
To appear in IEEE ICNP 2003, Atlanta, GA, USA.

RR-TCP: A Reordering-Robust TCP with DSACK

Ming Zhang∗
Princeton University

Brad Karp∗
Intel Research Pittsburgh

Carnegie Mellon University

Sally Floyd
ICSI

Larry Peterson
Princeton University

Abstract

TCP performs poorly on paths that reorder pack-
ets significantly, where it misinterprets out-of-order de-
livery as packet loss. The sender responds with a fast
retransmit though no actual loss has occurred. These re-
peated false fast retransmits keep the sender’s window
small, and severely degrade the throughput it attains. Re-
quiring nearly in-order delivery needlessly restricts and
complicates Internet routing systems and routers. Such ben-
eficial systems as multi-path routing and parallel packet
switches are difficult to deploy in a way that preserves or-
dering. Toward a more reordering-tolerant Internet ar-
chitecture, we present enhancements to TCP that improve
the protocol’s robustness to reordered and delayed pack-
ets. We extend the sender to detect and recover from false
fast retransmits using DSACK information, and to avoid
false fast retransmits proactively, by adaptively vary-
ing dupthresh. Our algorithm is the first that adaptively
balances increasing dupthresh, to avoid false fast retrans-
mits, and limiting the growth of dupthresh, to avoid unnec-
essary timeouts. Finally, we demonstrate that TCP’s RTO
estimator tolerates delayed packets poorly, and present en-
hancements to it that ensure it is sufficiently conserva-
tive, without using timestamps or additional TCP header
bits. Our simulations show that these enhancements signifi-
cantly improve TCP’s performance over paths that reorder
or delay packets.

1. Introduction and motivation

In today’s Internet, deployment of systems that introduce
packet reordering in their normal course of operation, re-
gardless of their other benefits, is strongly ill-advised. This
taboo derives from the poor throughput TCP achieves un-
der reordering, and the predominance of TCP traffic on the
Internet. We seek to end this restriction on the Internet ar-
chitecture by enhancing TCP to improve its robustness on
network paths that reorder packets. In this paper, we de-
scribe a Reordering-Robust TCP (RR-TCP).

∗ Karp and Zhang began this work while at ICSI.
Authors’ email addresses: {mzhang,llp}@cs.princeton.edu,

bkarp@cs.cmu.edu, floyd@icir.org

To the extent that reordering occurs today, it is gener-
ally perceived as a transient malfunction, or as an indication
that a technology is maladapted for use with TCP. Many au-
thors have reported on the causes of reordering in today’s
Internet. Route oscillation for a destination among routes
with different round-trip times (RTTs) may cause reorder-
ing [16]. Routers have been observed to cease forwarding
while processing a routing update, and intersperse the de-
layed packets with new arrivals, causing reordering [17].
Bennett et al. [4] show that MAE-East reordered packets
frequently when it striped packets across multiple links be-
tween neighboring switches. Satellite links have very long
RTTs, typically on the order of several hundred millisec-
onds. To keep the pipe full, link-layer retransmission pro-
tocols for such links must continue sending subsequent
packets while awaiting an ACK or NAK for a previously
sent packet. Here, a link-layer retransmission is reordered
by however many packets were sent between the original
transmission of that packet and the return of the ACK or
NAK [18].

We wish to make clear that the primary motivation for
our work is to enable future deployment of novel, benefi-
cial systems that today cannot be deployed because they in-
troduce frequent and/or severe reordering. The algorithms
we propose also improve TCP’s performance when reorder-
ing occurs on the present-day Internet. To argue for the ap-
plicability of our algorithms in both these cases, we simu-
late them across a comprehensive range of reordering fre-
quencies and severities. Two examples of important future
systems that motivate our work are:
Multi-Path Routing: Routing a TCP flow’s packets over
multiple routes with distinct bottlenecks will increase the
total end-to-end bandwidth available to the flow. Overlay
networks are poised to offer this functionality. But the re-
sulting divergent routes can easily have RTTs that differ
sufficiently to cause significant packet reordering. While a
multi-path routing scheme could still offer benefit by al-
ways routing a single flow’s packets on one route, this ap-
proach doesn’t let one flow use the total available capac-
ity on all routes, and requires the router dividing packets
among routes to use flow identifier information in making
per-packet forwarding decisions.
Parallelism in Packet Forwarding: A promising tech-
nique for building inexpensive high-speed routers is to use

1

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

parallel forwarding and/or switching hardware. Successive
packets that arrive at a router, even on the same link, may
be forwarded and/or switched simultaneously by indepen-
dent hardware. This simple parallel approach ignores or-
dering between packets processed simultaneously, and in-
troduces reordering when packets require different process-
ing delays. Enforcing in-order delivery in such architectures
significantly increases their complexity [6], and in the case
of switching, eliminates much of the cost savings of the par-
allel hardware approach.

TCP’s inability to distinguish reordering from packet
loss causes the protocol to perform poorly on paths that de-
liver packets out of order. Losses, falsely detected or gen-
uine, cause TCP to send more slowly. Yet mistaking re-
ordering for loss is not fundamental to window-based con-
gestion control. Rather, it is an artifact of TCP’s fast retrans-
mit mechanism, which arbitrarily concludes that a packet
must have been lost if it is still missing at the receiver after
three packets sent later have arrived at the receiver. On a net-
work path that reorders packets more than minimally, this
choice of three is too aggressive in concluding loss; waiting
longer before concluding loss might reveal that the packet
wasn’t lost at all, but only delayed en route.

Clearly, there is a tension between timely detection of
loss and being forgiving in case packets arrive out-of-order.
We demonstrate in this work that a properly extended TCP
sender can achieve significantly improved robustness to re-
ordering, without sending significantly more aggressively in
the face of genuine congestion.

