCoords() + "A" + src.getSegment() +
" (volume " + theVolume + ")\"";

/************************** 6.*****************************/
float aspirationZ = (theWs.getAspirationHeight() * theSrcLabWare.getCDepth()) +

theSrcLabWare.getCTop() - theSrcLabWare.getCDepth();
// If a prewet is needed:
if (src.getSurfaceSubstance().getPrewetNeeded() == true)
{

// a. Suck some air in.
transfer+= "\nMove Abs T " + theWs.getCurrentTool().getHeightWithAir();

// b. Move tip into the substance.

APPENDIX B

237

transfer+= "\nMove Abs Z " + aspirationZ;

// Mark the tip as dirty. Not sure what this does?..Do it anyway
// I don't think this is necessary...
transfer+= "\nputres system pod dirty_tip 1";

// c. Suck up some substance.
float prewetT;
prewetT = (theWs.getCurrentTool().getVolumeOffset() +

(theWs.getCurrentTool().getSteps() * (theVolume +
5 + theWs.getCurrentTool().getBiasV())));

transfer+= "\nMove Rel T " + prewetT;
transfer+= "\nDelay " + src.getSurfaceSubstance().getPrewetDelay();

// d. Move tool up a bit.
transfer+= "\nMove Abs Z " + theSrcLabWare.getCTop();

// e. Push out the substance.
transfer+= "\nMove Abs T " + theWs.getCurrentTool().getHeightWithAir();
transfer+= "\nDelay " + src.getSurfaceSubstance().getBlowDelay();

// f. Push out the air.
transfer+= "\nMove Abs T " + theWs.getCurrentTool().getFillV();
transfer+= "\nDelay " + src.getSurfaceSubstance().getDispenseDelay();

}

// 7. If a blowout is needed:
if (src.getSurfaceSubstance().getBlowoutNeeded() == true)
{

// a. Suck some air in. (?)
transfer+= "\nMove Abs T " + theWs.getCurrentTool().getHeightWithAir();

}

transfer+= "\nMove Abs Z " + aspirationZ;
transfer+= "\nputres system pod dirty_tip 1";

// 8. Suck up the appropriate amount of substance.
float amountT = (theWs.getCurrentTool().getVolumeOffset() +

(theWs.getCurrentTool().getSteps() * (theVolume +
theWs.getCurrentTool().getBiasV())));

transfer+= "\nMove Rel T " + amountT;
transfer+= "\nDelay " + src.getSurfaceSubstance().getAspirateDelay();

transfer+= "\nMove Rel T " + (-(theWs.getCurrentTool().getSteps() *
theWs.getCurrentTool().getBiasV()));

// 9. Move the tool up.
transfer+= "\nMove Abs Z " + (theWs.getAdditionalHeight() +

theSrcLabWare.getFLabwareHeight());

// 10. Move the tool the to the destination.
LabWareSurfaceObject theDestLabWareSurfaceObject =
(LabWareSurfaceObject)theWs.getSurface().returnByLocation(theDestPlate.getLocation()
);

APPENDIX B

238

LabWare theDestLabWare = theDestLabWareSurfaceObject.getSurfaceLabWare();

transfer+= "\nMove Abs [Coord " + theDestPlate.toString() + " " +
theDestCoord.toString() + "] " + (theWs.getAdditionalHeight() +

theDestLabWare.getFLabwareHeight());

// End of the Aspiration Process

// 11. Check that there is enough room at the destination.
Experiment destExp =
theDestLabWareSurfaceObject.getExperimentPlate().returnByLoc(theDestCoord.getLocatio
n());

if (destExp.getVolume() > (theDestLabWare.getDestMax() - theVolume))
{

System.out.println("Not enough room at the Destination. Should quit!");
}
else
{

transfer+= "\nLog \"Checking volumes: " + theVolume +
" " + theDestLabWare.getDestMax() + "\"";

destExp.updateVolume(theVolume);
}

// Start of the dispensation process
// 12. Move the tool down to an appropriate height.
transfer+= "\nPutVal tools " + theWs.getCurrentTool().getName() +

" max_velocity 2";
float dispenseZ = (theWs.getDispenseHeight() * theDestLabWare.getCDepth()) +

theDestLabWare.getCTop() - theDestLabWare.getCDepth();

transfer+= "\nMove Abs Z " + dispenseZ;

// 13. Push the substance out.
if (src.getSurfaceSubstance().getBlowoutNeeded() == true)
{

transfer+= "\nMove Abs T " + theWs.getCurrentTool().getHeightWithAir();
}
else
{

transfer+= "\nMove Abs T " + theWs.getCurrentTool().getFillV();
}
transfer+= "\nPutVal tools " + theWs.getCurrentTool().getName() +

" max_velocity " + theWs.getCurrentTool().getMaxVelocity();

transfer+= "\nDelay " + src.getSurfaceSubstance().getDispenseDelay();

// 14. Move the tool back up again.
transfer+= "\nMove Abs Z " + theDestLabWare.getCTop();

// 15. Push all the air out of the tool.
if (src.getSurfaceSubstance().getBlowoutNeeded() == true)
{

transfer+= "\nMove Abs T " + theWs.getCurrentTool().getFillV();
transfer+= "\nDelay " + src.getSurfaceSubstance().getBlowDelay();

}
if (src.getSurfaceSubstance().getTiptouchNeeded() == true)

