
Wedge: Splitting Applications into Reduced-Privilege Compartments

Andrea Bittau Petr Marchenko Mark Handley Brad Karp

University College London

Abstract

Software vulnerabilities and bugs persist, and so exploits

continue to cause signi�cant damage, particularly by di-

vulging users' sensitive data to miscreants. Yet the vast

majority of networked applications remain monolithi-

cally structured, in stark contravention of the ideal of

least-privilege partitioning. Like others before us, we be-

lieve this state of affairs continues because today's op-

erating systems offer isolation primitives that are cum-

bersome. We present Wedge, a system well suited to the

splitting of complex, legacy, monolithic applications into

�ne-grained, least-privilege compartments. Wedge con-

sists of two synergistic parts: OS primitives that create

compartments with default-deny semantics, which force

the programmer to make compartments' privileges ex-

plicit; and Crowbar, a pair of run-time analysis tools

that assist the programmer in determining which code

needs which privileges for which memory objects. By

implementing the Wedge system atop Linux, and apply-

ing it to the SSL-enabled Apache web server and the

OpenSSH login server, we demonstrate that Wedge al-

lows �ne-grained compartmentalization of applications

to prevent the leakage of sensitive data, at acceptable per-

formance cost. We further show that Wedge is powerful

enough to prevent a subtle man-in-the-middle attack that

succeeds on a more coarsely privilege-separated Apache

web server.

1 Introduction

In the era of ubiquitous network connectivity, the conse-

quences of vulnerabilities in server software grow ever

more serious. The principle of least privilege [16] entails

dividing the code into compartments, each of which ex-

ecutes with the minimum privileges needed to complete

its task. Such an approach not only limits the harm mali-

cious injected code may cause, but can also prevent bugs

from accidentally leaking sensitive information.

A programmer frequently has a good idea which data

manipulated by his code is sensitive, and a similarly good

idea which code is most risky (typically because it han-

dles user input). So why do so few programmers of net-

worked software divide their code into minimally priv-

ileged compartments? As others have noted [2, 6], one

reason is that the isolation primitives provided by today's

operating systems grant privileges by default, and so are

cumbersome to use to limit privilege.

Consider the use of processes as compartments, and

the behavior of the fork system call: by default a child

process inherits a clone of its parent's memory, including

any sensitive information therein. To prevent such im-

plicit granting of privilege to a child process, the parent

can scrub all sensitive data from memory explicitly. But

doing so is brittle; if the programmer neglects to scrub

even a single piece of sensitive data in the parent, the

child gains undesired read privileges. Moreover, the pro-

grammer may not even know of all sensitive data in a

process's memory; library calls may leave behind sensi-

tive intermediate results.

An obvious alternative is a default-deny model, in

which compartments share no data unless the program-

mer explicitly directs so. This model avoids unintended

privilege sharing, but the dif�culties lie in how precisely

the programmer can request data sharing, and how he

can identify which data must be shared. To see why, con-

sider as an example the user session-handling code in the

Apache web server. This code makes use of over 600 dis-

tinct memory objects, scattered throughout the heap and

globals. Just identifying these is a burden. Moreover, the

usual primitives of fork to create a compartment, exec

to scrub all memory, and inter-process communication

to share only the intended 600 memory objects are un-

wieldy at best in such a situation.

In this paper, we presentWedge, a system that provides

programming primitives to allow the creation of com-

partments with default-deny semantics, and thus avoids

the risks associated with granting privileges implicitly

upon process creation. To abbreviate the explicit granting

of privileges to compartments, Wedge offers a simple and

�exible memory tagging scheme, so that the programmer

may allocate distinct but related memory objects with the

same tag, and grant a compartment memory privileges at

a memory-tag granularity.

Because a compartment within a complex, legacy,

monolithic application may require privileges for many

memory objects, Wedge importantly includes Crowbar,

a pair of tools that analyzes the run-time memory ac-

cess behavior of an application, and summarizes for the

programmer which code requires which memory access

privileges.

Neither the primitives nor the tools alone are suf-

�cient. Default-deny compartments demand tools that

make it feasible for the programmer to identify the mem-

ory objects used by a piece of code, so that he can explic-

itly enumerate the correct privileges for that code's com-

partment. And run-time analysis reveals memory priv-

ileges that a programmer should consider granting, but

cannot enumerate those that should be denied; it thus �ts

best with default-deny compartments. The synergy be-

tween the primitives and tools is what we believe will

yield a system that provides �ne-grained isolation, and

yet is readily usable by programmers.

To demonstrate that Wedge allows �ne-grained sepa-

ration of privileges in complex, legacy, monolithic appli-

cations, we apply the system to the SSL-enabled Apache

web server and the OpenSSH remote login server for

Linux. Using these two applications, we demonstrate

that Wedge can protect against several relatively sim-

ple attacks, including disclosure of an SSL web server's

or OpenSSH login server's private key by an exploit,

while still offering acceptable application performance.

We further show how the �ne-grained privileges Wedge

supports can protect against a more subtle attack that

combines man-in-the middle interposition and an exploit

of the SSL web server.

2 A Motivating Example

To make least-privilege partitioning a bit more concrete,

consider how one might partition a POP3 server, as de-

picted in Figure 1. One can split the server into three

logical compartments: a client handler compartment that

deals with user input and parses POP3 commands; a lo-

gin compartment that authenticates the user; and an e-

mail retriever compartment that obtains the relevant e-

mails. The login compartment will need access to the

password database, and the e-mail retrieval compartment

will need access to the actual e-mails; these two are priv-

ileged in that they must run with permissions that allow

them to read these data items. The client handler, how-

ever, is a target for exploits because it processes untrusted

network input. It runs with none of these permissions,

and must authenticate users and retrieve e-mails through

the restricted interface to the two privileged compart-

ments.

Because of this partitioning, an exploit within the

client handler cannot reveal any passwords or e-mails,

since it has no access to them. Authentication cannot be

skipped since the e-mail retriever will only read e-mails

of the user id speci�ed in uid, and this can only be set

by the login component. One must, however, ensure that

code running in the privileged compartments cannot be

exploited. This task is simpli�ed since the code that re-

quires audit has been greatly reduced in size by factoring

out the client handler, which most likely consists of the

bulk of the code. A typical monolithic implementation

would combine the code from all three compartments

into a single process. An exploit anywhere in the code

Figure 1: A partitioned POP3 server. Ovals represent code segments

and those shaded are privileged. Dashed arrows between ovals indicate

the capability of invoking a privileged code segment. Boxes represent

memory regions and a one-way arrow from memory to code indicates

read permission; two-way arrows indicate read-write.

could cause anything in the process's memory, including

passwords and e-mails, to be leaked. Hence, partitioning

can reduce the impact of exploits.

Our aim in building Wedge is to allow the program-

mer to create an arbitrary number of compartments, each

of which is granted no privileges by default, but can be

granted �ne-grained privileges by the programmer. To

the extent possible, we would like the primitives we in-

troduce to resemble familiar ones in today's operating

systems, so that programmers �nd them intuitive, and

minimally disruptive to introduce into legacy application

code.

Wedge achieves this goal with three isolation primi-

tives, which naturally apply to the POP3 example:

Sthreads An sthread de�nes a compartment within an

application. The programmer assigns access rights to

memory and other resources per-sthread. In Figure 1, the

unshaded oval is an sthread.

Tagged Memory When allocating memory, the pro-

grammer may mark that memory with a single tag. Ac-

cess rights to memory are granted to sthreads in terms

of these tags (e.g., �read/write for memory with tag t�).

In Figure 1, each rectangle is a memory region with a

distinct tag.

