Z25 Adaptive and Mobile Systems
Dr. Cecilia Mascolo

Programming Sensor Networks using Abstract
Regions

Matt Welsh and Geoff Mainland

Harvard University

Programming Sensor Networks

» Development of sensor network application is
difficult
— Highly distributed systems
— Constrained devices, energy, unreliable channels

» Designers make many complex low level
decisions

Aims

* Provide general purpose primitives for sensor
networks
— Addressing, data sharing and reduction in local regions
* Raise the abstraction level exposed to the
designer so to allow decoupling of application
level concepts from communication and energy
considerations

Application development

* Local coordination is an important aspect of many
applications

— Coordination at 1hop neighbours (spatial/local
coordination)

— Local coordination primitives are built by developers (at
the moment)

Abstract Regions

» Spatial operators to capture local communication

* Node addressing through tuple space
programming model

» Exposure of tradeoffs between communication
and resource usage

» General enough to support different sensor
applications

Notion of locality

* An abstract region defines a neighbourhood
relationship among nodes
— Set of nodes within N hops
— Set of nodes within distance D

» Each node defines multiple abs regions

» Each node can be member of multiple regions at
once

Programming operator

* Neighbour discovery
* Enumeration

» Data sharing

* Reduction

» Unified interface regardless of definition of membership

— Readily change the underlying region implementation without
affecting the application logic

— E.G., Application using N radio-hop region can easily use geo
neighbour region

Discovery Operator

» Discovery: discovering neigbours depends on the
type of region
— Broadcast messages, collecting node location, estimate
radio links
» Continuous process

» Each node informed of changes (joining, leaving,
moving nodes)

» Terminated: quality metric returned (accuracy of
region info: % of nodes which responded)

Enumeration Operator

* Enumeration operator returns the set of nodes
participating in a region, allowing them to be
addressed

» Supplementary info can be provided (location)

Data Sharing Operator

» Allows variable sharing in the region
— Get/put
» Get(v,n): get value of v from node n
* Put(v,l) stores value I in v
» The operator implementation is not specified
— Unicast can be used to retrieve a value from a node
— Put could store value locally

— Alternative implementation could broadcast values (put)
and get info locally from a cache

Reduction Operator

 Takes a shared variable and reduces the value of
the variable across a number of nodes storing the
value in a shared variable

* Reductions: sum, max, min,...
* Implementation could be done by

— Collecting values locally
— Forming spanning tree reducing at each level

* The shared variable interface hides the
algorithmic details

Regions implementation

* N-radio hops: nodes within N hops

» With geo filter: nodes within N hops and distance d

» K-nearest neighbour: K nearest nodes in N hops

» K-best neighbour: K nodes with best link quality in N
hops

» Approx planar mesh: mesh with small number of
crossing edges

» Spanning tree: rooted at a node (used to aggregate)

Radio and Geo neighbourhood

* Node broadcasts geo adverts
» Data sharing
— Push (put) to other nodes
— Pull (get) messages from nodes
— Reduction: collects locally and stores in other var

Approx Planar Mesh

» Each node discovers k-nearest radio neighbours
» Divide in m equal size sectors of 2pi/m

» Select nearest node in each sector

» 1lhop broadcast of these outedges

» Each node receiving it checks if these cross their
edges: in which case send a message invalidating
the outedge

e Various rounds of broadcasts

Spanning Tree

* Nodes broadcast messages with their id and
number of hops from root

* When one of these is received a node increments
the hop count and reforwards with its id

* A node selects a parent with minimum hopcount

* However it also estimates link quality: if this falls
below a threshold it selects another parent

» Other spanning tree implementations are possible

Spanning Tree Operations

» Useful at aggregating data at a single point

* A put from the root propagates the value to the
whole tree

* A put from a non root node propagates the value
to the root

* Reductions propagate data up the tree causing
each node to aggregate local value with the data
of its children

Quality feedback and tuning interface

* Quality of information implies energy consumption
— More messages-> more energy used

» Abstract regions expose this trade off

— Tune the number/frequency of messages used or rate
of broadcast of location advert

