
Structuring Protocol Implementations to Protect Sensitive Data

Petr Marchenko and Brad Karp

University College London, Gower Street, London WC1E 6BT, UK

fp.marchenko,bkarpg@cs.ucl.ac.uk

Abstract

In a bid to limit the harm caused by ubiquitous remotely

exploitable software vulnerabilities, the computer sys-

tems security community has proposed primitives to al-

low execution of application code with reduced privilege.

In this paper, we identify and attack the vital and largely

unexamined problem of how to structure implementa-

tions of cryptographic protocols to protect sensitive data

despite exploits. As evidence that this problem is poorly

understood, we �rst identify two attacks that lead to

disclosure of sensitive data in two published state-of-

the-art designs for exploit-resistant cryptographic proto-

col implementations: privilege-separated OpenSSH, and

the HiStar/DStar DIFC-based SSL web server. We then

describe how to structure protocol implementations on

UNIX- and DIFC-based systems to defend against these

two attacks and protect sensitive information from dis-

closure. We demonstrate the practicality and generality

of this approach by applying it to protect sensitive data

in the implementations of both the server and client sides

of OpenSSH and of the OpenSSL library.

1 Introduction

Cryptographic protocols are entrusted to preserve the in-

tegrity and secrecy of sensitive data as it traverses a net-

work. While these protocols incorporate strong mecha-

nisms to defend against in-network eavesdropping and

modi�cation of data in transit, such protocols function

in today's distributed systems only as imperfect, human-

written software. Clearly, the desired outcome for secure

system designers implementing a secure data transfer

protocol like SSH [14] or SSL/TLS [4] is end-to-end in-

tegrity and secrecy for sensitive data, despite not only in-

network threats, but also threats that may arise from the

behavior of the protocol implementation(s) at the ends of

the wire. The dismal past two decades of remotely ex-

ploitable vulnerabilities in software deployed widely on

network-attached hosts are thus real cause for alarm�

even if the abstract design of a cryptographic protocol is

correct, the protocol's very implementation is a worry-

ingly weak link in achieving end-to-end security goals.

In the quest for a lasting end-to-end defense for sen-

sitive data against disclosure or corruption by a remote

attacker, whatever vulnerabilities and exploits come to

light in the future, the systems research community has

in recent years sought to put the venerable principle of

least privilege [11] into better practice in the software

running on network-connected servers. This design tenet

dictates that the programmer should partition his code

into compartments, each of which executes a portion of

the program with minimal privilege necessary to carry

out its function. Here, privilege corresponds to access

rights for system resources: to read or write the �lesys-

tem, memory, or network, to invoke a system call, &c.

In the context of exploitable vulnerabilities and sensitive

information, least privilege amounts to designing an ap-

plication with the expectation that exploits will occur, but

limiting the harm that they may cause by restricting the

actions that an attacker may take post-exploit.

Early work [6, 10] explored how to minimize priv-

ilege on compartments instantiated as standard UNIX

processes. More recently, the community has devoted

considerable effort to providing various operating system

primitives intended to make it easier for programmers to

adhere to the principle of least privilege. These primitives

range from operating system support for decentralized

information �ow control (DIFC), which tracks the �ow

of sensitive information in an application at run-time and

limits the privileges of any compartment exposed to sen-

sitive information [7, 13, 15, 16], to process-like prim-

itives that deny privileges by default to newly created

compartments, and thus lessen the likelihood of acci-

dental propagation of privileges between compartments

against the programmer's intent [2].

While these results all represent important advances

over the prior state of the art, we believe that propos-

als to date for new primitives to encourage progammers'

adherence to least privilege largely ignore a central, vi-

tal question: how should a programmer structure code

and limit privilege to prevent disclosure or corruption of

sensitive data by an attacker who can exploit a vulner-

ability? Regardless of the primitives used, this daunting

question looms. To their credit, the proposers of these

primitives present examples of how to structure appli-

cation code to use them. But these examples are typi-

cally offered as existential evidence that the primitives

themselves are useful; no guidance or principles are of-

fered for how one may restructure a legacy application's

code to use the primitives and robustly provide the de-

sired end-to-end secrecy and/or integrity guarantees.

Moreover, the structures of these example applica-

tions are complex, as they are typically split into many

compartments. To wit, the OKWS web server spreads

its code among at least 5 compartments (processes) [6],

the sthread-partitioned Apache/SSL web server consists

of 9 compartments (sthreads and callgates) [2], and

the HiStar/DStar-labeled Apache/SSL web server con-

sists of 7 compartments (processes) [16]. Each applica-

tion's many compartments are con�gured with different

privileges and labels, respectively, and they are inter-

connected in complex patterns. Structuring code to use

these primitives appears dif�cult. Indeed, as we show

in Section 3, even highly security-conscious program-

mers using state of the art techniques have not ade-

quately considered how to defend cryptographic proto-

col implementations from exploit-based attacks. In par-

ticular, we describe two general classes of attack on

inadequately structured code for cryptographic proto-

cols, and demonstrate that two state-of-the-art cryp-

tographic protocol implementations, one in privilege-

separated OpenSSH [10] and the other in a DIFC-labeled

Apache/SSL web server [16], are vulnerable to these at-

tacks.

In this paper, we offer a practical improvement over

the status quo: principles to guide programmers in struc-

turing cryptographic protocol implementations so as to

enforce secrecy and integrity guarantees for sensitive

user data end-to-end, including in cases where a remote

attacker exploits untrusted application code.

Our contributions include:

� We de�ne two major classes of attack on crypto-

graphic protocol implementations: session key disclo-

sure attacks and oracle attacks.

� We provide protocol-agnostic principles for structur-

ing cryptographic protocol implementations to protect

sensitive data against disclosure and corruption when

an exploitable vulnerability is present in code that pro-

cesses network input.

� As evidence of the practicality of these principles, we

present restructured implementations of the OpenSSH

server and client to limit privilege so as to protect

users' sensitive data from an adversary who can re-

motely exploit the implementation. We further present

a restructured implementation of the OpenSSL library

that provides similar guarantees, and can act as a drop-

in replacement for the stock OpenSSL library, bring-

ing robustness against these attacks to a wide range of

SSL-enabled applications.

2 Background

We now summarize the state of the art in protecting sen-

sitive data in network server software. The two main ap-

proaches in use are privilege separation and decentral-

ized information �ow control (DIFC).

2.1 Privilege Separation with Processes

In a monolithic application, in which all code executes

in a single compartment (under UNIX or Linux, a pro-

cess), all instructions execute with full privilege. Thus,

an exploit of a vulnerability may result in disclosure of

sensitive data, and more generally, grants the full privi-

lege held by the application to any code injected by the

attacker. Privilege separation [10] has proven effective

in mitigating these threats. This technique follows from

the observation that an application need not execute indi-

vidual operations with the union of all privileges needed

by all operations during the application's entire lifetime.

Many vulnerability-prone operations, such as parsing, do

not require access to sensitive information or the �lesys-

tem. If we partition a monolithic application into com-

partments and restrict some compartments' privileges, an

exploit in an unprivileged compartment will not be able

to disclose or corrupt sensitive information to which it

does not have access. Code that runs in privileged com-

partments, however, must be carefully audited to protect

the sensitive data it can access.

The privilege-separated OpenSSH server [10] divides

the server's code into separate standard UNIX/Linux

processes. This partitioning includes a network-facing

unprivileged process that performs key exchange and au-

thentication protocols, and a privileged monitor process

running as root that exports an interface to the unpriv-

ileged process to allow invocation of privileged opera-

tions, such as signing with the server's private key, veri-

fying user credentials, &c.

This structure is intended to deny the attacker execu-

tion of code with root privilege on the server; the at-

tacker only interacts directly with the unprivileged pro-

cess. Provos et al. state that �programming errors occur-

ring in the unprivileged parts can no longer be abused to

gain unauthorized privileges� [10]. This claim holds be-

cause the unprivileged process executes with restricted

�le system access (enforced with a chroot system

call), and with unused user and group IDs of nobody,

which prevent it from tampering with other processes.

The SELinux security extensions to Linux [8], which

post-date Provos et al.'s work, allow enforcement of �ex-

ible mandatory access control policies speci�ed by a sys-

tem administrator. These policies support �ner-grained

restriction of a process's privileges than under stock

Linux, primarily by checking system call invocations in

the kernel against a per-process access control list. We

employ these extensions in our cryptographic protocol

implementations for OpenSSH and OpenSSL.

2.2 DIFC

Decentralized information �ow control (DIFC), as im-

plemented in the research prototype operating systems

2

networknetdSSLd

RSAd priv key

httpd
u

authd

user files

kk

u

u

u

k

Figure 1: HiStar-labeled SSL web server. We omit SSLd's and netd's

labels in the interest of brevity.

Asbestos [13] and HiStar [15], and retro�tted to Linux in

Flume [7], offers a different approach to limiting privi-

lege within applications. In these systems, a programmer

expresses an information �ow policy by labeling data ac-

cording to its sensitivity level. Should an unprivileged

compartment access data labeled as sensitive, it becomes

tainted, and at run-time, the operating system prevents

it from communicating with compartments tainted with

lower levels of sensitivity, or with the network or con-

sole. This way, an unprivileged compartment cannot con-

vey sensitive data out of the application. To allow output,

trusted compartments perform privileged operations on

sensitive data: they own sensitive labels, and are thus al-

lowed by the operating system to declassify sensitive in-

formation, stripping it of its sensitivity label(s).