Callgates A callgate executes code with different priv-

ileges than its caller. An sthread typically runs with the

least privilege possible. When it must perform an oper-

ation requiring enhanced privilege, it invokes a callgate

that performs the operation on its behalf. A callgate de-

�nes a narrow interface to privileged code and any sen-

sitive data it manipulates, and thus allows improved ad-

herence to least-privilege partitioning. In Figure 1, each

shaded oval is a callgate.

3 System Design

We now describe the operating system primitives that

Wedge introduces, and thereafter, the Crowbar run-time

analysis tools that ease programmer use of these primi-

tives.

3.1 Sthreads

An sthread is the embodiment of a compartment in a par-

titioned application. It consists of a thread of control and

an associated security policy that speci�es:

� The memory tags the sthread may access, and the per-

missions for each (read, read-write, copy-on-write).

� The �le descriptors the sthread may access, and the

permissions for each (read, write, read-write).

� The callgates the sthread may invoke.

� A UNIX user id, root directory, and an SELinux pol-

icy [10], which limits the system calls that may be in-

voked.

A newly created sthread holds no access rights by de-

fault, apart from copy-on-write access to a pristine snap-

shot of the original parent process's memory, taken just

before the execution of main, including the sthread's (as

yet unused) private stack and heap. (We explain further in

Section 4.1 why this snapshot does not contain sensitive

data, and is essential for correct execution.) It is unable

to access any other memory nor any �le descriptor from

its creator, nor invoke any callgates or system calls. Note

that all system calls retain the standard in-kernel privi-

lege checks, based on the caller's user id, root directory,

and SELinux policy. A parent may grant a child sthread

access to its resources simply by attaching an appropriate

security policy to the child sthread when creating it.

An sthread can only create a child sthread with equal

or lesser privileges than its own. Speci�cally, a parent

can only grant a child access to subsets of its memory

tags, �le descriptors, and authorized callgates. Similarly,

the userid and �lesystem root of a child sthread can be

changed only according to UNIX semantics (i.e., only

if the parent runs as superuser), and any changes in the

SELinux policy must be explicitly allowed as domain

transitions in the system-wide SELinux policy.

Because most CPUs do not support write-only mem-

ory permissions, Wedge does not allow them; the pro-

grammer must instead grant read-write permissions.

3.2 Tagged Memory

The programmer expresses memory privileges for

sthreads in terms of tags, which are assigned to mem-

ory regions at allocation time. When he wishes to share

tagged memory, he grants privileges for that tag to a

newly created sthread. The tag namespace is �at, so priv-

ileges for one tag never imply privileges for other tags.

Programmers allocate tagged memory in two steps.

First, the programmer must create a tag. This opera-

tion essentially allocates a memory segment and stores

a mapping from the tag to the segment. Next, the pro-

grammer invokes a tagged memory allocation (smalloc):

he speci�es a tag and a desired size, and thus allocates

a buffer of that size from the segment with that tag. The

ability to identify many memory regions with a single

tag simpli�es policy speci�cation. Note that any memory

an sthread allocates without using this two-stage process

(tag, then smalloc) has no tag, and thus cannot be ac-

cessed by other sthreads: it cannot even be named in a

security policy. In this way, computations performed on

an sthread's stack or heap are by default strongly isolated

from other sthreads. We use the standard hardware page

protection mechanism to enforce the access permissions

for tagged memory speci�ed in an sthread's security pol-

icy.

When writing new applications, the mechanisms de-

scribed so far suf�ce for tagging memory. But when

partitioning existing applications, one may need to tag

global variables, or convert many malloc calls within

a function to use smalloc instead, which may not even

be possible for allocations in binary-only libraries. We

therefore provide two additional mechanisms for tagging

memory, speci�cally tailored for splitting legacy appli-

cations. The �rst allows declaring globals with a tag,

and works by placing all globals with the same tag in

a distinct, contiguous section of the ELF binary. The sec-

ond allows the programmer to specify that all calls to

the standard C malloc between two points in a program

should be replaced with smalloc calls with a particular

tag. To do so, the programmer simply places calls to

utility functions smalloc on and smalloc off at the de-

sired start and end points, respectively. These aids greatly

simplify the introduction of compartments; much of the

work of partitioning consists of identifying and tagging

memory correctly.

3.3 Callgates

A callgate is a portion of code that runs with different

(typically higher) privileges than its caller. In our POP3

example in Figure 1, the login and e-mail retriever enti-

ties are callgates. Instantiating a callgate with access to

sensitive data isolates the sensitive data from access by

untrusted code, such as the sthread that parses network

input in the POP3 server.

A callgate is de�ned by an entry point, a set of permis-

sions, and a trusted argument supplied by the callgate's

creator (usually a pointer into trusted memory), that the

kernel will pass to the entry point when the callgate is in-

voked. The trusted argument allows the callgate's creator

to pass the callgate input that cannot be tampered with by

its caller. A callgate also inherits the �lesystem root and

user id of its creator. A callgate's permissions must be a

subset of those of the sthread that creates the callgate. Af-

ter a privileged sthread creates a callgate, it may spawn a

child sthread with reduced privilege, but grant that child

permission to invoke the callgate. Upon callgate invoca-

tion, a new sthread with the callgate's permissions is cre-

ated, and begins execution at the entry point speci�ed by

the callgate's original creator. The caller blocks until the

callgate terminates, and then collects any return values.

The dominant costs of invoking a short-lived callgate

are those incurred creating and destroying the underly-

ing sthread. For throughput-critical applications, we pro-

vide long-lived recycled callgates, which amortize their

creation cost over many invocations. Because they are

reused, recycled callgates do trade some isolation for per-

formance, and must be used carefully; should a recycled

callgate be exploited, and called by sthreads acting on

behalf of different principals, sensitive arguments from

one caller may become visible to another.

3.4 Crowbar: Partitioning Assistance

To identify the many memory dependencies between dif-

ferent blocks of code, and hence make default-deny par-

titioning primitives usable in practice, we provide Crow-

bar, a pair of Linux tools that assist the programmer in

applying the primitives in applications. Broadly speak-

ing, these tools analyze the run-time behavior of a legacy

monolithic application to identify exactly which items in

memory are used by which speci�c pieces of code, with

what modes of access, and where all those items were

allocated. This analysis suggests a set of privileges that

appear required by a particular piece of code.

The programmer uses Crowbar in two phases. In

Crowbar's run-time instrumentation phase, the cb-log

tool logs memory allocations and accesses made by the

target application. In Crowbar's analysis phase, the pro-

grammer uses the cb-analyze tool to query the log for

complex memory access patterns during the application's

run that are relevant when partitioning the application in

accordance with least privilege.

First, cb-log produces a trace of all memory accesses.

cb-log stores a complete backtrace for every memory

read or write during execution, so that the programmer

can determine the context of each access. These back-

traces include function names and source �lenames and

line numbers. cb-log identi�es global memory accesses

by variable name and source code location; stack mem-

ory accesses by the name of the function in whose stack

frame the access falls; and heap memory accesses by a

full backtrace for the original malloc where the accessed

memory was �rst allocated. This information helps pro-

grammers identify which globals to tag using our mech-

anisms, which stack allocations to convert to heap ones,

and which speci�c malloc calls (revealed in our trace) to

convert to smalloc calls.

Second, after cb-log produces a trace, the programmer

uses cb-analyze to query it for speci�c, summarized in-

formation. The supported queries are:

� Given a procedure, what memory items do it and all

its descendants in the execution call graph access dur-

ing their execution, and with what modes of access?

When the programmer wishes to execute a procedure

in a least-privilege sthread, he uses this query to learn

the memory items to which he must grant that sthread

access, and with what permissions.

� Given a list of data items, which procedures use any of

them? When the programmer wishes to create a call-

gate with elevated privileges to access sensitive data,

he uses this query to learn which procedures should

execute within the callgate.

