

GZ06 Adaptive and Mobile Systems Dr. Cecilia Mascolo

Semi-Probabilistic Content-Based Publish-Subscribe

Paolo Costa, Gian Pietro Picco Politecnico di Milano, Italy [slides from the ICDCS presentation of the authors]

Motivation of this Paper

- Publish/subscribe systems for mobile ad hoc networks suffer from scalability problems
- However the ability to be able to publish and notify hosts of events despite mobility is very useful

UCL

Content-based routing on a dynamic topology

- The pub/sub paradigm is appropriate for dynamic environments
- Unfortunately, most current systems do not tolerate topological reconfiguration
- Topological reconfiguration of the dispatching infrastructure can occur in:
 - peer-to-peer: nodes connect or disconnect unexpectedly
 - MANETs: physical mobility of hosts
 - sensor networks: sensors switching on / off

The Idea

- A semi-probabilistic approach combining:
 - the efficiency of deterministic routing
 - the resilience to reconfiguration and inherent simplicity of probabilistic approaches
- Deterministic information is maintained only in the proximity of the subscriber
- Routing is performed:
 - deterministically (if possible)
 - probabilistically (otherwise)

Event Propagation

- An event received is always forwarded only along a subset of the outgoing links (*fanout*)
- The selected links may change from time to time but the percentage of links selected is fixed and is determined by the *event propagation threshold* (t)
- How links are selected ?
 - deterministic links are selected first
 - the remaining ones are chosen probabilistically

Route Selection

- Independently from the available information, the propagation threshold cannot be passed
- Subscription selection is prioritized according to f:
 - subscriptions at distance *d* are preferred over those at distance *d* + 1
 - subscriptions at d = 1 are always used (no matter what the propagation threshold is)
- An event is never forwarded to a leaf dispatcher unless it is a subscriber

Simulation Settings

- We evaluated the performance of our approach in two different scenarios
 - Overlay Network Scenario:
 - Controlled graph with reconfiguration (an existing link vanishes and a new link is provided elsewhere) each *0.03s*
 - Mobility Scenario:
 - Planar graph with nodes moving using Random Direction Model
- The metrics we analyzed are:
 - event delivery (received events / expected events)
 - overhead (event and subscription messages)
- Simulations were developed with OmNet++

Overley, Network Seenerie	±UC
Network Size	50-400
Graph Degree	5±1
Publishing Load (per dispatcher)	5 publish/s
Receivers	10
Available Patterns	512
Patterns per Node	2
An existing link vanishes and a new link is provid We use combinations of the following parameter - subscription horizon f: • 0 (<i>purely probabilistic</i>), 1, 2, 3 - event propagation threshold t (fanout = t • 5) • 0.25 (fanout = 1), 0.5 (fanout = 2), 1 (<i>flooding</i>)	ded each <i>0.03</i> s rs:

Mobility Scopario	⁺UC
Network size	200
Area	4 Km ²
Wireless range	250 m
Velocity	2 m/s
Publishing Load (per dispatcher)	5 publish/s
Receivers	20
Available Patterns	512
Patterns per Node	2
 Scenario was generated using a MANET topo (ANSim) 	logy generator

• The mobility model we choose is *Random Direction Model*, where nodes move along a direction until they reach one of the edges.

Conclusions and Future Work

- Combining deterministic and probabilistic routing provides high event delivery and low overhead, without sacrificing scalability
- The resulting algorithm is very simple
 - small footprint software
 - easy deployment on resource-constrained devices
- Applied it also to sensor networks scenario (techrep. available at http://www.elet.polimi.it/~picco)
 - Different issues:
 - wireless broadcast transmission
 - network collisions
 - sleeping nodes
- Our ultimate goal is to devise a mechanism that adapts to network conditions, by properly modifying t and f