Building on these DIFC primitives, Zeldovich et

al. present a state-of-the-art privilege-separated SSL web

server [16], shown in slightly simpli�ed form in Figure 1.

Ovals represent code: shaded ovals are trusted, privileged

compartments, while white ovals are untrusted compart-

ments. A dashed arrow between compartments A and B

indicates thatAmay invoke an operation inB with argu-

ments and retrieve the result. Boxes represent sensitive

data. A solid arrow from data to a compartment denotes

that the compartment may read that data; an arrow in the

reverse direction denotes write access. Circles annotating

data items and compartments indicate labels; in the latter

case, a compartment is tainted with the label in question.

Finally, a label within a star denotes that a compartment

owns that label (and may declassify data labeled with it).

The HiStar-labeled SSL web server is partitioned into

several untrusted compartments to mitigate the effect of

a compromise of any single compartment. The major

compartments are a per-connection SSLd, per-connection

httpd, and RSAd daemons. SSLd handles a client's SSL

connection and performs key exchange, server authenti-

cation, encryption and decryption. httpd processes clear-

text HTTP requests; it uses SSLd to decrypt requests and

encrypt replies. httpd can obtain ownership of a user's

label by authenticating with the trusted authd daemon.

Label ownership allows httpd to read the user's data and

declassify it for transfer over the network. The trusted

netd serves as a barrier between the application and the

network. It passes only declassi�ed data (with no label)

to the network.

Man-In-The-Middle server

New keys

New keys

client ID

server ID
server ID

client ID

New keys

exploit

end of key exchange
encryption starts

session key

User Authentication

User Session

client

unprivileged
compartment

user-privileged
compartment

New keys

.......

ke
y
 e

xc
h
a
n
g
e
 m

e
ss

a
g
e
s

Figure 2: Session key disclosure attack against privilege-separated

OpenSSH server.

3 Attacks on Protocol Implementations

The designers of cryptographic protocols like SSH and

SSL aim to provide end-to-end con�dentiality and in-

tegrity for users' data transferred during a session. When

applied correctly, both privilege separation and DIFC can

ensure that exploits of unprivileged compartments in a

cryptographic protocol's implementation will not lead to

violations of these properties. In this section, we present

two attacks that violate the con�dentiality and integrity

of sensitive user data in two state-of-the-art privilege-

separated systems: one in privilege-separated OpenSSH,

and one in a HiStar-labeled Apache-derived SSL web

server.1

3.1 Session Key Disclosure Attack

The partitioning goal stated by the designers of privilege-

separated OpenSSH was to prevent attackers' executing

code with root privilege. However, as we will see, that

goal is not suf�cient to preserve the con�dentiality and

integrity of the user's sensitive data.

Bittau et al. describe an active man-in-the-middle at-

tack against an SSL-enabled Apache Web server [2]

that is also valid against a privilege-separated OpenSSH

server. We term this attack the session key disclosure at-

tack (SKD attack). While Bittau et al. narrowly discuss

this attack in the context of an SSL implementation, we

now demonstrate that this attack applies against any pro-

tocol in which the two parties share a symmetric secret

key.

In the SKD attack, an active man in the middle com-

promises an unprivileged compartment on the server, dis-

closes the user's session key, and can then decrypt the

sensitive data transmitted during the session. This attack

succeeds because the unprivileged compartment respon-

sible for key exchange and server authentication can read

the session key shared between the server and client.

3

We illustrate the SKD attack on Dif�e-Hellman key ex-

change in OpenSSH in Figure 2. Here an unprivileged

compartment processes key exchange messages and in-

vokes a privileged monitor to sign a session ID with

the server's private key (the privileged monitor is not

shown in the �gure). The user-privileged compartment

executes with the authenticated user's UID and provides

a remotely accessible shell.

The attacker begins by exploiting the server's unpriv-

ileged compartment. He relays all key exchange mes-

sages from a legitimate user. The server and the user

compute a shared session key, which the attacker's in-

jected code sends to the attacker from the compromised

compartment. After user authentication, the user trans-

mits sensitive data encrypted with the compromised ses-

sion key. Using the session key, the attacker can reveal

the user's sensitive data, as well as inject her own com-

mands and obtain further sensitive information stored on

the server. Moreover, the session key also provides se-

crecy for the user authentication interaction, so the pass-

word of a client using password authentication will be

compromised.

We note with interest that the state-of-the-art, HiStar-

labeled SSL web server [16] aims to safeguard users'

sensitive data from disclosure to other users. But because

the designers of this cryptographic protocol implemen-

tation did not consider the SKD attack when structur-

ing their code, this server is vulnerable to the SKD at-

tack in the same way that the above-described privilege-

separated OpenSSH server is. Speci�cally, the untrusted

SSLd compartment computes a session key for a user's

connection, but if an active man-in-the-middle attacker

compromises this compartment, she may disclose the

session key.

3.2 Oracle Attack

Another attack violates the con�dentiality of a user's pri-

vate data in the HiStar-labeled SSL web server shown in

Figure 1. Depending on the key exchange protocol in use,

RSAd signs either the ephemeral RSA key or the pub-

lic Dif�e-Helman components supplied by the untrusted

SSLd with the server's permanent private key. This sig-

nature authenticates the server to the client. It is pos-

sible, however, to abuse the signing operation exported

by RSAd. Although a compromised SSLd cannot directly

read the private key, it can sign any data chosen by the at-

tacker; the attacker controls the SSLd compartment, and

can invoke RSAd with any arguments she chooses. Thus,

the attacker can use a compromised SSLd to produce

valid signatures using the server's identity. This example

demonstrates that simply putting sensitive data beyond

direct reach of untrusted code does not provide suf�cient

isolation.

We name such attacks against a cryptographic proto-

col's partitioning oracle attacks. Any trusted compart-

ment or sequence of trusted compartments isolating sen-

sitive data and exporting privileged operations to un-

trusted code can be an oracle. An oracle takes untrusted

input from untrusted code and returns the result of a priv-

ileged operation. By choosing its inputs appropriately, an

attacker can obtain sensitive information by invoking the

trusted compartment. SSLd is meant only to pass RSAd

an ephemeral key or the Dif�e-Helman components for

its own current session for signing. But if an active man-

in-the-middle attacker compromises SSLd, she can sign

arbitrary keys and DH components and present them to

other users, and so impersonate the server.

We have further identi�ed oracle structures in the

�baseline� privilege-separated OpenSSH server [10].

The trusted monitor process exposes a private key-

signing operation to the unprivileged compartment for

authentication of the server during key exchange. The

unprivileged compartment thus has an oracle for the

server's private key, and an attacker who compromises

that compartment can impersonate the OpenSSH server,

just as was described for the SSL web server above.

While partitioning the SSH and SSL/TLS protocols,

we identi�ed still other oracle attacks. Digital signatures

suffer not only from signing oracles, but also signature

veri�cation oracles, in which an attacker can pass a sig-

nature veri�cation operation by supplying chosen inputs

to a trusted compartment performing this privileged op-

eration. There also exists an oracle where an attacker

forces a set of trusted compartments generating a ses-

sion key to produce the same key used in a past user's

session; we name this oracle a deterministic session key

oracle. Forcing reuse of a session key allows an attacker

to replay messages from a past session. (This particular

threat exists in SSL's RSA key exchange protocol.) Fi-

nally, encryption and decryption oracles may allow an

attacker to encrypt arbitrary data and decrypt con�den-

tial messages.

3.3 Discussion

The SKD and oracle attacks are independent of the low-

level system primitive used to limit privilege; they appear

equally in applications built with privilege separation and

DIFC. These attacks are made possible by weakly struc-

tured cryptographic protocol implementations. The im-

plementation of a cryptographic protocol should guaran-

tee the same properties provided in the middle of the net-

work: data con�dentiality, data integrity, and robust au-

thentication of the peers, even if untrusted compartments

in its implementation are compromised. Avoiding SKD

and oracle attacks requires subtle structuring of the im-

plementation of a cryptographic protocol.

The SKD and oracle attacks target building blocks of

4

cryptographic protocols. Risk of an SKD attack exists in

many cases where a session key and key exchange pro-

tocol are used. Similarly, oracle attacks are associated

with basic cryptographic operations such as encryption,

decryption, signing, signature veri�cation, message au-

thentication, &c.

We next propose guiding principles for defense against

SKD and oracle attacks. Just as these attacks arise in

building blocks for cryptographic protocols, these prin-

ciples concern how to implement these building blocks

safely. We thus believe both the attacks and defenses ap-

ply to many cryptographic protocols.2

4 Principles for Partitioning

In this section, we de�ne principles to guide the pro-

grammer when partitioning an implementation of a cryp-

tographic protocol into reduced-privilege compartments.

These principles allow preserving the key security prop-

erties of the protocol end-to-end, even when untrusted

compartments are compromised. Our principles are ag-

nostic to the underlying privilege-enforcement mecha-

nism. Thus, they may be applied in DIFC-based systems,

in privilege-separated systems based on Linux processes

(with or without SELinux policies), and in other systems.