� Given a procedure known to generate sensitive data,

where do it and all its descendants in the execution

call graph write data? When the programmer wishes

to learn which data may warrant protection with call-

gates, he uses this query to identify the memory that

should be kept private to that callgate. This query is

particularly useful in cases where a single procedure

(and its children) may generate large volumes of sensi-

tive data; it produces data items of interest for queries

of the previous type.

We stress that for the �rst and third query types, in-

cluding children in the execution call graph makes cb-

analyze particularly powerful; one often need not under-

stand the complex call graph beneath a procedure to par-

tition an application.

Crowbar is useful even after the initial partitioning ef-

fort. For example, after code refactoring, an sthread may

stop functioning, as it may access additional memory re-

gions not initially speci�ed in its policy. We provide an

sthread emulation library, which grants sthreads access

to all memory, so that protection violations do not termi-

nate sthreads. The programmer may use this library with

Crowbar to learn of all protection violations that occur

during a complete program execution.

Because Crowbar is trace-driven, the programmer will

only obtain the memory permissions used during one

particular run. To ensure coverage of as broad a portion

of the application as possible, the programmer may gen-

erate traces by running the application on diverse innocu-

ous workloads with cb-log, and running cb-analyze on

the aggregation of these traces.

4 Implementation

Wedge's implementation consists of two parts: the OS

isolation primitives, for Linux kernel version 2.6.19, and

the userland Crowbar tools, cb-log and cb-analyze.

4.1 Isolation Primitives

Table 1 shows Wedge's programming interface.

Sthread-related calls

int sthread create(sthread t *thrd, sc t *sc, cb t cb, void *arg);
int sthread join(sthread t thrd, void **ret);

Memory-related calls

tag t tag new(); int tag delete(tag t);
void* smalloc(int sz, tag t tag); void sfree(void *x);
void smalloc on(tag t tag); void smalloc off();
BOUNDARY VAR(def, id); BOUNDARY TAG(id);

Policy-related calls

void sc mem add(sc t *sc, tag t t, unsigned long prot);
void sc fd add(sc t *sc, int fd, unsigned long prot);
void sc sel context(sc t *sc, char *sid);

Callgate-related calls

void sc cgate add(sc t *sc, cg t cgate, sc t *cgsc, void *arg);
void* cgate(cg t cb, sc t *perms, void *arg);

Table 1: The Wedge programming interface.

Sthread-related Calls The programming interface for

sthreads closely resembles that for pthreads, apart from

the introduction of a security policy argument (sc). We

implement sthreads as a variant of Linux processes.

Rather than inheriting the entire memory map and all

�le descriptors from its parent, a newly spawned sthread

inherits only those memory regions and �le descriptors

speci�ed in the security policy. As with fork, the new

sthread will have its own private signal handlers and �le

descriptor copies, so receiving a signal, closing a �le de-

scriptor, and exiting do not affect the parent.

Sthreads also receive access to a private stack and

a private copy of global data. The latter represents the

memory map of the application's �rst-executed process,

just before the calling of the C entry point main. This

memory is vital to sthread execution, as it contains ini-

tialized state for shared libraries and the dynamic loader.

It does not typically, however, contain any sensitive data,

since the application's code has yet to execute. In cases

where statically initialized global variables are sensitive,

we provide a mechanism (BOUNDARY VAR) for tagging

these, so that sthreads do not obtain access to them by

default. Our implementation stores a copy of the pages

of the program just before main is called, and marks

these pages copy-on-write uponmain's invocation or any

sthread creation.

Memory-related Calls smalloc and sfree mimic the

usualmalloc and free, except that smalloc requires speci-

�cation of the tag with which the memory should be allo-

cated. Tags are created using tag new, a system call that

behaves like anonymous mmap. Unlike mmap, tag new

does not merge neighboring mappings, as they may be

used in different security contexts. Apart from creating a

new memory area, tag new also initializes internal book-

keeping structures used by smalloc and sfree on mem-

ory with that tag. The smalloc implementation is derived

from dlmalloc [9].

Much of tag new's overhead comes from system call

overhead and initializing the smalloc bookkeeping struc-

tures for that tag. We mitigate system call overhead by

caching a free-list of previously deleted tags (i.e., mem-

ory regions) in userland, and reusing them if possible,

hence avoiding the system call. To provide secrecy, we

scrub a tag's memory contents upon tag reuse. Rather

than scrubbing with (say) zeros, we copy cached, pre-

initialized smalloc bookkeeping structures into it, and

thus avoid the overhead of recomputing these contents.

As described in Section 3.2, smalloc on and smal-

loc off ease the tagging of heap memory. They convert

any standard malloc which occurs between them into

an smalloc with the tag indicated in smalloc on. To im-

plement this feature, Wedge intercepts calls to malloc

and free using LD PRELOAD, and checks the state of a

global �ag indicating whether smalloc on is active; if so,

smalloc is invoked, and if not, malloc is. In our current

implementation, this �ag is a single per-sthread variable.

Thus, smalloc on will not work if invoked recursively,

and is neither signal- nor thread-safe. In practice, how-

ever, these constraints are not limiting. The programmer

can easily save and restore the smalloc on state at the

start and end of a signal handler. Should a programmer

need to use smalloc on in recursive or thread-concurrent

code (within the same sthread), he can easily save-and-

restore or lock the smalloc on state, respectively.

The BOUNDARY VAR macro supports tagging of

globals, by allowing each global declaration to include an

integer ID, and placing all globals declared with the same

ID in the same, separate, page-aligned section in the ELF

binary. This allows for speci�c pages, in this case global

variables, to be carved out of the data segment, if neces-

sary. At runtime, the BOUNDARY TAG macro allocates

and returns a unique tag for each such ID, which the pro-

grammer can use to grant sthreads access to globals in-

stantiated with BOUNDARY VAR. This mechanism can

be used to protect sensitive data that is statically initial-

ized, or simply to share global data structures between

sthreads.

Policy-related Calls These calls manipulate an sc t

structure, which contains an sthread policy; they are used

to specify permissions for accessing memory and �le

descriptors. To attach an SELinux policy to an sthread,

one speci�es the SID in the form of user:role:type with

sc sel context.

Callgate-related Calls sc cgate add adds permission

to invoke a callgate at entry point cgate with permissions

cgsc and trusted argument arg to a security policy. The

callgate entry point, permissions and trusted argument

are stored in the kernel, so that the user may not tam-

per with them, and are retrieved upon callgate invoca-

tion. When a parent adds permission to invoke a callgate

to a security policy, that callgate is implicitly instantiated

when the parent binds that security policy to a newly cre-

ated sthread.

To invoke a callgate, an sthread uses the cgate call,

giving additional permissions perms and an argument

arg. This argument will normally be created using smal-

loc, and the additional permissions are necessary so that

the callgate may read it, as by default it cannot. Upon

callgate invocation, the kernel checks that the speci�ed

entry point is valid, and that the sthread has permission

to invoke the callgate. The permissions and trusted argu-

ment are retrieved from the kernel, and the kernel vali-

dates that the argument-accessing permissions are a sub-

set of the sthread's current permissions.

Callgates are implemented as separate sthreads so that

the caller cannot tamper with the callee (and vice-versa).

Upon invocation, the calling sthread will block until the

callgate's termination. Because the callgate runs using a

different memory map (as a different sthread), the caller

cannot exploit it by, e.g., invalidating dynamic loader re-

locations to point to shellcode, or by other similar at-

tacks. Any signals delivered during the callgate's execu-

tion will be handled by the callgate. A caller may only

in�uence a callgate through the callgate's untrusted ar-

gument.

We currently implement recycled callgates directly as

long-lived sthreads. To invoke a recycled callgate, one

copies arguments to memory shared between the caller

and underlying sthread, wakes the sthread through a fu-

tex [3], and waits on a futex for the sthread to indicate

completion.