We present a control loop for dynamically adapting the
trigger for TCP’s fast retransmit, based on measurements
the sender takes of the reordering behavior of the network,
as provided by ACKs, selective ACKs (SACKs) [13] and
duplicate SACKS (DSACKs) [8]. The control loop also uses
fast retransmit events and timeout events as feedback, and
aims to maximize the throughput achieved by a connec-
tion. A key difference between our control loop and the
prior work in this area is that we use information concern-
ing timeouts to avoid making TCP too tolerant of reorder-
ing; we show in Sections 4 and 5 that excessive reorder-
ing tolerance leads to timeouts and reduced throughput. The
control loop presented in this paper uses more state at the
sender than do previous approaches; we seek to demonstrate
that this additional state confers greater performance bene-
fits than prior, lower-cost approaches. Finally, we propose a
simple change to TCP’s RTO estimator that renders it suffi-
ciently conservative on paths that significantly delay pack-
ets, without requiring TCP header information beyond that
provided by standard DSACK TCP. The end result, RR-
TCP, offers significantly enhanced throughput on reorder-
ing paths, as demonstrated in simulations. Its deployment
could substantially loosen the in-order delivery restriction
on the Internet architecture.

We proceed in the remainder of this paper as follows:
Section 2 describes the phenomenon of false fast retrans-
mit, responsible for TCP’s poor performance on reorder-

ing paths, and reports on other dynamics of fast retransmit
that affect performance on reordering paths. Section 3 cat-
alogs related work in TCP and reordering. In Section 4, we
present the algorithms used in RR-TCP’s reordering adap-
tation control loop. A detailed performance evaluation of
RR-TCP in simulation can be found in Section 5. To con-
clude, we suggest future avenues of research in Section 6,
and summarize our findings in Section 6.

2. Fast retransmit and reordering

The fast retransmit and fast recovery mechanism [2] al-
lows the TCP sender to detect loss without experiencing a
retransmit timeout, by retransmitting a packet after receiv-
ing three duplicate acknowledgements (duplicate ACKs).
This value of three for the dupthresh parameter is fixed in
the fast retransmit specification, which states, “Since TCP
does not know whether a duplicate ACK is caused by a
lost segment or just a reordering of segments, it waits for
a small number of duplicate ACKs to be received.” [2]
Clearly, this choice assumes that the network hardly ever
perturbs a packet’s position in the stream sent by the sender
by more than three packets’ distance; otherwise, fast re-
transmit would incorrectly conclude that loss has occurred,
and halve the congestion window needlessly.

We view reordering as a process that causes a packet or
packets to be delayed, such that they arrive later than pack-
ets sent later by the sender. In the eyes of TCP, delaying
a packet and “accelerating” a packet are equivalent; both
cause a packet with a higher sequence number to arrive be-
fore a packet with a lower sequence number. Throughout
this work, we use the convention of referring to reordering
as being caused by the delay of packets.

This section describes the interactions between fast re-
transmit and reordering, and how they affect TCP’s perfor-
mance. We restrict our attention herein to the effects of re-
ordering on the TCP sender’s retransmission behavior and
window size. The sender enhancements we will propose are
robust both to reordered data packets and reordered ACKs.1

2.1. False fast retransmit

The false fast retransmit phenomenon [9] limits TCP’s
throughput when the network reorders a connection’s pack-
ets. When a packet in the sender’s window is delayed by
many packet times, and subsequent packets are not delayed,
the delayed packet arrives after the subsequent ones. A clus-
ter of duplicate ACKs will arrive at the sender, triggering
fast retransmit of the delayed packet, and causing the win-
dow size to be halved, though no loss has occurred. As re-
orderings recur, this process will repeat, and beat down the
sender’s window, resulting in a severe throughput reduction

1Reordered ACKs have been shown to have other effects outside the
scope of this paper, e.g., increasing the burstiness of the sender.

2

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

unwarranted by the network’s congestion status. On net-
work paths that reorder, a value of dupthresh greater than
the distance in packets a segment is displaced in the packet
stream will prevent false fast retransmits.

The duplicate-SACK (DSACK) extension [8] to SACK
TCP [13] is a useful tool for making the TCP sender more
robust to reordering. DSACK reports to the sender when du-
plicate packets (for the same sequence number) arrive at the
receiver, but does not specify the sender’s actions. Should
the sender incorrectly conclude that a packet was dropped
rather than reordered, and retransmit that packet, it will later
learn so from a DSACK, once both the original packet and
the spurious retransmission of it arrive at the receiver. If the
receiver doesn’t implement DSACK, the sender won’t be
able to detect false fast retransmits and behaves identically
with standard SACK.

In the case of false fast retransmit, upon receiving a
DSACK for the retransmitted packet, the sender can undo
the window reduction made at retransmission time. Prior
work on TCP’s response under reordering, described in Sec-
tion 3, investigates this recovery strategy; our work addi-
tionally avoids false fast retransmits.

2.2. Risks of increasing dupthresh

Unfortunately, increasing dupthresh is not without cost.
While progressively greater dupthresh values prevent the
TCP sender from wrongly concluding that progressively
longer reorderings are losses, these greater dupthresh val-
ues make the TCP sender respond more slowly after real
packet drops. Should dupthresh grow large, risks include:

• generation of one-second-minimum timeouts, because
insufficient duplicate ACKs return to trigger fast re-
transmit after a loss.

• significantly increased end-to-end delay for dropped
packets—even if enough duplicate ACKs return, the
fast retransmit will be delayed until they all arrive; in-
teractive transfers or video over TCP, as done by the
popular RealVideo application, are intolerant of spikes
in end-to-end packet delay;

• delayed response of TCP to congestion, also because
fast retransmit is delayed and limited transmit (de-
scribed in the next section) may send multiple conges-
tion windows (cwnd) of additional packets as duplicate
ACKs arrive.

There is a clear tradeoff between avoiding false fast re-
transmits and the above-enumerated risks. A scheme for
adapting dupthresh must balance these opposing goals. In-
creasing dupthresh alone is insufficiently adaptive; an algo-
rithm for reducing dupthresh is also needed.