They apply both to the client and server sides of crypto-

graphic protocols.

Throughout, we assume that an attacker can com-

promise untrusted code, and can execute arbitrary code

in its compartment, though only with the privileges al-

lowed in that compartment. In this threat model, if an

untrusted compartment acquires sensitive information or

an attacker compromises a privileged compartment, we

presume she obtains sensitive information.

4.1 Two-Barrier, Three-Stage Partitioning

A cryptographic protocol typically shares a symmetric

secret key between two communicating parties, used to

compute message authentication codes (MACs) and to

encrypt data. A key exchange protocol con�dentially

shares this symmetric key. In addition, in some applica-

tions, the cryptographic protocol must authenticate peers

to each other. Any authentication method that does not

rely on transferring sensitive data, such as public key

authentication, may be performed during the key ex-

change protocol, before a session-key-encrypted chan-

nel has been established. The SSL/TLS protocol �ts this

model [4]. In contrast, password-based authentication,

e.g., as supported by SSH [14], sends sensitive data over

the network, and must therefore only authenticate after

the session-key-MACed and -encrypted channel has been

established. After authentication, an application is as-

sured of the remote principal's identity, and can grant the

remote principal access to locally stored sensitive data.

session key
negotiation

pre-authenticated
stage

post-authenticated
stage

u
se

r
p
ri

v
ile

g
e
 b

a
rr

ie
r

se
ss

io
n
 k

e
y
 b

a
rr

ie
r

trusted
compartment

trusted
compartment

trusted
compartment

Figure 3: Barriers and stages in protocol partitioning.

We distinguish two attack models. The �rst is that of

the SKD attack described in Section 3.1, where a man-

in-the-middle attacker exploits a vulnerability in a client

or server application to obtain the peers' session key. The

second attack model is that of an impersonation attack,

where an attacker exploits an endpoint and subverts au-

thentication in order to impersonate one of the peers.

In order to prevent these attacks, a partitioned applica-

tion should implement structures that we term a session

key barrier and a user privilege barrier. These two barri-

ers partition an application into three stages, as shown in

Figure 3. The �rst such stage, the session key negotiation

stage, performs the key exchange protocol. The second

stage, the pre-authenticated stage, conducts peer authen-

tication. Finally, the post-authenticated stage processes

user requests. Within each stage, one untrusted com-

partment handles network input and executes without

privileges to read or write sensitive data, while multiple

trusted compartments execute with privilege to access

sensitive data. These trusted compartments export any

necessary privileged operations to the untrusted compart-

ment.

Session Key Barrier The session key barrier denotes

the killing of the untrusted compartment that completes

session key negotiation and the subsequent spawning of a

new untrusted compartment (in Linux, a process) to con-

tinue execution in the pre-authenticated stage. We now

explain why this structure is necessary.

The untrusted compartment performing session key

negotiation (before the session key barrier) is the only

untrusted compartment in the partitioning of the crypto-

graphic protocol implementation that processes cleartext,

unauthenticated messages from the network. These mes-

sages (and exploits!) may arrive from an SKD attacker.

Thus, while the untrusted compartment in the session key

negotiation stage interacts with the remote peer to com-

pute the session key, it should not have read access to

the session key. In addition, any data that allows deriving

the session key, such as a private Dif�e-Hellman compo-

nent (in the case of Dif�e-Hellman key exchange) or a

pre-master secret (in the case of RSA-based session key

establishment in SSL) should be also considered sensi-

tive. All access to privileged operations with such data

should be provided via trusted compartments.

Because this compartment only processes messages in

5

cleartext, it does not in fact need read access to the ses-

sion key; only the next stage, the pre-authenticated stage,

which continues execution after the channel between the

two peers is MAC'ed and encrypted with the session key,

needs the session key.

Principle 1: A network-facing compartment perform-

ing session key negotiation should not have access to

a session key, nor any data that allows deriving the

session key.

Because the untrusted compartment performing ses-

sion key negotiation may be exploited, we cannot trust

the provenance of the code executing in that compart-

ment at the end of session key negotiation, and rather

than allowing that compartment to continue execution in

the pre-authenticated stage, where it would have access

to the session key, we kill it (i.e., kill the Linux process).

But why can't an SKD attacker exploit the untrusted

compartment in the pre-authenticated stage? This com-

partment only processes input that is MAC'ed using the

now available session key. A would-be SKD attacker

cannot inject messages with a valid MAC into the chan-

nel, and so is precluded from exploiting this compart-

ment. We assume here that the MAC computation func-

tion itself, which processes network input, can be audited

and trusted not to be exploited.

Thus, both the MAC on the channel and the killing of

the untrusted compartment in which session key negoti-

ation has completed effectively erect a barrier between

any SKD attacker and the session key.

Principle 2: When enabling the MAC, a network-

facing compartment performing session key negotia-

tion should be killed, and a new one created with priv-

ilege to access the session key.

Principle 3: After enabling the MAC, there should be

no unMAC'ed messages processed by the untrusted

compartment.

Note that the �original� privilege-separated OpenSSH

server does in fact destroy the unprivileged compartment

after performing user authentication, but we require this

to be done after key exchange. The �original� OpenSSH

destroys the compartment not for SKD attack-resistance

reasons, but because of a programming dif�culty. In this

implementation, the unprivileged compartment has the

user ID of nobody, but must change its user ID to that

of the authenticated user. Changing a process's user ID

requires root privilege; therefore, the monitor kills the

compartment and creates a new one with the required

user ID.

Transitioning to the pre-authenticated stage may re-

quire transferring state from the unprivileged compart-

ment of the session key negotiation stage to the unpriv-

ileged compartment of the pre-authenticated stage. As

this state comes from a compartment that may be con-

trolled by an SKD attacker, the pre-authentication stage

should validate this state's sanity to prevent an SKD

attacker from passing bad state in an attempt to com-

promise the pre-authenticated stage. The same problem

arises when a privileged compartment accepts arguments

to a privileged operation from an untrusted compartment;

these arguments should also be veri�ed to prevent com-

promise of the privileged compartment.

Principle 4: Any state exported from a compartment

performing session key negotiation and any untrusted

arguments passed to privileged compartments should

be validated.

We do not offer general techniques for veri�cation of

untrusted state and arguments. However, in our partition-

ing of protocol implementations, we employ pipes for

inter-process communication. Although marshalling, un-

marshalling, and data copies cost in performance, this

mechanism provides a recipient with an RPC-like ex-

pectation of the format of the data structures it receives.

These RPC-like semantics ease state and argument veri-

�cation.

The session key barrier is enforced when an appli-

cation switches permanently from communicating with

cleartext messages to MAC'ed messages. Some proto-

cols, such as SSL, however, can alternate between these

two types of messages. In such cases, the transition be-

tween the two stages should be performed after the last

cleartext message. However, doing so would require pro-

cessing messages MAC'ed and encrypted with the ses-

sion key during the session key negotiation stage, which

risks creating session key oracles! We address this prob-

lem with Principle 7.

Principle 5: A cryptographic protocol should not al-

ternate between cleartext messages andMAC'ed mes-

sages.

User Privilege Barrier The user privilege barrier rep-

resents any authentication method that can be used to

authenticate a peer before granting it privilege to ac-

cess sensitive information owned by a particular user.

This barrier prevents impersonation attacks, where an at-

tacker exploits an application to subvert its authentica-

tion mechanism. Authentication should be performed by

an unprivileged compartment that has no access to sensi-

tive user data. The pre-authenticated stage is protected by

the session key barrier, so this stage is not exposed to any

SKD attacker. However, it is crucial for the integrity of

the session key barrier that there be no unMAC'ed mes-

sages processed during the pre-authenticated and post-

authenticated stages. Without the SKD threat, the ses-

sion key is no longer sensitive information in the pre-

6

authentication stage, and it can be accessed directly by

unprivileged code. We allow the impersonator to access

the session key at this point because it is his own key and

does not correspond to any other user's session. Success-

ful authentication transitions the application into the next

stage, the post-authenticated stage.

Today's state-of-the-art privilege-reduced applications

implement the user privilege barrier as we require. How-

ever, monolithic, full-privilege applications perform au-

thentication in a privileged compartment. The privilege-

separated OpenSSH server performs user authentication

in an unprivileged compartment, and then the monitor

creates a new compartment with the user ID and group

ID of the authenticated user. The HiStar-labeled SSL

web server supports only password authentication, and

the unprivileged httpd daemon obtains ownership of the

user's labels only after the user successfully authenti-

cates with an authentication daemon.

Some protocols authenticate peers without sending

con�dential data, such as passwords. For example, the

SSL protocol's handshake supports only public key au-

thentication methods. Such authentication techniques

can be merged with a key exchange protocol or per-

formed in cleartext after the key exchange protocol.

Thus, the user privilege barrier can be established within

the session key negotiation stage omitting the pre-

authenticated stage. This optimization is encouraged, as

it reduces the number of stages and compartments, and

thus increases the performance of a privilege-separated

application.