4.2 Crowbar

Crowbar consists of two parts: cb-log traces memory ac-

cess behavior at run-time, and cb-analyze queries the

trace for summarized data. We only describe cb-log,

as cb-analyze is essentially a text-search tool, and is

thus straightforward. cb-log uses Pin [11]'s run-time in-

strumentation functionality. cb-log has two main tasks:

tracking the current backtrace, and determining the orig-

inal allocation site for each memory access.

To compute the backtrace, we instrument every func-

tion entry and exit point, and walk the saved frame point-

ers and return addresses on the stack, much as any debug-

ger does. We thus rely on the code's compilation with

frame pointers.

To identify original memory allocations, we instru-

ment memory loads and stores. We also keep a list of seg-

ments (base and limit), and determine whether a memory

access lies within a certain segment, and report the seg-

ment if so. There are three types of segments: globals,

heap, and stack. For globals, we use debugging symbols

to obtain the base and limit of each variable. For the heap,

we instrument every malloc and free, and create a seg-

ment for each allocated buffer. For the stack, we use a

function's stack frame as the segment. Upon access, to-

gether with the segment name, we also log the offset be-

ing accessed within the segment. This offset allows the

programmer to calculate and determine the member of a

global or heap structure being accessed, or the variable

within a stack frame being touched.

Our implementation handles fork and pthreads cor-

rectly; it clones the memory map and keeps separate

backtraces for the former, and keeps a single memory

map but different backtraces for the latter. cb-log also

supports the sthread emulation library, by logging any

memory accesses by an sthread for which insuf�cient

permissions would normally have caused a protection vi-

olation. Because the sthread emulation library works by

replacing sthreads by standard pthreads, our current im-

plementation does not yet support copy-on-write mem-

ory permissions for emulated sthreads.

5 Applications

To validate the utility of Wedge, we apply it to introduce

�ne-grained, reduced-privilege compartments into two

applications: the Apache/OpenSSL web server, and the

OpenSSH remote login server. Because SELinux already

provides a mechanism to limit system call privileges for

sthreads, we focus instead on memory privileges in this

paper. Thus, when we partition these two applications,

we specify SELinux policies for all sthreads that explic-

itly grant access to all system calls.

5.1 Apache/OpenSSL

Our end-to-end goal in introducing compartments into

Apache/OpenSSL is to preserve the con�dentiality and

integrity of SSL connections�that is, to prevent one user

from obtaining the cleartext sent over another user's SSL

connection, or from injecting content into another user's

SSL connection.

We consider two threat models. In the �rst, simpler

one, the attacker can eavesdrop on entire SSL connec-

tions, and can exploit any unprivileged compartment in

the Apache/OpenSSL server. In the second, subtler one,

the attacker can additionally interpose himself as a man-

in-the-middle between an innocent client and the server.

Let us consider each in turn. In what follows, we only

discuss the SSL handshake as performed with the RSA

cipher, but we expect the defenses we describe apply

equally well to SSL handshakes with other ciphers.

5.1.1 Simple model (no interposition)

Perhaps the most straightforward isolation goal for

Apache/OpenSSL is to protect the server's RSA pri-

vate key from disclosure to an attacker; holding this key

would allow the attacker to recover the session key for

any eavesdropped session, past or future. (We presume

here that ephemeral, per-connection RSA keys, which

Figure 2: Partitioning to protect against disclosure of private key and

arbitrary session key generation.

provide forward secrecy, are not in use�they are rarely

used in practice because of their high computational

cost.)

We must also prevent an attacker from using the RSA

private key to decrypt ciphertext of his choosing, and

learning the resulting cleartext; such a decryption ora-

cle would serve the attacker equally well for recovering

session keys for past or future sessions.

Once the RSA private key is put out of reach for the

attacker, how else might he recover a session key that

matches one used in an eavesdropped connection? Note

that the server must include code that generates SSL ses-

sion keys�if it does not, it cannot complete SSL hand-

shakes. If the attacker can somehow in�uence this code

so as to force the server to generate the same session key

that was used for a past connection he has eavesdropped,

and learn the resulting session key, he will still achieve

his goal.

The SSL session key derives from three inputs that tra-

verse the network: random values supplied by the server

and client, both sent in clear over the network during

the SSL handshake, and another random value supplied

by the client, sent over the network encrypted with the

server's public key [15]. Note that by eavesdropping, the

attacker learns all three of these values (the last in cipher-

text form).

We observe that it is eminently possible to prevent an

attacker who exploits the server from usefully in�uenc-

ing the output of the server's session key generation code.

In particular, we may deny the network-facing compart-

ment of the server the privilege to dictate the server's

random contribution to the session key. Instead, a priv-

ileged compartment, isolated from the unprivileged one,

may supply the server's random contribution (which is,

after all, generated by the server itself).

To meet the above-stated goals, we partitioned Apache

1.3.19 (OpenSSL 0.9.6) as shown in Figure 2. We create

one worker sthread per connection, which encapsulates

unprivileged code. This sthread terminates after serving

a single request, to isolate successive requests from one

another. We allocate the RSA private key in tagged mem-

Figure 3: Man-in-the-middle defense: top-level compartmentalization

of Apache.

ory. Although the worker has no direct access to the pri-

vate key, it can still complete the SSL handshake and es-

tablish a session key via the setup session key callgate.

This callgate returns the established session key, which

does not yield any information regarding the private key.

Thus, the only way to obtain the private key is to exploit

the callgate itself; we have thus reduced the application's

trusted code base with respect to the private key to the

callgate's contents. In order to prevent an attacker who

exploits the worker from in�uencing session key gener-

ation, we ensure that the setup session key callgate itself

generates the server random input to session key genera-

tion, rather than accepting this input as an argument from

the worker. Because the session key is a cryptographic

hash over three inputs, one of which is random from the

attacker's perspective, he cannot usefully in�uence the

generated session key.

5.1.2 Containing man-in-the-middle attacks

We now consider the man-in-the-middle threat model,

wherein the attacker interposes himself between a le-

gitimate client and the server, and can eavesdrop on,

forward, and inject messages between them. First, ob-

serve that the partitioning described for the previous

threat model does not protect a legitimate client's session

key in this stronger model. If the attacker exploits the

server's worker, and then passively passes messages as-

is between the client and server, then this compromised

worker will run the attacker's injected code during the

SSL handshake with the legitimate client. The attacker

may then allow the legitimate client to complete the SSL

handshake, and leak the legitimate client's session key

(readable by the worker) to the attacker. The defense

against this subtler attack, as one might expect, is �ner-

grained partitioning of Apache/OpenSSL with Wedge.

Recall that there are two phases to an SSL session. The

�rst phase consists of the SSL handshake and authenti-

cation. After this �rst phase, the client has authenticated

the server, by verifying that the server can decrypt ran-

dom data encrypted with the server's public key. In ad-

dition, the client and server have agreed on a session key

Figure 4: SSL handshake compartmentalization.

to use as the basis for an encrypted and MAC'ed channel

between them. In the second phase, application requests

and responses traverse this channel.

For privilege separation, there are different threat

models for the two phases, so we treat them sepa-

rately. Figure 3 shows the high-level partitioning needed

to implement this two-phase approach. The master ex-

ists purely to start and stop two sthreads, and enforce

that they only execute sequentially. The SSL handshake

sthread handles the �rst phase. This sthread must be able

to read and write cleartext to the network to perform the

handshake, and while it must be able to call callgates to

generate the session key, it should not have access to the

resulting key. As this cleartext-reading, network-facing

sthread may be exploited, its privileges are limited to

those needed for the handshake.