2.3. Limited transmit and dupthresh

One further detail of fast retransmit bears mention: the
limited transmit extension, currently a Proposed Standard

in the IETF [1], under which the sender is permitted to send
one new data packet for each of the first two duplicate ACKs
that arrive. This behavior helps the sender accumulate three
duplicate ACKs after a loss, so that it can use fast retrans-
mit even when its window is small. While limited transmit
sends two packets beyond the sender’s current congestion
window, it follows the ACK clock, and so does not signifi-
cantly deviate from TCP’s congestion control model.

The proposers of limited transmit specifically avoid con-
sidering a dupthresh of any value other than three. If we are
to consider greater dupthresh values, the degree to which
the sender sends beyond its current congestion window
will increase. Together with the work we present on vary-
ing dupthresh, we also extend limited transmit to permit
sending up to one additional congestion window’s worth of
packets. Note that this limit only matters when dupthresh
is greater than the current congestion window size; other-
wise, it is dupthresh itself that limits the number of pack-
ets sent with limited transmit. There are reasons for atten-
tion to the number of packets limited transmit allows be-
yond the current congestion window. They include:

• Flows that do not use limited transmit will send fewer
packets after a loss than flows that do.

• The extra transmissions of limited transmit may cause
retransmissions by competing flows to be dropped.

• In cases where there is very little statistical multiplex-
ing at the bottleneck, a flow using limited transmit may
be substantially responsible for the congestion at the
bottleneck, and may send packets under limited trans-
mit that will only congest the bottleneck further.

• Limited transmit can delay fast retransmit’s reduc-
tion of the congestion window—after a single loss, if
dupthresh is very great, sending k congestion windows
of packets with limited transmit delays window reduc-
tion by k RTTs.

These statements all relate to the aggressiveness of a
TCP that uses limited transmit, vs. that of a TCP that does
not. No matter how many packets limited transmit sends,
it is always self-clocking. Bansal et al. [3] show that un-
der appreciable statistical multiplexing, self-clocking con-
gestion control protocols do not cause high packet drop
rates at a bottleneck for protracted periods. Their result ap-
plies to protocols that respond slowly to congestion, such as
TFRC [7], which requires four to eight RTTs to cut its send-
ing rate by half, even under persistent congestion. Thus,
our permitting limited transmit to send up to one ACK-
clocked additional congestion window’s worth of data when
dupthresh is great does not make TCP significantly more
aggressive; it merely slides TCP in the direction of being a
more slowly responding congestion control protocol.

Finally, note that the number of packet transmissions
permitted by limited transmit determines the maximum re-
ordering length for which an increased dupthresh is use-
ful in improving TCP’s throughput. If dupthresh becomes

3

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

greater than the total number of packets that limited trans-
mit is willing to send, the sender will be unable to keep the
pipe full during reorderings longer than the bound on lim-
ited transmit. Thus, there is a tradeoff between the maxi-
mum reordering length for which TCP will be robust, and
restricting the delay of TCP’s response to loss by limiting
the bound on limited transmit.

3. Related work

This section describes prior work in improving TCP’s
performance on networks that delay or reorder packets, and
differentiates our work from this earlier research.

Ludwig and Katz [12] study both spurious timeouts and
spurious fast retransmits. The work does not consider adap-
tation of dupthresh to avoid spurious retransmissions; it
only backs out window reductions that are found to have
been made in response to packet delays or reorderings.
They do not use DSACK to notify the sender of dupli-
cates. Rather, they propose two alternatives. The first is to
use TCP timestamps on every packet [10], such that the dif-
ferent timestamps on the original and retransmission return
in ACKs, and reveal to the sender that the ACKs are for
distinct transmissions of the same packet. The second is
to use a reserved bit in the TCP header, dubbed the RTX
bit [12], to mark every packet as either an original or a re-
transmission. An ACK reflects the RTX bit value of the data
packet it acknowledges. Timestamps add twelve bytes to
each packet’s length, and render present-day header com-
pression schemes ineffective; requiring their use is therefore
strongly undesirable. The RTX bit uses one of only three re-
maining unused bits in the TCP header; primarily for this
reason, it has been withdrawn from the IETF standards pro-
cess. We examine the performance difference between the
RTX bit and DSACK in Section 5.1.1.

Blanton and Allman [5] use DSACK information to re-
store the sender’s congestion window size after detecting
false fast retransmits, and to increase dupthresh with the
aim of avoiding future false fast retransmits. Their schemes
all hold less state at the sender than the ones we propose,
but they do not address the negative effects of too great a
dupthresh. They present no strategy for reducing dupthresh
other than resetting it to three packets upon a timeout.
In their work, they consider six strategies for increasing
dupthresh; later in the paper, we refer to them with short
textual tags of the form DSACK-BL-x, where x is a differ-
ent string for each of their six variants.

4. Algorithms

This section describes algorithms for enhancing TCP’s
robustness to reordering. We begin with a simple scheme
that the sender uses to sample the reordering length dis-
tribution experienced by the data packets sent on a con-
nection. Next, we show how to use this distribution to in-
crease dupthresh in such a way as to avoid false fast retrans-

mits. While increasing dupthresh on lossless paths yields
improved throughput, this simplistic strategy is problematic
on lossy paths, where a dropped packet that could have trig-
gered a fast retransmit with the default dupthresh of 3 may
instead cause a timeout.

Motivated by this difficulty, we present a strategy for re-
ducing dupthresh adaptively in response to timeouts. The
combined increase/decrease scheme for dupthresh balances
the tradeoff between false fast retransmits and timeouts us-
ing a cost function that quantifies the reduction in through-
put associated with a false fast retransmit, vs. the reduc-
tion in throughput associated with a timeout. The result is a
heuristic for adapting dupthresh in response to false fast re-
transmit and timeout events.