Authentication that requires passing sensitive data en-

crypted with the session key cannot be performed during

the session key negotiation stage. Otherwise, the parti-

tioning of the session key negotiation stage would require

a trusted compartment to decrypt sensitive data, and this

compartment would result in a session key oracle, which

could be used to decrypt the user's sensitive data. More-

over, other trusted compartments would be needed to

process authentication-related sensitive data, because we

cannot allow untrusted code to operate with this con�-

dential data.

The post-authenticated stage executes in a compart-

ment with the authenticated user's privilege; it acts for

the authenticated user and can access the user's data.

When we transition from the pre-authenticated to post-

authenticated stage, we need not kill the former stage, as

it cannot be exploited, given the MAC'ed channel elimi-

nates SKD attackers, and authentication barrier prevents

impersonation attackers. Instead, we can change the priv-

ilege of the compartment used in the pre-authenticated

stage to that of the authenticated user, and continue exe-

cution with the code for the post-authentication stage.

We note that for some applications, the post-

authenticated stage may require further privilege sep-

aration. For example, an application may require ac-

cess to a centralized database where sensitive data be-

longing to many users is stored. In this case, the user-

authenticated compartment should be denied direct ac-

cess to the database, but a trusted compartment should

export access to the database. This privilege separation,

reminiscent of techniques explored in OKWS [6], pre-

vents a user from accessing other users' sensitive data.

4.2 Oracle Prevention Techniques

In the previous section, we presented a general structure

for a cryptographic protocol's implementation to defeat

SKD and impersonation attacks. At every stage of the

aforementioned structure, there is sensitive data accessi-

ble only by trusted compartments, which in turn export

privileged operations to unprivileged compartments. As

discussed in Section 3.2, in all such situations, there is

a risk of granting an attacker an oracle for the sensitive

information.

For example, the session key negotiation stage de-

pends on con�dential session key sharing. An SKD at-

tacker can use a trusted compartment as a decryption or-

acle to obtain a secret component of a session key. An im-

personator may replay authentication data from another

connection as an input to an authentication oracle and

pass authentication as a legitimate user. Clearly, we need

techniques to mitigate any oracles in these stages.

Entangle Output Strongly with Per-Session Known-

Random Input Network protocols employ random-

ness generated afresh for every session to defeat authenti-

cation replay attacks, where an attacker replays messages

eavesdropped from a user session to reestablish the past

session and repeat a user's past requests. The server gen-

erates a random nonce incorporated into the session key

(in the case of RSA key exchange) or a fresh private DH

component (for DH key exchange) to make the session

key different for every session. We can similarly employ

this session randomness as a defense to counter oracles.

The output of a trusted compartment should not com-

pletely depend on untrusted input, so that an attacker will

not be able to replay past input to the compartment and

get the same deterministic result. Entangling the output

of a privileged compartment with a trusted per-session

random nonce solves this problem.

For example, Figure 4 demonstrates an approach

to preventing a signing oracle in a privilege-separated

OpenSSH server. We restrict the trusted monitor that im-

plements signing with the private key to sign only ses-

sion IDs that incorporate per-session random bits. A se-

quence of privileged operations performed by the trusted

compartment ensures that the server's private DH com-

ponent is indeed included in the session ID. This way,

7

sign
session ID

4

DH component (x)session key

private key

session key
negotiation stage network

generate
DH component

1
compute

session key

2
compute

session ID

3

session ID
i

Figure 4: Prevention of private key oracle in OpenSSH server by en-

tangling output with per-session known-random input.

we entangle the output of the RSA signing compart-

ment/operation with trusted, per-session, known-random

input. Numbers within trusted compartments in Figure 4

specify the order of their invocation, and this order

should be enforced by the application.

With this oracle defense mechanism, the attacker can-

not mount an impersonation attack, as every signed

session ID will incorporate different randomness con-

tributed by the server, and will thus not be valid in the

context of any other session. Similarly, in order to pre-

vent deterministic session key oracles, we make sure that

the compartment generating the keys includes random-

ness generated afresh for every session. Moreover, per-

session randomness is crucial in prevention of signature

veri�cation oracles; the data for signature veri�cation

should also incorporate it.

Principle 6: To prevent oracles, entangle output

strongly with per-session, known-random input.

In RSA key exchange in the SSL/TLS protocol, there

is the potential for a deterministic session key oracle at-

tack, where an attacker can produce a deterministic ses-

sion key by suppling chosen inputs to a privileged com-

partment generating the key. In particular, a session key

consists of two public components, per-session server

and client randoms, and a pre-master secret transmitted

encrypted in the server's public key [4]. When generat-

ing the session key, these components are concatenated

together and hashed. The server decrypts the pre-master

secret using its private key before hashing it together with

the other components. If an attacker controls the server

random, client random, and encrypted pre-master secret

inputs to the session key generation function, he can feed

data eavesdropped from a user session to the privileged

compartment generating the session key and produce the

key that corresponds to the eavesdropped session. We

prevent deterministic session key oracles by ensuring

that every server-computed session key includes a trusted

server nonce produced and supplied to the compartment

generating the session key by a trusted source. This way,

an attacker cannot control the generated session key, as

each time it incorporates a different random nonce.

Obfuscating Untrusted Input by Hashing The SSL

protocol alternates cleartext change cipher spec mes-

sages with authenticated and encrypted �nished mes-

sages [4]. A change cipher spec message signals that the

sender is about to enable encryption and authentication,

which will be used on all subsequent messages. A �n-

ishedmessage contains a MAC'ed and encrypted hash of

all previous cleartext messages received by a peer during

the handshake protocol. The �nished message ensures

that these cleartext messages were not tampered with by

an attacker.

To ensure that the session key barrier is enforced,

we cannot process cleartext messages in the pre-

authenticated stage. Instead we should process the �n-

ished messages within the session key negotiation stage.

However, doing so requires a trusted compartment that

performs session key encryption and decryption opera-

tions on behalf of untrusted code. This trusted compart-

ment is a session key encryption/decryption oracle which

can be used to decrypt user information and validly en-

crypt an attacker's exploits or requests.

Our oracle mitigation technique provides the required

privileged operations (encryption and decryption with a

session key) and avoids a session key oracle by obfuscat-

ing input data through hashing. As the �nished message

is an encrypted hash, a trusted compartment can be struc-

tured in the following way: it obtains data from an un-

trusted compartment, hashes the data, and then encrypts

the resulting hash. A privileged operation that hashes

data and then encrypts is not useful for an attacker, as the

attacker's requests and exploits for the pre-authenticated

and post-authenticated stages will be viewed as hashes.

As for the decryption oracle, we do not return the

cleartext �nishedmessage to untrusted code. Instead, our

trusted compartment takes the veri�cation data from an

untrusted compartment and performs veri�cation of the

�nished message itself. The result of this veri�cation is

returned to the untrusted compartment. However, this

mechanism allows dictionary attacks, where an attacker

can guess the cleartext message by supplying the veri�-

cation data. Again, obfuscating the untrusted validation

data by hashing before comparing it with the cleartext

�nished message solves this problem. This approach �ts

the protocol because the �nished message happens to be

a hash of all previous handshake messages. If an attacker

attempts to guess the cleartext requests, his guess will be

hashed �rst, then compared with the original message.

The hashing that we apply to prevent both oracles al-

8

ready is present in the SSL handshake protocol. How-

ever, the protocol and our oracle mitigation technique use

it for different reasons. The protocol requires the com-

pression and collision resistance of a hash function, but

our technique employs the hash function because of its

non-invertibility. Happily for us, the hash function pro-

vides all of the mentioned properties, and can be used in

both cases.

Principle 7: To prevent oracles, obfuscate untrusted

input by hashing.

Last Resort: More Trusted Code The previous oracle

mitigation techniques require the availability of a random

nonce or a hash function. However, for those cases in

which a cryptographic protocol does not specify these

functions at a point in the protocol where there is the risk

of an oracle, we offer a last resort technique.

For an oracle to exist, a result of a privileged oper-

ation must return to an unprivileged compartment. It is

possible to avoid the oracle by making the output privi-

leged and restricting access to it in the unprivileged code.

Although this technique helps, it is not ef�cient, as a

new trusted compartment is required to process the re-

sult, and you may need to process the result of the new

compartment in the same way. Our last resort technique

may lead to a chain of trusted compartments, which in-

creases the trusted code base and requires more auditing

work. Moreover, to terminate this chain, there must be a

suitable condition for applying one of the previous oracle

mitigation techniques, or the last trusted compartment in

the chain must not produce any output.

Principle 8: To prevent oracles, as a last resort, add

more trusted code.

4.3 Degrees of Sensitivity

Cryptographic protocols often operate on sensitive data

of more than one class. As an example, one frequently

occurring class of sensitive data is that which must be

kept secret to ensure secrecy and integrity of data trans-

ferred within a single session, e.g., the pre-master secret

in RSA key exchange, the private DH key in DH key ex-

change, the session key, the per-session ephemeral RSA

private key, &c. Disclosure of such sensitive data results

in violation of the secrecy and/or integrity of sensitive

data within a single session. Yet there is often another

class of even more sensitive data that must remain secret

in order to preserve the secrecy of user data in many ses-

sions. This class includes a server's private key, users'

private keys, and passwords that are reused on many

servers. The secrecy of such data is vital because an at-

tacker can use it to gain access to user data in multiple

sessions by impersonating the server, or by using users'

passwords to access many servers.