Once the SSL handshake sthread completes the hand-

shake, it terminates. The master, which waits for this

sthread to terminate, only then starts the client handler

sthread to handle the second phase. If the attacker at-

tempts to mount a man-in-the-middle attack during the

�rst phase, there are only two possible outcomes: either

the handshake fails to complete, and no harm is done, or

it does complete, and generates a session key that is not

known to the attacker. The client handler sthread, how-

ever, does have access to this session key, and thus it is

connected via the SSL-encrypted and -MAC'ed channel

to the legitimate client. Despite the man-in-the-middle

attack during the �rst phase, the attacker ends up on the

outside of this protected channel.

Man-in-the-middle attacks during the second phase

are much more dif�cult for the attacker, because of the

MAC protection on the channel. Data injected by the at-

tacker will be rejected by the client handler sthread, and

not reach further application code. The attacker's only

recourse now is to attempt to exploit the symmetric key

decryption code itself. This code is much simpler to audit

for vulnerabilities, but as we shall show, further partition-

ing is also possible to provide defense in depth. We now

describe the details of these two phases.

First stage: SSL Handshake Figure 4 shows the par-

titioning for the SSL handshake stage. The private key

memory region contains the server's private key, and the

session key memory region stores the session key. The

network-facing SSL handshake sthread coordinates the

SSL handshake and establishes the session key, without

being able to read or write it directly; as shown in Fig-

ure 4, SSL handshake holds neither read nor write per-

missions for the session key tagged memory region. Nev-

ertheless, during the SSL handshake protocol, the server

must decrypt one message and encrypt one message with

the session key. SSL handshake cannot be permitted to

invoke callgates that simply encrypt or decrypt their ar-

guments, either; if SSL handshake were exploited, the at-

tacker could use them as encryption and decryption ora-

cles, to decrypt ciphertext from the legitimate client.

To understand how one may partition the server to

deny SSL handshake access to an encryption or decryp-

tion oracle for the session key, yet still allow the uses of

the session key required by the SSL handshake, one must

examine more closely how the SSL handshake protocol

uses the session key. After the server and client agree

on the session key, they exchange session-key-encrypted

SSL Finish messages, to verify that both parties agree

on the content of all prior messages exchanged during

the handshake. Each SSL Finish message includes a hash

derived from all prior messages sent and received by its

sender.

We instantiate two callgates, both of which SSL hand-

shake may invoke: receive �nished, which processes the

client's SSL Finish, and send �nished, which generates

the server's SSL Finish. Receive �nished takes a hash

derived from all past messages and the client's SSL Fin-

ished message as arguments, and must decrypt the SSL

Finished message in order to verify it. Once veri�cation

is complete, receive �nished hashes the resulting cleart-

ext together with the hash of past messages, to prepare

the payload of the server's SSL Finished message. It

stores this result in �nished state, tagged memory acces-

sible only to the receive �nished and send �nished call-

gates. The only return value seen by SSL handshake is a

binary success/failure indication for the validation of the

client's SSL Finished message. Thus, if SSL handshake is

exploited, and passes ciphertext from the innocent client

to receive �nished in place of an SSL Finished message,

receive �nished will not reveal the ciphertext.

Send �nished simply uses the content of �nished state

to prepare the server's SSL Finished message, and takes

no arguments from SSL handshake. Data does �ow from

SSL handshake into �nished state, via receive �nished.

But as receive �nished hashes this data, an attacker who

has exploited SSL handshake cannot choose the input

that send �nished encrypts, by the hash function's non-

invertibility.

Figure 5: Client handler compartmentalization.

We conclude that if the attacker exploits the SSL hand-

shake sthread, he will have no direct access to the session

key and, equally important, no access to an encryption or

decryption oracle for the session key.

Our implementation fully supports SSL session

caching, which varies the �nal message exchanges in the

SSL handshake slightly; we omit those details in the in-

terest of brevity.

Second stage: SSL Client Handler After SSL hand-

shake completes the handshake, it exits. The master, pre-

viously awaiting this event, then starts client handler to

process the client's requests. (If SSL handshake is ex-

ploited, and does not exit, the master will not start the

client handler.)

Figure 5 depicts the compartmentalization of the client

handler phase. Here we use two callgates, SSL read and

SSL write, to perform encryption and decryption oper-

ations using the session key, respectively. Since client

handler does not have direct access to the network, an

attacker must inject correctly MAC'ed and encrypted

ciphertext into the user's connection to compromise

client handler; otherwise, the injected messages will be

dropped by SSL read (because the MAC will fail). Be-

cause of the partitioning of SSL handshake, though, the

attacker cannot learn the session key, which includes the

MAC key. And thus, the attacker will not be able to ex-

ploit client handler, and so won't be able to leak users'

cleartext data (stored in the user data memory region).

One unique aspect of the partitioning in Figure 5 is

that the unprivileged client handler sthread does not have

write access to the network. This design choice is an

instance of defense-in-depth. In the extremely unlikely

event that the attacker manages to exploit SSL read, he

cannot directly leak the session key or user data to the

network, as SSL read does not have write access to the

network. If, however, the attacker next exploits client

handler by passing it a maliciously constructed return

value, he will still have no direct network access. He will

only be able to leak sensitive data as ciphertext encrypted

by SSL write, and thus only over a covert channel, such

as by modulating it over the time intervals between sent

packets.

Partitioning Metrics A partitioning's value is great-

est when the greatest fraction of code that processes

network-derived input executes in sthreads, and the least

fraction in callgates. The latter (man-in-the-middle) par-

titioning of Apache/OpenSSL we've described contains

�16K lines of C code that execute in callgates, and

�45K lines of C code that execute in sthreads, in-

cluding comments and empty lines. As all code in ei-

ther category ran as privileged originally, this partition-

ing reduces the quantity of trusted, network-facing code

in Apache/OpenSSL by just under two-thirds. To im-

plement the partitioning, we made changes to �1700

lines of code, which comprise only 0.5% of the total

Apache/OpenSSL code base.

We note in closing that we relied heavily on Crowbar

during our partitioning of Apache/OpenSSL. For exam-

ple, enforcing a boundary between Apache/OpenSSL's

worker and master sthreads required identifying 222

heap objects and 389 globals. Missing even one of these

results in a protection violation and crash under Wedge's

default-deny model. Crowbar greatly eased identifying

these memory regions and their allocation sites, and the

sthreads that needed permissions for them.

5.2 OpenSSH

OpenSSH provides an interesting test case for Wedge.

Not only was it written by security-conscious program-

mers, but it is also a leading example of process-level

privilege separation [13].

The application-dictated goals for partitioning

OpenSSH are:

� Minimize the code with access to the server's private

key.

� Before authentication, run with minimal privilege, so

that exploits are contained.

� After authentication, escalate to full privileges for the

authenticated user.

� Prevent bypassing of authentication, even if the mini-

mally privileged code is exploited.

When partitioning OpenSSH, we started from scratch

with OpenSSH version 3.1p1, the last version prior to

the introduction of privilege separation. Clearly, an un-

privileged sthread is a natural �t for the network-facing

code during authentication. As sthreads do not inherit

memory, there is no need to scrub, as when creating a

slave with fork in conventional privilege separation. We

explicitly give the sthread read access to the server's pub-

lic key and con�guration options, and read/write access

to the connection's �le descriptor. We further restrict the

Figure 6: OpenSSH compartmentalization.

sthread by running it as an unprivileged user and setting

its �lesystem root to an empty directory.

The server's private key is sensitive data, and so

must be protected behind a callgate. In our implemen-

tation, this callgate contains only 280 lines of C, a small

fraction of the total OpenSSH code base, all of which

could access the private key in monolithic OpenSSH.

To allow authentication, we implemented three more

callgates�one each for password, DSA key-based, and

S/Key challenge-response authentication. The resulting

compartmentalization of OpenSSH appears in Figure 6.