We complement the dupthresh adaptation algorithm with
an improvement to TCP’s RTO estimator that eliminates
a sampling bias that causes RTOs to be too aggressive on
paths that delay packets. Today’s SACK TCP avoids sam-
pling RTTs for all retransmitted packets, in accordance with
Karn’s Algorithm [11], because the sender cannot know
whether an ACK matches a data packet’s original trans-
mission or its retransmission. Because delayed (reordered)
packets are likely to trigger retransmissions, they are less
likely to be included in TCP’s RTO estimator, and produce
RTO estimates that are too short. We enhance the RTO es-
timator to include RTT samples for falsely retransmitted
packets, without requiring the use of timestamps or any
other extension to the TCP header. We must omit the de-
tails of the enhanced RTO estimator and its evaluation in
simulation in this paper in the interest of brevity; the inter-
ested reader is referred to [19].

4.1. Reordering-related state: the scoreboard

The SACK TCP scoreboard data structure [14] stores
per-packet state at the sender concerning recently transmit-
ted packets. It offers a natural framework for storing per-
packet reordering-related information: whether a fast re-
transmit is false, the duration of false fast retransmit, and
the reordering length a packet experiences. We record each
fast retransmit’s starting time and window reduction amount
in the retransmitted packets’ scoreboard entry. If the fast re-
transmit is later identified as false, we record the interval
between the start and end of the false fast retransmit, dur-
ing which the window was unnecessarily halved.

Measurement of reordering length is more nuanced.
There are two phases to sampling the distribution of re-
ordering lengths experienced by packets: measuring the re-
ordering length for each packet, and aggregating these
samples into a histogram of reordering lengths recently ob-
served on the connection’s path.

It is important to note that the extensions we describe to
the scoreboard here do not change the asymptotic storage or
computation requirements of scoreboard maintainance. The
techniques we describe are not significantly greater in cost
from SACK TCP, which is already widely deployed [15].

4

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

We must elide a detailed discussion because of space con-
straints, and refer the interested reader to [19].

4.1.1. One packet’s reordering length For the sender to
avoid a false fast retransmit after a packet is reordered,
its dupthresh must be greater than the number of dupli-
cate ACKs the reordering generates. When packet i is de-
layed, one duplicate ACK will arrive at the sender for each
packet i+1 . . . i+k that arrives at the receiver before packet
i. Thus, delaying packet i can generate k duplicate ACKs:
the difference between the highest packet number ACKed
or SACKed so far and the number of the delayed packet.2 3

Intuitively, when a packet is delayed and arrives out-of-
order, there is a “hole” in the sender’s scoreboard for that
packet; the sender receives SACKs for packets sent later
than the delayed packet before receiving the ACK or SACK
for the delayed packet. For the moment, let us assume that
ACKs are not dropped or reordered, and that delayed ac-
knowledgement is not used. Here, the arrival of one packet
at the receiver triggers one cumulative or selective ACK,
that communicates the receipt of that one packet. In this
case, a returning ACK or SACK block for a delayed packet
must always close exactly a one-packet hole in the score-
board. This hole must lie between the previously acknowl-
edged packet with the greatest contiguous packet number
and the greatest packet number in the newly arriving ACK
or SACK. Thus, where i is the greatest packet number in
the newly arriving ACK or SACK, a sender measures the
reordering length r by scanning the scoreboard as follows:

c = greatest contiguously ACKed packet number
m = greatest ACK or SACK number received so far
n = 0
foreach packet k such that c < k ≤ i

if current ACK newly ACKs or SACKs k
then

h = k // found a hole
n = n+1

endif
end
if n == 1 then

r = m−h
endif

When ACKs are dropped or reordered, a single return-
ing ACK can close more than one hole in the scoreboard.
The test for n == 1 ignores samples where a returning
ACK closes more than one hole, such that erroneous sam-
ples are not caused by dropped or reordered ACKs. This test
makes the reordering length measurement mechanism ro-
bust against reordered or dropped ACKs; in Section 5.3, we

2We use packet numbers here for clarity of exposition; the correspon-
dence between packet and sequence numbers is abstracted away by the
scoreboard.

3It’s possible to use the number of duplicate ACKs to measure reorder-
ing length. But the number of duplicate ACKs is affected strongly by de-
layed, dropped or reordered ACKs. The method described below is not, and
also allows us to measure multiple reordering events within a single win-
dow of packets.

SACKs at Sender: S2 S3 S4 S5 C5
Packet Stream at Receiver: 2 3 4 5 1

1 2 3 4 5
ACKed?

sequence number

length 4

Figure 1. Reordering measurement using the
scoreboard.

demonstrate in simulation that reordered ACKs do not af-
fect our TCP sender’s throughput.

Figure 1 shows a simple example of the reordering length
measurement mechanism. Here, packet 1 is reordered to ar-
rive after packets 2 . . .5, for which SACKs return to the
sender. The scoreboard is shown at the moment the cumu-
lative ACK for packet 5 returns. The sender finds the hole
at packet 1, and concludes a reordering length of 4.

When a packet is retransmitted, there is an ambiguity as
to whether its ACK corresponds to the original transmission
or the retransmission. When no DSACK for the retransmis-
sion returns, the sender discards the reordering length sam-
ple for the retransmitted packet, because that packet was
lost, not reordered. When a DSACK does return, the sender
pairs the original transmission with the first ACK to return,
and the retransmission with the second, computes the re-
ordering length for each, and takes their mean as a conser-
vative approximation to the reordering length encountered
by both packets. Note that this mean has the same value, re-
gardless of which of the two possible pairings of ACKs with
data packets is used.

TCP receivers are not intended to use delayed ACKs
when they receive out-of-order packets [2], to promote the
accumulation of duplicate ACKs at the sender. A look at the
FreeBSD 4.3 TCP code reveals that a receiver only uses de-
layed ACK when both the newly arrived segment is contigu-
ous with previously acknowledged data, and the reassembly
queue (containing packets with sequence numbers greater
than those contiguously acknowledged) is empty. We con-
clude that delayed ACKs are extremely unlikely during a re-
ordering epoch, between receipt of the first non-contiguous
packet at the receiver, and the emptying of the reassembly
queue.