— Feedback to applications: quality measure (fraction of
nodes which responded, timeouts of operation)

— Tuning can be applied by applications to specify low
level parameters

Implementation

* TinyOS: sensor operating system

» Added support for blocking/synchronous
operations
— This decreases the complexity of the code

- /* Discover region */

result t Region.formRegion(<region specific args>,
int timeout);

API /* Wait for region discovery #*/
result_t Region.sync(int timeout);

/* Set local shared variable #/
result_t sharedvar.put(sv_key_ t key, sv_value t val);

/* Get shared variable from give node */
result_t sharedvar.get(sv_key_t key, addr_t node,
sv value t *val, int timeout);

/* Wait for shared variable gets */
result t Sharedvar.sync(int timeout);

/* Reduce ’'value’ to ‘result’ with given op */
/* 'yield’ returns pct of nodes responding */
result_t Reduce.reduceToOne(op_t operator,
sv_key_t value, sv_key t result,
float *yield, int timeout);

/* Reduce and set result in all nodes */
result_t Reduce.reduceToAll (op_t operator,
sv_key_t value, sv_key_ t result,
float *yield, int timeout);

/* Wait for reductions to complete */
result t Reduce.sync(int timeout);

Applications

* Object tracking
» Contour finding
» Direct diffusion
* GPSR

Object Tracking

» Each node takes magnetic field readings &
compares with a threshold

» If above communicate with neighbours and elect a
leader (the max reading)

» The leader computes average and sends to
basestation

Object Tracking with Abstract Regions

location = get_location();
/* Get 8 nearest neighbors */
region = k nearest region.create(8);

while (true) {
reading = get_sensor_reading();

/* Store local data as shared variables */
region.putvar(reading_key, reading);
region.putvar(reg_x_key, reading * location.x);
region.putvar(reg_y_key, reading * location.y);

if (reading > threshold) {
/* ID of the node with the max value =*/
max_id = region.reduce(OP_MAXID, reading_key);

/* 1f I am the leader node ... */
if (max_id == my_id) {
/* perform reductions and compute centroid */
sum = region.reduce(OP_SUM, reading key);
sum_x = region.reduce(OP_SUM, reg_x_key);
sum_y = region.reduce(OP_SUM, reg y key);
centroid.x = sum_x / sumj
centroid.y = sum_y / sumy
send_to_basestation(centroid);
}
}
sleep(periodic_delay);
}

11

Evaluation: adaptive reduction

* Reduction quality depends on replies from
neighbours

* Hence it depends on retransmissions of reduction
requests/replies

» Adaptive reduction allows to maintain a certain
guality by retransmitting more when link quality
seems bad

Adaptive Reduction

12

—a— Average retransmission count

11 | -0~ Average ywl —
0 Target yield i
1 08

. 9 -
g P S, —a 0.7
§ 7 0.6 ;g
s 6 05 3
e S
g ° 104
g ! 03

3

T 0.2

P 0.1

0 0

=]
5]
°
w
o
a

0.5 086 0.7 08 09

Target yield

Figure 8: Adaptive reduction algorithm performance. This
Jfigure shows the effectiveness of dynamically tuning the maxi
mum retransmission count to meet a reduction vield target. The
Sigure shows the average yield across 100 reduction operations,
as well as the average retransmission count determined by the
controller.

12

Object Tracking Evaluation

300 T T . 0.8
Messages per track)ng event —&—
275 [Median position error ---©--)—I
R

250 -
& 225 - /=—=N 07
o N,
o 200
% 175 = R / 'J 3
T 150 06 g
g /s/ £
o 125 %l i
[,
g 100 R
- 2
g 7 2=~ 0.5

50 e e, -

25 g Ry

0 . , , \ \ 04
4 6 8 10 12 14 16

Size of k-nearest neighborhood

Figure 12: Accuracy and overhead of object tracking as
a function of neighborhood size. Results are the average of
three runs for each neighborhood size.

Comments

» First to provide an abstraction
— Many other works improved this in terms of what can be
provided to the developer and how
» Evaluation of this is difficult as you have to
measure usefulness

13