The master sthread (not shown) will spawn one worker

for each connection. The worker sthread has no way of

tampering with the master, as it cannot write to any mem-

ory shared with it. It also cannot tamper with other con-

nections, as sthreads share no memory by default. Thus,

all workers (connections) are isolated from each other

and from the rest of the OpenSSH daemon.

The worker needs access to the public key in order to

reveal its identity to the client. It needs access to the con-

�guration data to supply version strings, supported ci-

phers,&c. to the client. It has no direct access to sensitive

data such as the server's private key or user credentials,

and can only make use of these data via callgates.

When the server authenticates itself to the client, it

must sign data using its private key. The DSA sign call-

gate takes a data stream as input, and returns its signed

hash. The worker cannot sign arbitrary data, and there-

fore possibly decrypt data, since only the hash computed

by the callgate is signed. Exploiting this callgate is the

only way that the worker can obtain the private key.

When the user authenticates himself to the server, the

Password, DSA auth or S/Key callgate will be invoked,

depending on the authentication mechanism negotiated.

The password authentication callgate needs access to the

con�guration data to check whether the user is allowed

to login, whether empty passwords are permitted, and

whether password authentication is allowed at all. It also

needs access to the shadow password �le, which is read

directly from disk; it has these privileges because it in-

herits the �lesystem root of its creator, not of its caller.

The DSA authentication callgate can determine this in-

formation by inspecting the user's allowed keys in the �le

system, and the S/Key callgate can by checking whether

the user has an entry in the S/Key database.

The only way for the worker to change its user ID,

and thus effectively let the user log in, is for it to suc-

cessfully authenticate via a callgate. If the authentica-

tion is �skipped� by simply not invoking the callgate, the

worker will remain unprivileged. The callgate, upon suc-

cessful authentication, changes the worker's user ID and

�lesystem root�an idiom previously applied by Priv-

trans [1]. Thus, the only way to log in without knowing

the user's credentials is to exploit one of the authentica-

tion callgates.

We gleaned two important lessons by comparing

the Wedge-partitioned OpenSSH with today's privilege-

separated OpenSSH. The �rst concerns the importance of

avoiding subtle information leaks from a privileged to an

unprivileged compartment. Consider password authen-

tication in (non-Wedge) privilege-separated OpenSSH,

which proceeds in two steps. First, the unprivileged slave

process sends the username to the privileged monitor

process, which either returns NULL if that username

does not exist, or the passwd structure for that username.

Second, the slave sends the password to the monitor,

which authenticates the user. The result of the �rst inter-

action with the monitor is in fact an information leak�it

would allow an exploited slave to invoke the monitor at

will to search for valid usernames. This vulnerability re-

mains in today's portable OpenSSH 4.7. The Wedge par-

titioning keeps OpenSSH's two-step authentication for

ease of coding reasons, but the password callgate in Fig-

ure 6 returns a dummy passwd struct (rather than NULL)

when the username doesn't exist; this way, even an ex-

ploited worker cannot use the password callgate to search

for usernames. A prior version of OpenSSH contained a

similar vulnerability, wherein an S/Key challenge would

only be returned if a valid username had been supplied by

the remote client [14]. In this case, the OpenSSH mon-

itor and slave leak sensitive information directly to the

network; an attacker needn't exploit the slave.

The second lesson concerns the value of default-deny

permissions. A past version of OpenSSH suffered from

a vulnerability in which the PAM library (not written by

the OpenSSH authors, but called by OpenSSH) kept sen-

sitive information in scratch storage, and did not scrub

that storage before returning [8]. If a slave that inherited

this memory via fork were exploited, it could disclose

this data to an attacker. A PAM callgate would not be

subject to this vulnerability; any scratch storage allocated

with malloc within the callgate would be inaccessible by

the worker.

Partitioning Metrics In the Wedge-partitioned ver-

sion of OpenSSH, �3300 lines of C (including com-

ments and whitespace) execute in callgates, and �14K

execute in sthreads; as all of these lines of code would

have executed in a single, privileged compartment in

monolithic OpenSSH, partitioning with Wedge has re-

duced the quantity of privileged code by over 75%.

Achieving this isolation bene�t required changes to 564

lines of code, only 2% of the total OpenSSH code base.

6 Performance

In evaluating Wedge's performance, we have three chief

aims. First, we validate that Wedge's isolation primitives

incur similar costs to those of the isolation and concur-

rency primitives commonly used in UNIX. Second, we

assess whether applications instrumented with the Crow-

bar development tool generate traces tolerably quickly.

Finally, we quantify the performance penalty that �ne-

grained partitioning with Wedge's primitives incurs for

Apache/OpenSSL's throughput and OpenSSH's interac-

tive latency.

All experiments ran on an eight-core 2.66 GHz In-

tel Xeon machine with 4 GB of RAM, apart from the

Apache experiments, which ran on a single-core 2.2GHz

AMD Opteron machine with 2 GB of RAM, to ease sat-

uration.

Wedge primitives: Microbenchmarks To examine

the cost of creating and running an sthread, we mea-

sured the time elapsed between requesting the creation

of an sthread whose code immediately calls exit and

the continuation of execution in the sthread's parent.

This interval includes the time spent on the kernel trap

for the sthread creation system call; creating the new

sthread's data structures, scheduling the new sthread, ex-

ecuting exit in the new sthread, destroying the sthread,

and rescheduling the parent sthread (whose timer then

stops). We implemented analogous measurements for

pthreads, recycled callgates, sthreads, standard callgates,

and fork. In all these experiments, the originating process

was of minimal size.

Figure 7 compares the latencies of these primitives.

Sthreads and callgates are of similar cost to fork, and re-

cycled callgates are of similar cost to pthread creation.

Thus, overall, Wedge's isolation primitives incur simi-

lar overhead to familiar isolation and concurrency prim-

itives, but support �ner-grained control over privilege.

Callgates perform almost identically to sthreads be-

cause they are implemented as separate sthreads. Recy-

cled callgates outperform callgates by a factor of eight,

as they reuse an sthread, and thus save the cost of cre-

ating a new sthread per callgate invocation. For parents

with small address spaces, sthread creation involves sim-

ilar overhead to that of fork. For parents with large page

tables, however, we expect sthread creation to be faster

than fork, because only those entries of the page table and

those �le descriptors speci�ed in the security policy are

copied for a new sthread; fork must always copy these

in their entirety. Sthreads are approximately 8x slower

than pthreads, which incur minimal creation cost (no re-

source copying) and low context switch overhead (no

TLB �ush).

Figure 8 shows the cost of creating tags. Allocat-

ing memory from a tagged region using smalloc costs

roughly the same as standard malloc, as the two alloca-

tors are substantially the same. The difference in over-

head between the two lies in tag creation, which is es-

sentially anmmap operation, followed by initialization of

malloc data structures. We manage to outperform mmap

by caching and reusing previously deleted tags, as de-

scribed in Section 4.1. The tag new result shown con-

siders the best case, where reuse is always possible; in

this case, the operation is approximately 4x slower than

malloc. In the worst case, when no reuse is possible,

tag creation costs similarly to mmap, and is hence 22x

slower than malloc. We expect reuse to be common in

network applications, as the master typically creates tags

on a per-client basis, so new client sthreads can bene�t

from completing ones. Indeed, this mechanism improved

the throughput of our partitioned Apache server by 20%.

Crowbar: Run-time Overhead Figure 9 shows the

elapsed time required to run OpenSSH, Apache, and

most of the C-language SPECint2006 benchmark appli-

cations under cb-log (we omit three of these from the �g-

ure in the interest of brevity, as they performed similarly

to others). We compare these elapsed times against those

required to run each application under Pin with no instru-

mentation (i.e., the added cost of Pin alone), and those

required to run the �native� version of each application,

without Pin. We do not report performance �gures for

cb-analyze, as it consistently completes in seconds. All

experiments were conducted using Pin version 2.3.