In a simple scenario like this one involving two classes

of sensitive data�that which is critical to one session's

secrecy vs. that which is critical to ensuring many ses-

sions' secrecy�mixing sensitive data of both classes and

code to manipulate data of both classes in the same com-

partment incurs warrantless risk. To see why, let's devi-

ate from our threat model and assume that an attacker

can compromise trusted compartments. Now any vulner-

ability in code that manipulates sensitive data pertaining

to one session's secrecy can disclose sensitive data that

could compromise secrecy of all sessions. Creating dis-

tinct compartments for data of differing degrees of sen-

sitivity (and the code that manipulates it) mitigates this

risk. Similarly, to prevent disclosure of one user's data to

another, separate compartments should manage sensitive

session-related key data for each user.

Principle 9: A privilege-separated application should

manage a session with two separate privileged

compartments�one to operate with data related to se-

crecy of the current session, and one to manage data

that preserves secrecy of many sessions.

We examine the bene�ts of isolating code and data

in distinct compartments according to their sensitivity in

detail in the context of a hardened OpenSSH implemen-

tation in Section 5.2.

5 Hardened SSH Protocol Implementation

We now demonstrate these principles for preventing

SKD and oracle attacks by �nely privilege-separating the

implementations of the client and server sides of the SSH

protocol.

Recent privilege separation and DIFC work focuses on

server applications, as they are always online and can

be attacked at will. We argue that the SSH client code

should be considered as important as the server code. An

attacker can set up a public service and provide access

to it via SSH. By exploiting vulnerabilities in the SSH

client implementation, the attacker can obtain users' pri-

vate keys, used to authenticate them to other legitimate

SSH servers. These keys allow the attacker to obtain or

tamper with the user's sensitive information stored at

these other SSH servers. Moreover, as the SKD attack is

equally valid on both sides, server and client, protection

against it is equally needed on the two sides.

Throughout this paper, the baseline OpenSSH server

design we refer to is that of Provos et al. [10]. While this

OpenSSH server implements privilege separation, it al-

lows unprivileged code access to the session key (contra-

vening Principles 1 and 2) and sign a session ID provided

by unprivileged code (contravening Principle 6), and thus

is vulnerable to SKD and oracle attacks. We show how to

9

partition the server more �nely to prevent these attacks.

But �rst, we �nely partition the OpenSSH client, which

to date has only existed in monolithic form, and is thus

also vulnerable to both SKD and oracle attacks.

5.1 Hardened OpenSSH Client

The OpenSSH client runs under the invoking user's user

and group IDs. Because changing the user ID to nobody

and invoking the chroot system call require root

privilege, they cannot be used here. Instead, we limit

the privilege of the trusted and untrusted compartments

of the OpenSSH client with SELinux policies [8], and

the SELinux type enforcement mechanism in particular.

SELinux policies allow us to restrict untrusted processes

from issuing unwanted system calls such as ptrace,

open, connect, &c.3 Our prototype supports only

password and public key authentication, and does not yet

implement advanced SSH functionality (tunneling, X11

forwarding, or support for authentication agents).

Our �nely privilege-separated OpenSSH client starts

in the ssh t domain, de�ned as a standard policy in the

SELinux package for the original monolithic SSH client.

This policy provides the union of all privileges required

by all code in the SSH client; i.e., an application in the

ssh t domain may open SSH con�guration �les, access

�les in the /tmp directory, connect to a server using a

network socket, create a pseudo-terminal device,&c.We

use this domain to initialize the client application and

connect to the requested SSH server. At this point, the

client has not yet processed any data from the server. Be-

fore exchanging any SSH protocol messages, the client

creates two new processes (compartments): a privileged

session monitor that performs privileged operations on

sensitive data that can compromise only a single SSH

session, and a private key monitor that performs authen-

tication operations with the client's private keys. This en-

semble of three compartments (represented by ovals) ap-

pears in Figure 5. The use of two distinct monitors is

motivated by Principle 9.

The session monitor runs in the ssh monitor t domain,

a domain we have de�ned that con�nes the process to ac-

cess only the known hosts �le to read and add public

keys for approved hosts; to read/write a UNIX sockets

for communicating with the private key monitor and an

unprivileged process running untrusted code (described

below); and to read/write a terminal device. The ses-

sion monitor cannot create or access any �les apart from

known hosts, nor may it create new sockets. The pri-

vate key monitor runs in the ssh pkey t domain, a domain

we have de�ned that con�nes it with a similarly tight pol-

icy, allowing it only to read the user's private key(s), with

no access to other �les, nor to create any sockets. The

private key monitor shares a UNIX socket with the ses-

sion monitor and only accepts requests from the latter.

unprivileged
process

(ssh_nobody_t)
network

terminal known_hosts file

private key files
private key

monitor
(ssh_pkey_t)

session monitor
(ssh_monitor_t)

UNIX socket

UNIX socket

Figure 5: Architecture of privilege-separated OpenSSH client. Shaded

ovals denote privileged compartments. Unshaded ovals denote unpriv-

ileged compartments. The last line in each oval denotes the SELinux

policy enforced.

Session monitor

1) DH priv key = gen DH priv key()

2) DH pub key = comp DH pub key(DH priv key)

3) sess key = comp sess key(DH priv key,

srvr DH pub key)

4) sess IDi = comp sess ID(sess key, clnt version,

srvr version, clnt kexinit, srvr kexinit, ...)

5) sym keys = derive sym keys(sess IDi, sess key)

6) srvr pub keyi = verify srvr pub key(srvr pub key,

known hosts �le)

7) verify sign(sess IDi, srvr pub keyi, sign)

Private key monitor

1) sign = priv key sign(priv key, sess IDi, user name,

service, auth mode, ...)

Figure 6: Privileged operations performed by the two client monitors.

Data in regular font is untrusted parameters provided by unprivileged

compartments. Sensitive data appear in bold, and are accessible only

by the monitor compartment in which they appear. xi denotes that sen-

sitive data x is exported to an unprivileged compartment read-only.

After creating these two monitor processes, the original

SSH client process drops privilege to the ssh nobody t

domain. Untrusted code runs in this unprivileged process

and domain during the rest of this invocation of the SSH

client. The ssh nobody t domain allows the unprivileged

process to communicate with the session monitor and re-

mote server via previously opened sockets, but prevents

it from opening any new sockets. The ssh nobody t do-

main further denies all access to the �le system, allow-

ing the unprivileged process access to the terminal device

only.

The session monitor compartment isolates all sensi-

tive data that can be used to compromise the current re-

mote login session, and performs all privileged opera-

tions with these data, enumerated in Figure 6, that are es-

sential for key exchange and prevention of a private-key

oracle. When a privileged operation takes non-sensitive

data as input, the non-sensitive input is supplied by the

unprivileged compartment. Symmetric keys (sym keys)

10

are the keys derived from the session key for the MAC

and encryption/decryption. The session monitor enforces

the order in which an untrusted compartment may invoke

its privileged operations.

The private key monitor isolates the client's private

key and performs signing operations with the key. Only

the session monitor may invoke these signing operations

in the private key monitor (over a UNIX-domain socket),

and it provides the session ID to be signed as an argu-

ment. We give more detailed explanation of the private

key sign operation in the end of this section.

Session Key Negotiation Stage In a successful SKD

attack on the OpenSSH client, the attacker would inter-

pose himself as an active man-in-the-middle between the

client and server, exploit the client during the SSH pro-

tocol handshake, and forward all handshake messages

and post-handshake session data unmodi�ed between the

server and client. By injecting code into the client to

cause the session key to be disclosed to him, the attacker

would thus reveal all sensitive data transferred thereafter

between the user and server over the encrypted session.

The �rst stage of execution for the �nely partitioned

OpenSSH client is the session key negotiation (SKN)

stage, which allows an unprivileged compartment�with

the help of the session monitor�to perform Dif�e-

Hellman key exchange, and thus to negotiate a session

key and authenticate the server. As required by Principle

1, we restrict the SKN stage to run in an unprivileged

compartment that cannot access sensitive data�not the

DH private key, nor the session key, nor the symmetric

keys (as shown in Figure 6)�as they are essential for

session key secrecy, and thus for preventing an SKD at-

tack.

We must also prevent a veri�cation oracle attack

against the client at this point in the handshake. Suppose

the attacker wants to impersonate a server to the client,

and can trick the client into connecting to a server he con-

trols, instead of to the bona �de server to which the client

wishes to connect. Suppose further that the attacker ex-

ploits the client. To authenticate the server, the client

must verify the server's public key against the list of

trusted public keys in the known hosts �le, and then

validate the server's signature on the session ID. Once

the attacker exploits the client, if the exploited compart-

ment of the client implementation allows invocation of

signature veri�cation operation with the session ID or

server's public key provided by this compartment then

the attacker may be able to force signature veri�cation to

succeed, and thus spoof the bona �de server to the client.