4.1.2. Aggregating into the reordering histogram Sam-
ples of reordering lengths from each transmitted packet are
stored in a reordering histogram as ACKs return to the
sender. The bins in the histogram are reordering lengths;
they count the number of packets that have experienced
each reordering length between one and a configurable
maximum. The histogram tracks the reordering history for a
configurable period of time. Each reordering event stored in
the histogram holds a timestamp. Periodically, events older
than the history period are deleted from the histogram. The
histogram provides details of the reordering distribution to
our dupthresh adjustment algorithms. Blanton and Allman
explore alternatives that accumulate less state [5]; our goal
is to demonstrate the best-case performance improvement

5

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

that can be attained by using the most accurate and detailed
reordering information. We stress that a histogram makes
no assumption about the distribution of reordering lengths;
for any persistent reordering process, it will provide per-
centiles of reordering lengths.

Note that for each retransmission of a packet, the sender
must wait for the return of both an ACK and a DSACK,
as described previously, before being able to determine the
packet’s reordering length. If no DSACK returns, we as-
sume the original or retransmitted packet was dropped.

4.2. Avoiding false fast retransmits: increas-
ing dupthresh

The reordering histogram summarizes the distribution of
reorderings experienced by a connection’s packets. A sim-
ple strategy for avoiding false fast retransmits is to choose
the desired percentage of reorderings for which false fast re-
transmits are to be avoided, and to set dupthresh such that
it equals that percentile value in the reordering length cu-
mulative distribution. That is, if 90% of reordering events
are of 8 packets or fewer, a dupthresh of 9 will avoid 90%
of false fast retransmits. Even with a fixed percentile choice,
dupthresh may vary over time, as the reordering histogram’s
contents change in accordance with the reordering behavior
of the connection’s path.

We refer to this algorithm as DSACK-FA, for False Fast
Retransmit Avoidance, and the percentage of reorderings
the algorithm avoids as the FA ratio.

4.3. Avoiding timeouts: adapting the FA ratio

As described in Section 2.2, increasing dupthresh is
not without cost. Potential negative effects of a too-large
dupthresh include timeouts, long end-to-end delays for
packets retransmitted after drops, and a delayed response of
TCP to congestion. To avoid these ills, an algorithm for re-
ducing dupthresh is also needed.

Rather than directly varying dupthresh, we instead pro-
pose varying the FA ratio. Increasing the FA ratio will in-
crease dupthresh, while decreasing the FA ratio will de-
crease dupthresh. A natural approach to building a control
loop that governs adaptation of the FA ratio is to consider
the relative costs of false fast retransmits and timeouts, and
to set the FA ratio accordingly.

Cost Function: Timeouts Both false fast retransmits and
timeouts have opportunity costs in needlessly missed packet
transmissions. A false fast retransmit causes a window re-
duction by half, and this smaller window prevails until
DSACKs return, and permit reinstatement of the previous
window value. In contrast, timeouts have two main costs:
the idle period after the full window of packets has been
sent, but before the timer expires; and slow start, during
which the congestion window size must grow from one, and
will be smaller than half the previous congestion window

size for multiple RTTs. We distinguish between two types
of timeouts:

• False timeouts, for which a DSACK eventually re-
turns, occur when delay, not loss, causes an timeout.

• True timeouts, for which no DSACK returns, occur
when loss causes an timeout.

Suppose that a TCP connection has a steady state win-
dow size W , a smoothed RTT of R, and a retransmission
timeout period of T . TCP will send a maximum of k×cwnd
additional packets while duplicate ACKs return under lim-
ited transmit [1], which permits TCP to send new data in
response to returning duplicate ACKs to ease triggering of
fast retransmit.

A true timeout consists of three phases: an idle period,
slow start, and linear increase beyond the halved window.
Fast retransmits reduce throughput less than timeouts; they
consist only of halving the window and linear increase.
Thus, the additional cost of suffering a true timeout rather
than a fast retransmit is only the idle period and slow start.

During the idle period, the sender misses the opportunity
to transmit W T

R −W (1+k) packets. During slow start up to
W/2, the sender misses the opportunity to send (W − 1)+
(W −2)+ . . .+(W −W/2+1)+(W −W/2) packets, or:

log2 W−1

∑
i=0

[W −2i] = W (log2 W −1)+1

packets. Thus, the total cost of a true timeout is:

C(true timeout) = W (
T
R

+ log2 W − k−2)+1

packets. After a false timeout, when a DSACK returns, the
pre-timeout congestion window is restored. Thus, there is
no period of opportunity cost during linear increase of the
congestion window, and the cost of a false timeout with
window restoration under DSACK is roughly equal to that
of a true timeout.4

Cost Function: False Fast Retransmits The transmission
opportunity cost after a false fast retransmit depends on
the interval required for the sender to receive the DSACK
that identifies the fast retransmit as false. Recall from Sec-
tion 4.1 that the scoreboard measures, for each false fast re-
transmit, the duration of the wrongly reduced window (be-
tween the window reduction and the return of the DSACK,
if any). We maintain an exponentially weighted moving av-
erage of this false fast retransmit duration, D. When D = R,
the cost of a false fast retransmit is merely W/2; the win-
dow was halved unnecessarily for only one RTT. When
D > R, however, the cost is greater, as the reduced win-
dow is in effect for a longer period. Note that each sub-
sequent RTT costs less, as linear increase of the congestion

4The costs are only approximately equal; the DSACK information may
be delayed in returning, in which case linear increase may begin before the
old window can be restored.

6

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

window progresses, until after W/2 RTTs, when the origi-
nal window value has been restored. Thus, for k = dD/Re,
the cost of a false fast retransmit is bounded above by
(W − W

2)+(W − W
2 −1)+ . . .+(W − W

2 − (k−1)), or:

C(false fast retransmit) ≤
k−1

∑
i=0

[
W
2
− i] =

k(W − k +1)

2

packets. Note that we limit k to W/2 regardless of D, to cap
the cost appropriately.