All applications we measured under cb-log (SPEC

benchmarks, OpenSSH, and Apache) produced traces in

less than ten minutes, and in a mean time of 76 seconds.

For the range of applications we examined, cb-log's in-

strumentation overhead is tolerable. Trace generation oc-

curs only during the development process, and a sin-

gle trace reveals much of the memory access behavior

needed to partition the application. Absolute completion

time is more important than relative slowdown for a de-

velopment tool. Indeed, obtaining a trace from OpenSSH

incurs an average 46x slowdown vs. native OpenSSH,

(2.4x vs. Pin without instrumentation), yet the trace for

a single login takes less than four seconds to generate.

Pin instruments each fetched basic block of a pro-

gram once, and thereafter runs the cached instrumented

version. From Figure 9, we see that Pin on average ex-

ecutes the applications we measured approximately 7x

 0
 10
 20
 30
 40
 50
 60
 70

pthread recycled sthread callgate fork

O
pe

ra
tio

n
tim

e
(u

s)

Figure 7: Sthread calls.

 0
 200
 400
 600
 800

 1000
 1200

malloc tag_new mmap

O
pe

ra
tio

n
tim

e
(n

s)

Figure 8: Memory calls.

Experiment Vanilla Wedge Recycled

Apache sessions 1238 238 339
cached (req/s)

Apache sessions 247 132 170
not cached (req/s)

ssh login delay (s) 0.145 0.148

10MB scp delay (s) 0.376 0.370

Table 2: OpenSSH and Apache performance.

 0.01

 0.1

 1

 10

 100

 1000

ssh mcf gobmk apache quantum hmmer sjeng bzip2 h264ref

C
om

pl
et

io
n

tim
e

(s
) -

 lo
gs

ca
le

2.4x 7.1x
8.7x 8.8x 29x 42x 51x

53x

90xCrowbar
Pin

Native

Figure 9: Overhead of cb-log. The number above an application's bars

indicates the ratio between run time under Pin without instrumentation

and the run time under Pin with Crowbar.

slower than they execute natively. Note that Pin's over-

head is least for applications that execute basic blocks

many times, as do many of the SPEC benchmarks. For

OpenSSH and Apache, which do not repeatedly exe-

cute basic blocks to the extent the SPEC benchmarks do,

caching of instrumented code pays less of a dividend.

Cb-log must of course execute added instrumentation

instructions in each basic block, and hence it slows ap-

plications much more than Pin alone does. On average,

applications run 96x more slowly under cb-log than they

do natively, and 27x more slowly under cb-log than they

do under Pin with no instrumentation.

Applications: End-to-end Performance The top half

of Table 2 shows the maximum throughput that the

Wedge-partitioned version of Apache and the original

version of Apache can sustain, in requests per sec-

ond. We consider two Wedge-partitioned implementa-

tions: one with standard callgates (�Wedge�), and one

with recycled callgates (�Recycled�). We also measured

Apache's performance with and without session caching.

In these experiments, four client machines request static

web pages using SSL, across a 1 Gbps Ethernet.

The isolation bene�ts Wedge offers Apache come at

a performance cost that depends on the client workload.

When all client SSL sessions are cached (and thus, the

server need not execute the cryptographic operations in

the SSL handshake), Wedge-partitioned Apache with re-

cycled sthreads achieves only 27% of the throughput

of unpartitioned Apache. When no SSL sessions are

cached, however, Wedge-partitioned Apache with recy-

cled sthreads reaches 69% of unpartitioned Apache's

throughput. The all-sessions-cached workload is entirely

unrealistic; we include it only to show the worst-case

overhead that partitioning Apache with Wedge incurs.

Because SSL session caching allows clients to reuse

session keys, it eliminates the signi�cant SSL hand-

shake cost that the server incurs once per connection in

the non-session-cached workload. Thus, Wedge-induced

overhead is a greater fraction of the total computation

required when the server accepts a connection for a

cached session. This overhead is directly proportional

to the number of sthreads and callgates created and in-

voked per request. Each request creates two sthreads

and invokes eight callgates (nine, for non-session-cached

clients)�a few callgates are invoked more than once per

request. Vanilla Apache instead uses a pool of (reused)

workers, so it does not pay process creation overhead

on each request; it thus provides no isolation between

successive requests executed by the same worker, but is

faster. Recycled callgates are an effective optimization�

they increase Wedge-partitioned Apache's throughput by

42% and 29% for workloads with and without session

caching, respectively.

The bottom half of Table 2 compares the latencies

of operations in pre-privilege-separated OpenSSH and

in the Wedge-partitioned version, for a single OpenSSH

login and for uploading a single 10 MB �le using scp.

Wedge's primitives introduce negligible latency into the

interactive OpenSSH application.

7 Discussion

We now brie�y discuss a few of Wedge's limitations,

and topics that bear further investigation. Several of these

limitations concern callgates. First, we rely on their not

being exploitable. Second, the interface to a callgate

must not leak sensitive data: neither through its return

value, nor through any side channel. If a return value

from a callgate does so, then the protection within the

callgate is of no bene�t. More subtly, callgates that return

values derived from sensitive data should be designed

with great care, as they may be used by an adversary who

can exploit an unprivileged caller of the callgate either

to derive the sensitive data, or as an oracle, to compute

using the sensitive data without being able to read it di-

rectly.

We trust the kernel support code for sthreads and call-

gates. As this code is of manageable size�less than 2000

lines�we believe that it can be audited. Perhaps more

worryingly, we must also trust the remainder of the Linux

kernel, though like Flume [7], we also inherit Linux's

support for evolving hardware platforms and compatibil-

ity with legacy application code.

Crowbar is an aid to the programmer; not a tool that

automatically determines a partitioning by taking secu-

rity decisions on its own. We believe that automation

could lead to subtle vulnerabilities, such as those de-

scribed in Section 5.1.2, that are not apparent from data

dependencies alone. Similarly, one must use Crowbar

with caution. That is, one must assess which permissions

should be granted to an sthread, and which need to be

wrapped around a callgate. The tool alone guarantees

no security properties; it merely responds to programmer

queries as a programming aid, and it is the programmer

who enforces correct isolation.

Wedge does not deny read access to the text segment;

thus, a programmer cannot use the current Wedge im-

plementation to prevent the code for an sthread (or in-

deed, its ancestors) from being leaked. Wedge provides

no direct mechanism to prevent DoS attacks, either; an

exploited sthread may maliciously consume CPU and

memory.

We intend to explore static analysis as an alternative

to runtime analysis. Static analysis will yield a super-

set of the required permissions for an sthread, as some

code paths may never execute in practice. Static analy-

sis would report the exhaustive set of permissions for an

sthread not to encounter a protection violation. Yet these

permissions could well include privileges for sensitive

data that could allow an exploit to leak that data. By us-

ing run-time analysis of the application running on an

innocuous workload, the programmer learns which priv-

ileges are used when an exploit does not occur, but only

those required for correct execution for that workload.

8 Related Work

Many have recognized the practical dif�culty of parti-

tioning applications in accordance with least privilege.

OKWS [5] showed that with appropriate contortions,

UNIX's process primitives can be used to build a web

server of compartments with limited privileges. Krohn et

al. [6] lament that UNIX is more of an opponent than an

ally in the undertaking, with the result that programmers

create single-compartment, monolithic designs, wherein

all code executes with the union of all privilege required

across the entire application.