To see why, note the arguments to signature veri�cation

routine verify sign() in the session monitor in Figure 6. If

the attacker controls the values of the signature argument

and either the session ID argument or the server public

key argument, he can provide inputs that will cause the

signature to verify. That is, he can either sign a benign

sess ID with his own private key and supply his own

corresponding srvr pub key, or supply a bogus sess ID

signed by the bona �de server (readily obtained from the

attacker's own connection to the bona �de server), along

with the bona �de server's true srvr pub key.

To prevent this veri�cation oracle, we must not al-

low an unprivileged compartment (at risk for remote ex-

ploit) to provide either srvr pub key or sess ID to ver-

ify sign(). We thus perform signature veri�cation in the

session monitor, and isolate sess ID and srvr pub key

within the monitor, out of reach of untrusted code. In ac-

tuality, the untrusted compartment provides srvr pub key

to the session monitor, but the session monitor validates

it against the contents of the known hosts �le before

verifying the signature. Note that sess ID is entangled

with trusted random bits generated by the client every

new session, originating from the client's DH priv key

via comp sess key() and comp sess ID(). This construc-

tion, speci�ed by the OpenSSH protocol, implicitly ap-

plies Principle 6, which further prevents an attacker from

forcing sess ID to match that from a past eavesdropped

session.

The above partitioning prevents an attacker who com-

promises the unprivileged compartment from mounting

successful SKD or veri�cation oracle attacks on the

client.

We now turn our attention to the next steps taken by

the client. In the OpenSSH protocol, session key nego-

tiation and server authentication, which establishes the

user privilege barrier, are intertwined. Therefore, our par-

titioning of OpenSSH needs no distinct pre-authenticated

stage, and the SKN stage proceeds immediately to the

post-authenticated stage.

Post-authenticated Stage After computing symmet-

ric keys and authenticating the server, the client kills

the untrusted compartment from the SKN stage and cre-

ates a new untrusted compartment, also con�ned to the

ssh nobody t domain, to execute operations in the post-

authenticated stage. This new compartment is granted ac-

cess to the session's symmetric keys so that it can per-

form encryption and decryption operations. It may in-

voke privileged operations in the session monitor, and

the session monitor can invoke privileged operations on

the client's private keys by the private key monitor. To do

so, the private key monitor executes with the privilege to

read private key �les.

In the post-authenticated stage, the server authenti-

cates the client. Our prototype supports password and

public key authentication. Password authentication does

not require any further partitioning of the client to pro-

tect against a malicious server, as the SSH protocol re-

11

pre-auth stage
UID: nobody

chrooted

network

private key files

/etc/shadow

private key
monitor
UID: root

UNIX socket

SKN stage
UID: nobody

chrooted

session monitor
UID: nobody

chrooted

post-auth stage
UID: user

UNIX socket

authorized_keys

Figure 7: Architecture of �nely privilege-separated OpenSSH server.

quires that the client sends the password to the server.

However, we can apply �ne-grained privilege separation

to deny the server access to the client's private key(s).

There is no need for the untrusted compartment to have

direct access to the keys, and if it does, a malicious server

that the user logs in may exploit the client and obtain its

private keys, and thus obtain sensitive information from

other SSH servers where the user authenticates himself

using the same private keys. Therefore, we isolate the

client private keys from the post-authentication stage's

untrusted compartment by placing them in a privileged

private key monitor. To prevent a private key signing or-

acle in the client, we do not allow the untrusted compart-

ment to directly invoke signing data of its own choice

using the private key. The untrusted compartment passes

untrusted input (user name, service name, authentication

mode,&c.) via the session key monitor. Note that we rely

on session key monitor to supply the trusted session ID

computed earlier in the key exchange protocol to the pri-

vate key monitor as shown in Figure 6. Recall that the

session ID has been entangled with trusted random bits

generated by the client for the current session. Thus, the

signature produced by the private key monitor will not

be valid in any session but the current one, and a private

key oracle has been disseminated.

To support session key rekeying, the unprivileged pro-

cess is permitted to invoke privileged rekeying operations

implemented by the session monitor.

5.2 Hardened OpenSSH Server

In accordance with Principle 9, we extend the baseline

privilege-separated OpenSSH server with an extra ses-

sion monitor process that handles sensitive data related

to a single user's session while preventing an SKD at-

tack and both private key signing and signature veri�-

cation oracles, as shown in Figure 7. The private key

monitor is the original monitor process from the baseline

privileged-separated OpenSSH server, which performs

operations that require root privilege.

The session monitor, the unprivileged SKN process,

and the unprivileged process of the pre-authentication

stage all run in a chrooted environment with an unused

UID, under a restrictive SELinux policy that allows only

the system calls implied in Figure 7, and prohibits all

others, including dangerous ones such as ptrace and

connect. The process for the post-authenticated stage

runs with the UID of the authenticated user and is not

restricted with any SELinux policy, as with the baseline

OpenSSH server.

Session Key Negotiation Stage The session monitor

implements the privileged operations required for the

SKN stage, and we ensure that the pre-authenticated

stage does not start unless the unprivileged compartment

of the SKN stage terminates (in accordance with Princi-

ple 2). Because the Dif�e-Hellman key exchange proto-

col is symmetric between the server and client, we im-

plement operations 1�5 from Figure 6 in the server's ses-

sion monitor just as in the client's. The SKD attack is

an equally serious threat for client and server; as both

parties share the same session key, an SKD attacker can

compromise either party's code to disclose it.

During the SKN stage, the server authenticates itself

to the client by signing a session ID. The monitor in the

baseline privilege-separated OpenSSH server signs any

data supplied by the untrusted compartment, thus allow-

ing an oracle attack. A man-in-the-middle attacker can

interpose himself between a client and a bona �de server

and employ a signing oracle on the server to impersonate

the server by producing valid signatures on session IDs

corresponding to the attacker's session with the client.

We prevent such attacks by constraining the private key

monitor to sign only data provided by the trusted session

monitor�speci�cally, the current session ID entangled

with trusted random bits provided by the server, as shown

in Figure 4, as suggested by Principle 6. The server's ses-

sion monitor produces this sess ID in operation 4 in Fig-

ure 6, just as the client's does. This signed sess ID can-

not be used to impersonate the server as it is only valid

within the current session. To perform the signing opera-

tion, the session monitor calls into the privileged private

key monitor and supplies the required trusted sess ID to

sign.

Pre-authenticated and Post-authenticated Stages

The baseline privilege-separated OpenSSH server sepa-

rates the pre-authenticated and post-authenticated stages.

It performs user authentication operations such as pass-

word veri�cation and signature validation (in public key

authentication) in the monitor. However, this architec-

ture allows an SKD attacker to compromise the password

during password authentication, as it is encrypted with

12

the session key obtainable by the attacker. During public

key authentication, the untrusted compartment supplies

the data used for user signature veri�cation, again allow-

ing oracle attacks against user authentication. The mon-

itor validates the signature against the session ID sup-

plied earlier when the untrusted compartment requested

the server's signature on this session ID. Thus the un-

trusted compartment can control the session ID used in

public key authentication of the user. In order for an at-

tacker to impersonate the client, she must provide some

session ID signed by the client for the server's veri�ca-

tion operation. It is unlikely that the attacker can force a

user to sign arbitrary data with his private key. However,

an SKD attacker can compromise the user's session and

log its session ID and signature pair. She can then replay

these data to the server's signature veri�cation compart-

ment. Because the server's signature veri�cation routine

does not check whether the provided session ID is valid

within the current session, the veri�cation routine will re-

port that the client has authenticated successfully. In this

way, the attacker successfully impersonates the user.

In our implementation, we �x this problem by making

sure that the session ID used for signature veri�cation is

produced by the session monitor, as done in operation 4

in Figure 6, and entangled with trusted random bits pro-

vided by the server. Our SKN stage also ensures the se-

crecy of user passwords by thwarting SKD attacks.

Discussion: Trusted Code Base Figure 8 compares

the trusted code bases of Provos et al.'s baseline

privilege-separated OpenSSH server and our �nely parti-

tioned OpenSSH server. The latter implements two mon-

itors, in accordance with Principle 9, and as described

in Figure 7: one private key monitor that implements

code required for user authentication and accessing the

server's private key, and one session key monitor that

contains the privileged code for processing the sensi-

tive state for a user's session. Consider operations 1�5 in

Figure 6, which are essential to protection against SKD

and oracle attacks. In our partitioning, the session mon-

itor implements these �ve operations, while in baseline

OpenSSH, the untrusted compartment implements them.

At �rst glance, one might remark that our partitioning

therefore incorporates more privileged code than base-

line OpenSSH. But that assessment is �awed. Rather, the

sensitive state pertaining to a user's session was incor-

rectly deemed non-sensitive data in baseline OpenSSH.

Hence, we show baseline OpenSSH's untrusted pro-

cess as shaded�notation for privileged�because it is

already (albeit inappropriately) privileged to manipu-

late sensitive per-session data. Following the partitioning

principles we have offered leads to the correct treatment

of this data as sensitive, the creation of a new privileged

compartment that can exclusively manipulate this data

untrusted
process

Vanilla Server

Our Server

private key
monitor

private key data session key data

unprivileged
code

session key
monitor

private key
monitor

Figure 8: Relationship between privileged (shaded) and unprivileged

(unshaded) code in baseline and hardened OpenSSH server implemen-

tations.