Because D and R are estimated as exponentially
weighted moving averages, their values are not instanta-
neously accurate. The actual cost of a false fast retrans-
mit lies between the cost for khigh = dD/Re and the
cost for klow = bD/Rc. Rather than using a discrete sin-
gle value of k, such that a small change in D or R can pro-
voke a disproportionate change in C(false fast retransmit),
we linearly interpolate between klow and khigh.

Cost Function: Limited Transmit The bound on limited
transmit also introduces an opportunity cost in idle time
when the FA ratio (and thus dupthresh) are great. In this
situation, it may happen that limited transmit is insufficient
to accumulate the number of duplicate ACKs to trigger a
fast retransmit, and an idle period results. This is not to say
that limited transmit is problematic. On the contrary, when
dupthresh is so large, the idle time provides downward pres-
sure on the FA ratio without incurring the more severe cost
associated with a timeout.

More specifically, when a large dupthresh is in effect and
the RTT is small in relation to the minimum RTO, the sender
may remain idle after it exhausts limited transmit. Yet no
timeout may occur, as the delayed packet can easily be ac-
knowledged before the timer expires. The idle period indi-
cates dupthresh has grown too large.

When the sender exhausts limited transmit, we store the
time this event occurs. If an ACK returns that permits the
window to advance once again, and no timeout has oc-
curred, the idle period I is the difference between the time
the ACK returns and the stored time limited transmit was
exhausted. During this period, we count the number of fur-
ther duplicate ACKs that return, d. These duplicate ACKs
partially filled the pipe at the time the idle period began, and
are not part of the opportunity cost during the idle period.
The cost of this idle period is thus C(limited transmit) =
I
RW −d.

Here W is the steady state window size, and R is the
smoothed RTT. By reducing the FA ratio based on the
cost of this idle period, we risk increasing the number of
false fast retransmits experienced. Thus, we only decrease
the FA ratio after a limited-transmit-induced idle period if
C(limited transmit) > C(false fast retransmit).

Adapting the FA Ratio: Combined Cost Function Having
defined the cost functions associated with timeouts, false
fast retransmits, and limited transmit, we now explain how

Algorithm Name Description
SACK Standard SACK

DSACK-R DSACK + FFR recovery
DSACK-FA DSACK-R + fixed FA ratio
DSACK-TA DSACK-FA + timeout avoidance

Table 1. Algorithms compared in simulation.

they are used together to vary the FA ratio. Let the parame-
ter S be the fundamental step by which we adapt the FA ra-
tio. In the results presented herein, we use an S of 0.01, cho-
sen to permit fine adjustment of the FA ratio by the control
loop. Rules for adapting the FA ratio are:
Upon every false fast retransmit, increase the FA ratio by S.
Upon every timeout, decrease the FA ratio by

C(timeout)
C(false fast retransmit)

S

Upon every limited-transmit-induced idle period, provided
C(limited transmit) > C(false fast retransmit), decrease the
FA ratio by

C(limited transmit)
C(false fast retransmit)

S

These rules heuristically adapt the FA ratio (and thus
dupthresh) in a way that maximizes throughput for a con-
nection experiencing reordering. False fast retransmits
cause a gradual increase in the FA ratio. Timeouts and sig-
nificant idle periods triggered by great dupthresh values
cause the FA ratio to decrease in proportion to the rela-
tive throughput reductions they create, as compared with
the throughput reduction associated with a false fast re-
transmit. dupthresh is set to the FA ratio’s percentile value
in the reordering length cumulative distribution. We re-
fer to the algorithm that uses these cost functions and
rules to adapt the FA ratio as DSACK-TA, for Timeout
Avoidance.

These collected enhancements to the sender result in a
TCP that achieves significantly greater throughput than a
standard SACK TCP, but it is important to note that this dis-
parity does not directly imply any fairness difficulties be-
tween a sender using these DSACK enhancements and a
sender using standard SACK TCP. It is the reordering that
causes standard SACK TCP to perform poorly. A DSACK-
enhanced sender doesn’t cause reordering, and so is not re-
sponsible for the poor throughput SACK achieves under re-
ordering. In cases where a DSACK-enhanced TCP com-
petes with a SACK TCP on a reordering path, replacing the
DSACK TCP with a SACK TCP should not materially im-
prove the performance of the other SACK TCP.

5. Experimental evaluation

This section presents simulation results to demonstrate
the improvement DSACK-based algorithms make to TCP’s
performance over paths that reorder or delay packets. We
compare the performance of several variants of DSACK,

7

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

Parameter Value
Initial FA ratio 90%ile sampled

RTT Histogram ratio 99.8%ile sampled
Minimum dupthresh 3 pkts
Maximum dupthresh 64 pkts

Maximum sending window (maxwnd) 50 pkts
Limited transmit bound 1× cwnd

Reordering length sample lifetime 80 s
α in EWMA of FFR duration 1

8

Table 2. Simulation parameters. FFR denotes
false fast retransmit.

both those proposed in Section 4 and those proposed by
others. Table 1 summarizes the algorithms in simulation.
We simulate these algorithms in the ns-2 network simu-
lator [14], version 2.1b8. To introduce reordering, we ex-
tended ns-2 to delay a configurable percentage of packets
that traverse a link. Independently of the delay, we also con-
trol the drop rate associated with a link.

S1 S2R1 R21ms 1ms?ms
 10Mb/s 10Mb/s ?Mb/s

Figure 2. Simulated network topology.

We simulate a wide variety of delay (reordering) dis-
tributions to demonstrate the value of our algorithms. Be-
cause of space limitations, nearly all the results we present
in this paper are for normally distributed reordering lengths.
In practice, our algorithms work similarly well for the other
distributions we simulate. In fact, its effectiveness does not
rely on any assumption about the delay distributions, as ex-
plained in Section 4.1.2; we refer the interested reader to
[19] for detailed measurements.