A trio of Decentralized Information Flow Control

(DIFC) systems, Asbestos, HiStar, and Flume [2, 7, 18]

offer a particularly general approach to �ne-grained iso-

lation. DIFC allows untrusted code to observe sensi-

tive data, but without suf�cient privilege to disclose that

data. Wedge does not provide any such guarantees for

untrusted code. In its all-or-nothing privilege model, a

compartment is either privileged or unprivileged with re-

spect to a resource, and if a privileged compartment is

exploited, the attacker controls that compartment's re-

sources with that compartment's privileges. Our expe-

rience thus far suggests that when applying Wedge to

legacy, monolithic code, only a small fraction of the orig-

inal code need run in privileged compartments. The price

of DIFC is heightened concern over covert channels, and

mechanisms the programmer must employ to attempt to

eliminate them [18]�once one allows untrusted code

to see sensitive data, one must restrict that code's com-

munication with the outside world. Because Wedge is

not a DIFC system, it does not share this characteristic.

Wedge still may disclose sensitive information through

covert channels, but only from compartments that are

privileged with respect to sensitive information. DIFC

systems leave the daunting challenge of designing an ef-

fective partitioning entirely to the programmer. Wedge's

Crowbar tools focus largely on helping him solve this

complementary problem; we believe that similar tools

may prove useful when partitioning applications for As-

bestos, HiStar, and Flume, as well.

Jif [12] brings �ne-grained control of information �ow

to the Java programming language. Its decentralized la-

bel model directly inspired DIFC primitives for operat-

ing systems. Jif uses static analysis to track the prop-

agation of labels on data through a program, and vali-

date whether the program complies with a programmer-

supplied information �ow control policy. TheWedge iso-

lation primitives do not track the propagation of sensi-

tive data; they use memory tags only to allow the pro-

grammer to grant privileges across compartment bound-

aries. Wedge's Crowbar development tool, however, pro-

vides simple, �single-hop� tracking of which functions

use which memory objects in legacy C code, whose lack

of strong typing and heavy use of pointers make accu-

rate static analysis a challenge. Jif uses static analysis to

detect prohibited information �ows, while Crowbar uses

dynamic analysis to reveal to the programmer what are

most often allowed information �ows, to ease develop-

ment for Wedge's default-deny model.

Jif/split [17] extends labeled information �ow for Java

to allow automated partitioning of a program across dis-

tributed hosts, while preserving con�dentiality and in-

tegrity across the entire resulting ensemble. Because it al-

lows principals to express which hosts they trust, Jif/split

can partition a program such that a code fragment that ex-

ecutes on a host only has access to data owned by prin-

cipals who trust that host. Wedge targets �ner-grained

partitioning of an application on a single host. In cases

where robustness to information leakage depends on the

detailed semantics of a cryptographic protocol, such as in

the defense against man-in-the-middle attacks on SSL in

Section 5.1, Jif/split would require careful, manual place-

ment of declassi�cation, based on the same programmer

knowledge of the protocol's detailed semantics required

when using Wedge's primitives.

Provos proposes privilege separation [13], a special

case of least-privilege partitioning targeted speci�cally

for user authentication, in which a monolithic process is

split into a privileged monitor and one (or more) unprivi-

leged slaves, which request one of a few �xed operations

from the monitor using IPC. Privman [4] is a reusable li-

brary for use in implementing privilege-separated appli-

cations. Privilege separation allows sharing of state be-

tween the monitor and slave(s), but does not assist the

programmer in determining what to share; Crowbar ad-

dresses this complementary problem. Privtrans [1] uses

programmer annotations of sensitive data in a server's

source code and static analysis to automatically derive

a two-process, privilege-separated version of that server.

Wedge arguably requires more programmer effort to use

than Privtrans, but also allows much richer partitioning

and tighter permissions than these past privilege separa-

tion schemes; any number of sthreads and callgates may

exist within an application, interconnected in whatever

pattern the programmer speci�es, and they may share

disjoint memory regions with one another at a single-

byte granularity.

9 Conclusion

Programmers know that monolithic network applications

are vulnerable to leakage or corruption of sensitive infor-

mation by bugs and remote exploits. Yet they still per-

sist in writing them, because they are far easier to write

than carefully least-privilege-partitioned ones. Introduc-

ing tightly privileged compartments into a legacy mono-

lithic server is even harder, because memory permissions

are implicit in monolithic code, and even a brief fragment

of monolithic code often uses numerous scattered mem-

ory regions. The Wedge system represents our attempt

to exploit the synergy between simple, default-deny iso-

lation primitives on the one hand, and tools to help the

programmer reason about the design and implementa-

tion of the partitioning, on the other. Our experience ap-

plying Wedge to Apache/OpenSSL and OpenSSH sug-

gests that it supports tightly privileged partitioning of

legacy networking applications well, at acceptable per-

formance cost. Above all, we are particularly encouraged

that Wedge has proven �exible and powerful enough to

protect Apache against not only simple key leakage, but

also against complex man-in-the-middle attacks.

Wedge is publicly available at:

http://nrg.cs.ucl.ac.uk/wedge/

Acknowledgments

We thank our shepherd Eddie Kohler and the anony-

mous reviewers for their insightful comments, and David

Mazi�eres and Robert Morris for illuminating discussions

during the course of this work.

Mark Handley and Brad Karp are supported by Royal

Society-Wolfson Research Merit Awards. Karp is further

supported by funding from Intel Corporation.

References
[1] D. Brumley and D. Song. Privtrans: Automatically partitioning

programs for privilege separation. In USENIX Security, 2004.

[2] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazi�eres, F. Kaashoek, and R. Mor-

ris. Labels and event processes in the asbestos operating system.

In SOSP, 2005.

[3] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and fur-

wocks: Fast userlevel locking in Linux. In Ottawa Linux Sympo-

sium, 2002.

[4] D. Kilpatrick. Privman: A library for partitioning applications. In

USENIX Security, FREENIX Track, 2003.

[5] M. Krohn. Building secure high-performance web services with

OKWS. In USENIX, Boston, MA, June 2004.

[6] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler,

D. Mazi�eres, R. Morris, M. Osborne, S. VanDeBogart, and

D. Ziegler. Make least privilege a right (not a privilege). In

HotOS, 2005.

[7] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information �ow control for standard

OS abstractions. In SOSP, 2007.

[8] M. Kuhn. OpenSSH PAM conversation memory scrubbing weak-

ness, 2003. http://www.securityfocus.com/bid/

9040.

[9] D. Lea. A memory allocator by Doug Lea. http://g.

oswego.edu/dl/html/malloc.html.

[10] P. Loscocco and S. Smalley. Integrating �exible support for secu-

rity policies into the Linux operating system. In USENIX, 2001.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-

tomized program analysis tools with dynamic instrumentation. In

PLDI, 2005.

[12] A. Myers and B. Liskov. Protecting privacy using the decentral-

ized label model. ACM TOSEM, 9(4):410�442, 2000.

[13] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege

escalation. In USENIX Security, 2003.

[14] Rembrandt. OpenSSH S/Key remote information disclosure

vulnerability, 2002. http://www.securityfocus.com/

bid/23601.

[15] E. Rescorla. SSL and TLS: Designing and Building Secure Sys-

tems. Addison-Wesley Professional, 2000.

[16] J. Saltzer and M. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278�1308,

1975.

[17] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Untrusted

hosts and con�dentiality: Secure program partitioning. In SOSP,

2001.

[18] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazi�eres.

Making information �ow explicit in HiStar. In OSDI, 2007.

http://www.securityfocus.com/bid/9040
http://www.securityfocus.com/bid/9040
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://www.securityfocus.com/bid/23601
http://www.securityfocus.com/bid/23601

	Introduction
	A Motivating Example
	System Design
	Sthreads
	Tagged Memory
	Callgates
	Crowbar: Partitioning Assistance

	Implementation
	Isolation Primitives
	Crowbar

	Applications
	Apache/OpenSSL
	Simple model (no interposition)
	Containing man-in-the-middle attacks

	OpenSSH

	Performance
	Discussion
	Related Work
	Conclusion