(the session monitor), and the reduction of privilege for

all remaining code from baseline OpenSSH's untrusted

process (denoted in the �gure as �unprivileged code�)!

6 Hardened OpenSSL Library

Toward demonstrating the generality of the partitioning

princples presented in Section 4, we have also applied

them to the SSLv3 and TLSv1 cryptographic protocol

implementations in the OpenSSL library. Partitioning in

accordance with these principles requires a fair amount

of programmer effort. We thus found the OpenSSL li-

brary a particularly attractive target because it is used

by a broad range of security-conscious applications, and

thus allows amortizing one protocol implementation's

partitioning effort over many applications. The result-

ing �nely privilege-separated OpenSSL library is a drop-

in replacement that renders any SSL/TLS application

linked against it immune to SKD and oracle attacks. We

note, however, that changing the library alone cannot en-

sure that the application atop the library itself handles

sensitive data securely. For example, the Apache web

server reuses worker processes across requests submitted

by different users. If an attacker exploits a worker pro-

cess, he may be able to obtain sensitive data belonging to

the next user whose request is handled by that process.

We �nely partition both the client and server sides

of OpenSSL. Our implementation supports the RSA,

ephemeral RSA, Dif�e-Hellman, and ephemeral Dif�e-

Hellman key-exchange protocols with both client and

server authentication. The OpenSSL partitioning is in

fact similar in structure to that of SSH, as these proto-

cols protect against similar threat models. When an ap-

plication invokes the SSL accept (on the server side) or

SSL connect (as an SSL client) library call, we fork a

private key monitor, session key monitor, and an unpriv-

ileged SKN compartment. Our implementation scrubs

the server's private key from the session key monitor

process and the unprivileged SKN compartment before

reading any input from the network. Within the SKN

13

stage, we apply the same principles and mechanisms as

we did to OpenSSH to prevent SKD and oracle attacks.

As SSL/TLS supports only public key authentication, its

partitioning omits the pre-authentication stage. When the

SKN stage completes, the unprivileged compartment and

session monitor are terminated, and execution continues

in the application's fully privileged compartment. The

private key monitor preserves the privileges of the appli-

cation before entering the SSL accept and SSL connect

library calls. Therefore, this compartment continues exe-

cution of the application's code and can use the symmet-

ric key computed during the SSL handshake to perform

MAC and encryption/decryption operations on the estab-

lished SSL/TLS session.

To limit the privilege of the untrusted SKN compart-

ment and the session monitor in applications that do not

run as root, we apply SELinux policies. Under our

SELinux policy, the untrusted SKN compartment is al-

lowed to read and write a TCP socket provided by the

application to communicate with the peer and read and

write a UNIX socket to call into the session monitor.

Only the session monitor can read and write a UNIX

socket to call into the private key monitor, which in turn

is con�ned with the application's default policy. Thus,

we signi�cantly limit the harm possible from compro-

mise of an SKN compartment.

Our partitioned implementation of the OpenSSL

library supports session caching, crucial to high-

performance applications such as SSL web servers. Cur-

rently, our implementation fully supports TLSv1 session

resumption via tickets [5]. For SSLv3, our implementa-

tion support an external inter-process session cache in a

�le or over a UNIX socket, but not as shared memory.4

We have tested our �nely privilege-separated

OpenSSL library with a number of client-side and

server-side applications, including the server and client

sides of stunnel, the mutt and mailx mail agents' (for

IMAP and POP3 over SSL/TLS), the dovecot IMAP and

POP3 server, the client and server sides of the sendmail

mail transfer agent (for SMTP over SSL/TLS), and the

Apache HTTPS server (versions 1.3.19 and 2.2.14).

Converting most of these applications was straight-

forward; it merely required replacing the OpenSSL li-

brary and making a one-line change to the application's

SELinux policy, without any application code modi�ca-

tions.

Apache, however, required code modi�cations�not to

protect against SKD and oracle attacks, which are en-

tirely covered by the partitioned OpenSSL library, but to

protect sensitive data after the SSL handshake completes.

As noted above, Apache reuses worker processes to serve

successive users' requests. We modi�ed Apache to fork

a new worker for each connection and kill a worker after

it has served one connection.5 With or without this unre-

 0

 0.04

 0.08

 0.12

 0.16

ss
hd ss
h

m
ai

lx

do
ve

co
t

se
nd

m
ai

l
cl

ie
nt

T
im

e,
 s

ec

vanilla
paritioned

Figure 9: Latency of baseline and hardened OpenSSH 5.2p1

client/server and mailx 12.4, dovecot 1.2.10, and sendmail client 8.14.4

using baseline and hardened OpenSSL 0.8.9k library. Run on Dell

desktop with 1.86 GHz Intel Core 2 6300 CPU and 1 GB RAM running

Linux 2.6.30.

sendmail
server

httpd
no caching

httpd
with caching

httpd
fork-per-connection

no caching

httpd
fork-per-connection

with caching

0 200 400 600 800 1000 1200 1400

Throughput, requests/sec

vanilla
partitioned

Figure 10: Throughput of sendmail server 8.14.4 and Apache web

server (httpd) 2.2.14 using baseline and hardened OpenSSL 0.8.9k li-

brary. Run on Sun X4100 server with 2.2 GHz AMDOpteron 248 CPU

and 2 GB RAM running Linux 2.6.32.

lated application-level change, Apache 1.3.19 runs with

our �nely partitioned OpenSSL library as a drop-in re-

placement for the stock OpenSSL library. Apache 2.2.14

does, too, with the addition of a single trivial method to

its I/O layer.6

7 Evaluation

We now consider the cost of defending against SKD

and oracle attacks in cryptographic protocol implemen-

tations. As the principles given in Section 4 demand ad-

ditional isolation between code and data, and thus addi-

tional processes, performance is a concern: both process

creation and context switches incur overhead. To explore

the extent of these overheads, we compare the perfor-

mance of the baseline OpenSSH and OpenSSL-enabled

applications with that of the implementations hardened

in accordance with the principles we have propounded.

We consider in turn the end-to-end metrics of operation

latency (important to users) and server-side throughput

(important to server operators).

Figure 9 compares operation latencies for a range

of applications. Each application is either client-side or

server-side; in each case, the complementary remote peer

runs the baseline cryptographic protocol implementa-

14

tion. All connections are made over the loopback inter-

face to a locally running server. For OpenSSH, we report

the latency of logging into an SSH server using public

key authentication and running the exit command. The

remaining applications use the OpenSSL library. For the

mailx email client and dovecot IMAP server, we measure

the time required for the client to connect over SSL/TLS,

check for new mail, and exit. For the sendmail client, we

measure the time required to connect and send a one-line

email to a sendmail server over SSL/TLS. For these ap-

plications, the latency a user perceives does not increase

signi�cantly between the baseline and hardened crypto-

graphic protocol implementations.

In Figure 10, we consider the throughput achieved by

an SSL/TLS-enabled sendmail server and HTTPS server,

both based on the OpenSSL library. For the sendmail

server, we submit emails over SSL/TLS from multiple

clients and report the maximum load the server can sus-

tain in requests (emails) per second. For Apache (httpd),

we measure the maximum load an SSL server can handle

in requests per second by stressing the server with mul-

tiple clients requesting a small static page over HTTPS;

clients always establish fresh SSL/TLS sessions in these

measurements.

As noted in Section 6, apart from adding defenses

against SKD and oracle attacks, we further modi�ed the

baseline Apache implementation to fork a new worker

process for each new client connection, to avoid risk-

ing disclosure of one user's sensitive data to another

when worker processes are reused. To distinguish the

cost of additional processes introduced for defending

against SKD and oracle attacks vs. those introduced to

avoid reuse of workers, we measure the throughput of

two Apache implementations: one in which workers are

reused and one in which Apache forks a new worker

for each connection. We further consider Apache's per-

formance in two extremes of operation: when no SSL

sessions are cached and when all sessions are cached. In

this evaluation, we constrain HTTPS clients to use RSA

key exchange when establishing an SSL/TLS session be-

cause this protocol is less computationally intensive on

the server than Ephemeral Dif�e-Helman key exchange,

and thus better exposes the overhead of hardening.

When session caching is disabled, hardening of the

SSL/TLS implementation while reusing worker pro-

cesses reduces server throughput by a factor of two; this

reduction increases to a factor of �ve when all sessions

are cached. The overhead of the SKD and oracle attack

defenses is masked in part by the compuational costs of

the cryptographic operations required to establish a new

SSL/TLS session; when all sessions are cached, though,

these cryptographic operations are absent, laying bare the

overhead of �ner-grained partitioning.

Forking one worker per HTTPS client request incurs

further overhead; throughput drops by nearly a factor of

three between baseline Apache without session caching

and a hardened Apache that forks one worker per client

without session caching. A newly forked worker incurs

many page faults as it modi�es copy-on-write pages from

its parent. In baseline Apache, these page faults occur

only once per worker, for the �rst client ever served; in

this per-client-forking Apache, though, they occur for

every client connection.7

These applications based on the OpenSSL library use

single-process, monolithic designs. Hardening against

SKD and oracle attacks requiers three processes per

SSL/TLS session: a private key monitor, a session moni-

tor, and an unprivileged compartment for the SKN stage.