Our simulations consist of a single, long-lived TCP flow
traversing the network shown in Figure 2. The flow lasts
1000 seconds. All data points in simulation results plots
are means of five runs with different pseudorandom num-
ber generator seeds for the packet reordering process, ex-
cept where otherwise noted. Reordering events and packet
drops are introduced at bottleneck link (R1,R2), whose link
speed and propagation delay we vary. In all simulations, the
maximum window size M permitted by the sender is fixed
at 50 packets. To achieve precise control of the loss behav-
ior of the bottleneck, where the bottleneck link has RTT R,
we set the capacity S (in packets per second) of link (R1,R2)
such that S = M/R. Thus, when we don’t introduce a con-
trolled packet delay or dropping process at the link, a TCP
flow achieves throughput S, and the steady state window
size will be exactly M = 50. Were M greater, the bottleneck
link would periodically cause packet drops as TCP’s con-
gestion window varied in saw-tooth fashion bracketing 50
packets. We show other simulation parameters in Table 2.

5.1. False fast retransmit avoidance

We first show how use of DSACK at the sender im-
proves TCP’s performance by detecting, recovering from,
and avoiding false fast retransmits. Here, the delay of link
(R1, R2) is 50 ms. Packet delays are normally distributed,
with a mean of 25 ms and standard deviation of 8 ms, such
that most packets selected for delay are delayed between 0
ms and 50 ms. Note that these parameters represent typi-
cal Internet link delays, and relatively mild reordering.

0

100000

200000

300000

400000

500000

0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (p

kt
s)

Packet Delay Rate %

SACK
DSACK-R

DSACK-FA-MEAN
DSACK-FA-RTX

DSACK-TA-MEAN
DSACK-TA-RTX

SACK-NODELAY

Figure 3. Throughput vs. fraction of delayed
packets.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Fa
ls

e
Fa

st
 R

et
ra

ns
m

it
R

at
io

 %

Packet Delay Rate %

DSACK-R
DSACK-FA-MEAN

DSACK-FA-RTX
DSACK-TA-MEAN

DSACK-TA-RTX

Figure 4. False fast retransmit ratio vs. frac-
tion of delayed packets.

5.1.1. Varying packet delay rate First, we vary the per-
centage of delayed packets from 1% to 30%, without intro-
ducing packet drops. As shown in Figure 35, as more pack-
ets are delayed, the throughput of SACK drops rapidly, but
that of DSACK-FA and -TA is better. DSACK-TA performs
best, as its throughput decreases much more slowly than that
of the other schemes.

DSACK-FA and -TA avoid false fast retransmits by vary-
ing dupthresh. Figure 4 reveals that the fraction of packets
resent with fast retransmit for which retransmission is false
under DSACK-FA is less than 10%. DSACK-TA prevents
still more false fast retransmits. We do not show SACK’s
fraction of false fast retransmits here because the SACK im-
plementation does not detect these events.

5Note that SACK-NODELAY is a single point plotted at x = 0, and that
DSACK-TA-MEAN and DSACK-TA-RTX are plotted atop one another.

8

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

In cases with virtually no timeouts, such as in this simu-
lation, DSACK-TA adjusts the FA ratio to 99% so that most
false fast retransmits are avoided. SACK-NODELAY shows
the ideal throughput TCP achieves when there is no packet
delay. DSACK-TA can maintain over 71% of the through-
put possible without packet delays, even when 30% of pack-
ets are delayed.

The -RTX and -MEAN variants of the TA and FA al-
gorithms show a comparison of two different strategies for
resolving the ambiguity in matching ACKs with retrans-
mitted packets. The -RTX variant uses the RTX bit [12]
to mark retransmitted packets and their ACKs differently.
The -MEAN variant uses the technique described in Sec-
tion 4.1.1, where no RTX bit is used. In all subsequent
simulations, plots with no -MEAN or -RTX suffix use the
-MEAN variant. The performance of DSACK-TA-MEAN
is comparable to that of DSACK-TA-RTX, but the FA-
MEAN variant performs a bit better than the FA-RTX vari-
ant. DSACK-FA-MEAN averages the two transmitted pack-
ets’ measured reordering lengths. In this simulation, the re-
ordering length of the original packet is most often shorter
than that of the retransmitted packet because the original
packet’s ACK usually arrives earlier. Thus, DSACK-FA-
MEAN tends to measure slightly longer reorderings, and
thus selects a slightly larger dupthresh, which in turn causes
fewer false fast retransmits. The result is higher throughput
for DSACK-FA-MEAN.

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.5 1 1.5 2

Th
ro

ug
hp

ut
 (p

kt
s)

Packet Drop Rate %

SACK
DSACK-R

DSACK-FA-MEAN
DSACK-FA-RTX

DSACK-TA-MEAN
DSACK-TA-RTX

SACK-NODELAY

Figure 5. Throughput vs. drop rate.

5.1.2. Varying packet drop rate Next, we study the be-
havior of DSACK when packets are both delayed and lost.
In this example, 5% of packets are delayed, and the packet
drop rate varies between 0% and 2%. As shown in Figure 5,
the throughput achieved by DSACK-TA and DSACK-FA
decreases sharply as the loss rate increases. As one expects,
all TCP variants suffer reduced throughput under loss. In the
case of the DSACK variants, a fast retransmit can be identi-
fied as a false fast retransmit only when there are no packet
losses in that window of packets. As the drop rate increases,
it becomes increasingly likely that at least one packet drop
occurs within a window. As a result, the percentage of false
fast retransmits decreases rapidly, and the performance dif-
ference between DSACK and SACK diminishes.

5.2. Timeout avoidance

20000

40000

60000

80000

100000

120000

140000

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Th
ro

ug
hp

ut
 (p

kt
s)

Link Delay (s)

SACK
DSACK-R

DSACK-FA-MEAN
DSACK-FA-RTX

DSACK-TA-MEAN
DSACK-TA-RTX

Figure 6. Throughput vs. link delay.

Here, we demonstrate the performance benefits of dy-
namically adapting the FA ratio to balance between false
fast retransmits and timeouts. We delay 1.4% of packets and
drop 0.6% of packets, and vary the link propagation delay
P of (R1,R2) between 40 ms and 200 ms. The packet de-
lay time varies uniformly between [0,4P] (up to 2 RTTs).
These parameters represent cases in the upper range of In-
ternet link delays, and moderate packet delay.