APPENDIX B

239

{
float tiptouchZ = theDestLabWare.getCTop() - theDestLabWare.getCDepth() +

(((destExp.getVolume() + theVolume) / theDestLabWare.getDestMax()) *
theDestLabWare.getCDepth()) + 1;

transfer+= "\nMove Abs Z " + tiptouchZ;
transfer+= "\nDelay " + theWs.getSurfaceTouchDelay();
transfer+= "\nMove Abs Z " + (theDestLabWare.getCTop() +

theWs.getAdditionalHeight());
}

// Print out details of the transfer
transfer += "\nLog \"Transfer from " + src.getCoords() + " A" +

src.getSegment() + " to " + theDestPlate.toString() + " " +
theDestCoord.toString() + ", " + theSubst.getName() +

", Volume: " + theVolume + " COMPLETE.\"";

System.out.print(".");
}

APPENDIX B

240

SubstanceTest.java

/***
* SubstanceTest.java - a test class to test Substance.java *
* Just testing basic input and output *
* @author - Ben Tagger *
* @version - 05/02/03 *
**/

import aber.util.TextIOException;

import java.io.*;

public class SubstanceTest
{

public void test() throws TextIOException
{

System.out.println("\nEntering Details...");
MediaComponent theMedia = new MediaComponent();
theMedia.setDetails();

System.out.println("\nDisplaying Details...");
System.out.println(theMedia);

}

public static void main (String [] args) throws TextIOException
{

SubstanceTest theDemo = new SubstanceTest();
theDemo.test();

}
}

ExperimentTokenizer.java
Please refer to populateExperimentPlate() for details of the ExperimentTokenizer test harness (these two
entries are virtually identical).

APPENDIX B

241

TipListDemo.java
public class TipListDemo
{

public void test() throws Exception
{

// create tip list
TipList theList = new TipList(3);

// create and add tips
Tip a = new Tip("P20",

(float)9.780000,
(float)6.860000,
(float)38.099998,
(float)0.630000,
(float)0.000000,
(float)0.250000,
(float)23.000000,
(float)1.000000,
false);

theList.addTipToList(a);

Tip b = new Tip("P250",
(float)9.780000,
(float)6.860000,
(float)38.099998,
(float)0.630000,
(float)0.000000,
(float)0.250000,
(float)23.000000,
(float)1.000000,
false);

theList.addTipToList(b);

Tip c = new Tip("P1000",
(float)9.780000,
(float)6.860000,
(float)38.099998,
(float)0.630000,
(float)0.000000,
(float)0.250000,
(float)23.000000,
(float)1.000000,
false);

theList.addTipToList(c);

System.out.println(theList);
}

public static void main (String [] args) throws Exception
{

TipListDemo theDemo = new TipListDemo();
theDemo.test();

}
}

APPENDIX B

242

SurfaceDemo.java
public class SurfaceDemo
{

public void test() throws Exception
{

// Set up Workstation
WorkStation newStation = new WorkStation();

// Set up some intitial variables
newStation.setAspirationHeight((float)0.01);
newStation.setAdditionalHeight((float)2.0);
newStation.setDispenseHeight((float)0.85);
newStation.setSurfaceTouchDelay((float)0.5);

// Set up the Configurator for the WorkStation
Configurator newConfig = new Configurator(newStation);
newConfig.setup("C:\\test\\Substances.txt", "C:\\test\\Surface.txt");

System.out.println(newStation.getSurface());
}

public static void main (String [] args) throws Exception
{

SurfaceDemo theDemo = new SurfaceDemo();
theDemo.test();

}
}

APPENDIX B

243

BigDemo.java
/*
* This is a big demo to test everything
* @author Ben Tagger
* @version started 12/03/03
*/

import java.util.*;
import java.io.*;

public class BigDemo
{

public static void main (String [] args) throws Exception
{

// Set up Workstation
WorkStation newStation = new WorkStation();

// Set up some intitial variables
newStation.setAspirationHeight((float)0.01);
newStation.setAdditionalHeight((float)2.0);
newStation.setDispenseHeight((float)0.85);
newStation.setSurfaceTouchDelay((float)0.5);

// Set up the Configurator for the WorkStation
Configurator newConfig = new Configurator(newStation);
newConfig.setup("C:\\test\\Substances.txt", "C:\\test\\Surface.txt");
// create Job0.txt
newConfig.writeJobFile("C:\\test\\");

// Now, for the real problem - JOB1.txt
// Need to populate the surface with Experiments
// So, we just want the labware...

Vector labWareSurface = newStation.getSurface().returnLabwareVector();
for (int i = 0; i < labWareSurface.size(); i++)
{

// populated the experiments for each relevant piece of labware.
LabWareSurfaceObject surfaceObject =
(LabWareSurfaceObject)labWareSurface.get(i);
ExperimentPlate thePlate = new ExperimentPlate();

if (surfaceObject.getName().equals("{96-well flat}"))
{

try
{

thePlate.populateExperimentPlate
("C:\\test\\Expt.txt", newStation.getSubstanceList());

}
catch (Exception e)
{

System.out.println("Failed to Populate Experiment Plates: " + e);
}

}
surfaceObject.setExperimentPlate(thePlate);

}

APPENDIX B

244

// create the step builder
StepBuilder newBuilder = new StepBuilder();
newBuilder.createSteps(newStation);
newBuilder.deploySteps();
newBuilder.writeToFile("C:\\test\\JOB1.txt");

}
}