Similarly, the hardened OpenSSH client uses four pro-

cesses per SSH session vs. the two employed by the base-

line privilege-separated OpenSSH server. Apart from

process creation and page fault costs, anti-SKD and anti-

oracle hardening incurs overhead for marshaling and un-

marshaling arguments and return values between com-

partments connected by pipes.

8 Related Work

Provos et al. demonstrate a generic approach for priv-

ilege separation of applications that aims at prevent-

ing privilege escalation in case an application's unprivi-

leged part is compromised [10]. They reduce privilege in

the OpenSSH server by partitioning it into an untrusted

process and a privileged monitor. Our work tackles the

different goal of preventing disclosure of users' sen-

sitive data in cryptographic protocol implementations.

This goal incorporates solving the problem of privilege

escalation. We extend the partitioning of the privilege-

separated OpenSSH server to comply with this goal.

HiStar [15] and DStar [16] offer an approach for

enforcing privileges on compartments with labels and

DIFC. DStar extends this approach to a distributed en-

vironment without fully trusted machines. Zeldovich et

al. partition an SSL server to mitigate the effect of a com-

promise of any single compartment and prevent disclo-

sure of user data. However, as we have described, it is

possible to disclose users' sensitive data from the SSL

server using recent SKD and oracle attacks. The lack

of partitioning of the SSL protocol allows these attacks.

Our work is complementary to work on DIFC systems,

as they are only privilege enforcement mechanisms, and

we provide guidance on how to structure code in crypto-

graphic protocols.

Wedge [2] offers another privilege enforcement tool,

sthreads, for �ne-grained partitioning of applications on

Linux. An sthread is a thread designed for implement-

ing compartments with restricted memory and �le de-

scriptor permissions. When creating an sthread, a pro-

grammer explicitly speci�es which memory regions and

15

�le descriptors the parent process shares with the child.

The other sthread privileges are restricted through an

SELinux policy. Wedge incorporates crowbar, a devel-

opment tool for identifying the required memory permis-

sions of a compartment when partitioning a monolithic

application.

The work on Wedge was �rst to identify the prob-

lem of partitioning the code for a cryptographic protocol.

While partitioning an SSL-enabled Apache Web server,

Bittau et al. discovered the SKD attack. An ad hoc mech-

anism was implemented to prevent this attack, but Wedge

does not offer a general solution for the SKD and oracle

attacks. Rather, the work mainly focuses on the privilege

enforcement primitives (sthreads) and partitioning tools

(crowbar). By contrast, we offer partitioning principles

that defeat the SKD and oracle attacks, and we believe

these principles are general enough to use with many

cryptographic protocols.

OKWS is a toolkit for building secure Web ser-

vices [6]. They employ the same privilege enforcement

mechanisms as privilege-separated OpenSSH, in partic-

ular the nobody user ID and a chroot system call,

to isolate distrusted Web services from harming the sys-

tem they are running on and each other. Krohn demon-

strates that the performance of such privilege-separated

Web services can be comparable to that of non-privilege-

separated systems.

Our partitioning principles and mitigation techniques

might also �nd applicability in a capability-based sys-

tems such as KeyKOS [3] and EROS [12]. These systems

can restrict privilege of compartments in partitioned ap-

plications; however, they do not de�ne how to partition,

or more importantly how to use capabilities to produce

secure partitioning schemes.

9 Conclusion and Future Work

We have described two practical exploit-based attacks

on cryptographic protocol implementations, the session

key disclosure (SKD) attack and oracle attack, that can

disclose users' sensitive data, even in state-of-the-art,

reduced-privilege applications such as the OpenSSH

server and HiStar-labeled SSL web server. Privilege sep-

aration and DIFC will not secure the user's sensitive

data against these attacks unless an application has been

speci�cally structured to thwart them.

We have offered principles to guide programmers in

partitioning cryptographic protocol implementations to

defend against SKD and oracle attacks. In essence, fol-

lowing these principles reduces the trusted code base of

an application by correctly treating session key mate-

rial and oracle-prone functions as sensitive, and limiting

privilege accordingly.

We have demonstrated that these principles are practi-

cal by newly partitioning an OpenSSH client and extend-

ing the partitioning of a privilege-separated OpenSSH

server. Further experience with the OpenSSL library sug-

gests they may generalize to other cryptographic proto-

cols; they are broadly targeted at protocols that negotiate

session keys and perform common cryptographic oper-

ations. While we hope these principles will serve as a

useful guide where there was none, we note that their

application requires careful programmer effort. Still, our

experience with OpenSSL shows that hardening a library

once brings robustness against these attacks to the several

applications that reuse that library.

The latency cost of defending against SKD and ora-

cle attacks is well within user tolerances for all appli-

cations we measured. Defending against SKD and or-

acle attacks does exact a cost on a busy SSL-enabled

Apache server, reducing the new SSL/TLS session hand-

shake rate by half. We intend in the future to apply Bit-

tau's checkpoint-and-restore optimizations [1] to avoid

the further cost of forking one worker process per client

request in our current unoptimized hardened OpenSSL

implementation.

We discovered the attacks we have presented by man-

ual study of the SSH and SSL/TLS protocols and their

implementations. We intend in future to explore tools

that use static and dynamic analysis to ease discovery

of such vulnerabilities in cryptographic protocol imple-

mentations.

Acknowledgements

This research was supported in part by a Royal Society-

Wolfson Research Merit Award and by gifts from Intel

Corporation and Research in Motion Limited. We thank

Andrea Bittau, our shepherd Mohammad Mannan, and

the anonymous reviewers for comments that improved

the paper. We further thank Andrea Bittau for sharing

code for his checkpoint-and-restore server performance

optimizations.

References

[1] A. Bittau. Toward Least-Privilege Isolation for Soft-

ware. PhD thesis, University College London, UK, 2009.

http://eprints.ucl.ac.uk/18902/1/18902.pdf.

[2] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: split-

ting applications into reduced-privilege compartments. In NSDI,

2008.

[3] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Lan-

dau, and J. S. Shapiro. The KeyKOS nanokernel architecture. In

Proceedings of the Workshop on Micro-kernels and Other Kernel

Architectures, 1992.

[4] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246,

January 1999.

[5] P. E. J. Salowey, H. Zhou and H. Tschofenig. Transport layer

security (tls) session resumption without server-side state. RFC

5077, January 2008.

[6] M. Krohn. Building secure high-performance web services with

okws. In USENIX, 2004.

16

[7] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information �ow control for standard

OS abstractions. In SOSP, 2007.

[8] P. Loscocco and S. Smalley. Integrating �exible support for secu-

rity policies into the linux operating system. In USENIX (Freenix

Track), 2001.

[9] N. Provos. Improving host security with system call policies. In

USENIX Security Symposium, pages 18�18, 2003.

[10] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege

escalation. In USENIX Security, 2003.

[11] J. Saltzer and M. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278�1308,

1975.

[12] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: a fast capability

system. In SOSP, 1999.

[13] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,

D. Ziegler, F. Kaashoek, R. Morris, and D. Mazi�eres. Labels and

event processes in the asbestos operating system. ACM TOCS,

25(4):11, 2007.

[14] T. Ylonen and C. Lonvick. The secure shell (SSH) protocol ar-

chitecture. RFC 4251, January 2006.

[15] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazi�eres.

Making information �ow explicit in HiStar. In OSDI, 2006.

[16] N. Zeldovich, S. Boyd-Wickizer, and D. Mazi�eres. Securing dis-

tributed systems with information �ow control. In NSDI, 2008.

Notes
1While we did not implement these two attacks, we present analysis

of the protocols and implementations demonstrating they are possible.
2While space limits us to illustrating these attacks and defense prin-

ciples in the context of SSH and SSL/TLS, we have found they apply

equally to IPSec, CRAM-MD5, and other secure protocols.
3In case SELinux is not available, it is possible to ptrace a pro-

cess and control its system calls. There are also alternatives to SELinux

such as Systrace [9]. Finally, it is possible to isolate untrusted processes

with root-privileged chroot and setuid system calls.
4SELinux policies allow us to deny the SKN compartment and

session monitor access to a �le-based or UNIX-socket-based external

cache, but we have no mechanism to deny these processes access to a

shared-memory cache, as the application layer provides the cache, and

it is thus not under the control of the OpenSSL library.
5We further scrub the server's private key from the worker's mem-

ory immediately after the trusted monitor uses it during the SSL hand-

shake. Thus, after accepting a user's connection, an untrusted worker

process no longer holds the server's private key.
6This method allows the OpenSSL library to learn the underlying

�le descriptor associated with an active SSL session.
7We note that forking one worker per client request is a naive ap-

proach to inter-user isolation, known to perform poorly. One technique

that offers such isolation at signi�cantly less performance cost is that of

checkpoint-and-restore for workers, as proposed by Bittau [1]. In this

approach, a snapshot of each worker process is taken in pristine state

before handling any user requests, and after each user's request, the

memory image of the worker is restored by a trusted monitor process

to this pristine state. In this work, we have been concerned with SKD

and oracle attack defenses, which are complementary to inter-request

isolation within a worker. Combining Bittau's techniques with our own

would yield a higher-throughput HTTPS server.

17