As shown in Figure 6, DSACK-TA performs best. But
this is not because DSACK-TA causes the lowest percent-
age of false fast retransmits; DSACK-FA actually causes an
even smaller percentage. To examine this relationship more
closely, we fix the link delay of (R1,R2) at 100 ms, and
vary the target FA ratio of DSACK-FA from 95% down
to 5%. Figure 7 shows (a) the timeout behavior, (b) the
fast retransmit behavior, and (c) the throughput behavior
of DSACK-FA under these conditions. In Figure 7a, the
fraction of sent packets that encounter timeouts decreases
rapidly as the FA ratio decreases from 95% to to 60%, then
decreases further only slightly as the FA ratio decreases fur-
ther. Note that DSACK-TA adaptively chooses an FA ra-
tio of approximately 60%, at this point of diminishing re-
turns below which fewer timeouts are avoided. Figure 7b
reveals that as the FA ratio (dupthresh) decreases, the ac-
tual fraction of fast retransmits will increase. Thus, were
DSACK-TA to decrease the FA ratio below 60%, not many
timeouts would be avoided, but progressively more fast re-
transmits would result. Figure 7c shows that DSACK-TA
achieves a higher throughput than DSACK-R, which uses a
fixed dupthresh of 3, and DSACK-FA, which fixes the FA
ratio at 90%, because DSACK-TA balances between false
fast retransmits and timeouts. Note further in Figure 7c that
DSACK-TA adapts dupthresh such that it achieves approx-
imately the maximum throughput available among all pos-
sible fixed FA ratios.

Figure 6 shows the effect of increasing the propagation
delay of link (R1,R2). Note that the performance difference
between DSACK-TA and DSACK-FA narrows. This phe-
nomenon occurs because as the link delay increases, the idle
cost associated with timeout decreases, and the cost differ-
ence between a timeout and false fast retransmit does, too.

9

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100

Ti
m

eo
ut

 R
at

io
 %

FA Ratio %

SACK
DSACK-R

DSACK-TA
DSACK-FA

(a) Fraction of packets that en-
counter timeouts vs. FA ratio.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

Fa
st

 R
et

ra
ns

m
it

R
at

io
 %

FA Ratio %

SACK
DSACK-R

DSACK-TA
DSACK-FA

(b) Fraction of fast retransmitted
packets vs. FA ratio.

40000

45000

50000

55000

60000

65000

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (p

kt
s)

FA Ratio %

SACK
DSACK-R

DSACK-TA
DSACK-FA

(c) Throughput vs. FA ratio.

Figure 7. Timeout avoidance: comparing DSACK-FA and DSACK-TA.

Thus, the performance of DSACK-FA approaches that of
DSACK-TA as the link delay increases.

5.3. Robustness to ACK reordering

The mechanisms we propose address the effects of re-
ordered data packets on the sender’s window size. Reorder-
ing of ACKs may also occur. Because our algorithms use
the ACK stream to measure the reordering lengths of data
packets, it is important to verify that reordered ACKs do not
diminish their effectiveness.6

In simulations where we vary the fraction of reordered
ACKs between zero and ten percent, we find every DSACK
variant offers nearly constant throughput across this entire
range of reordered ACK fractions. Thus, reordered ACKs
have no significant negative effect on the sender’s through-
put, for reasons previously explained in Section 4.1.1. There
is similarly negligible effect on throughput for the other link
delays and data and ACK packet delay distributions we’ve
simulated, as well. Detailed simulation results for ACK re-
ordering appear in [19].

5.4. Robustness for multi-path routing

In Figure 8, we examine DSACK-TA-MEAN’s behavior
under packet delays similar to those that would be seen if a
sender’s packets were sent alternately over two paths with
different RTTs. If we assume that the RTT of each of the two
paths remains fixed, all delayed packets are delayed by the
difference between the two paths’ RTTs. Here, we examine
a case with a 50 ms propagation delay, and simulate 50% of
packets being delayed for the same period, representing the
RTT difference between the 100 ms RTT path and a longer
path. At a delay of zero seconds, all packets are routed on
the same path, and there is no reordering. As the delay, and
thus the reordering length, increase, DSACK-TA-MEAN
continues to offer significantly increased throughput over

6We confine our interest here to the avoidance of false fast retransmits
and false timeouts that are our goals in this paper; reordered ACKs have
other effects, including increasing the burstiness of the sender, that have
been investigated by others previously.

0

50000

100000

150000

200000

250000

0 0.05 0.1 0.15 0.2

Th
ro

ug
hp

ut
 (p

kt
s)

Average Delay (s)

SACK
DSACK-TA-MEAN

Figure 8. Throughput vs. pkt delay.

SACK. Note that the performance advantage of DSACK-
TA-MEAN begins to diminish at delays longer than 100 ms;
at this point, packets are delayed more than one window’s
worth. Recall that we restrict limited transmit to one win-
dow’s worth of packets, to avoid delaying TCP’s response to
a genuine packet loss. Thus, the performance improvement
diminishes because of idle time induced by limited trans-
mit, in accordance with the discussion in Section 2.3. Even
with limited transmit of one window and a path RTT dif-
ference of two 100 ms RTTs (200 ms), DSACK-TA-MEAN
offers a seven-fold throughput improvement over SACK.

5.5. Comparison with prior work

Blanton and Allman propose several techniques for
adapting dupthresh in response to reordering [5]. They in-
crease dupthresh after measuring reorderings, but do not
explicitly weigh the tradeoff between false fast retrans-
mits and timeouts. After a timeout, they propose resetting
dupthresh to 3. This section compares Blanton and All-
man’s algorithms with our own.

We first characterize the expected behavioral differences
between the algorithms. First, in Blanton and Allman’s al-
gorithms, dupthresh often increases to a great value, often
as great as the maximum reordering length seen. This great
dupthresh value may increase end-to-end delay for dropped
packets when the reordering length has a heavy-tailed distri-
bution. When a network path reorders less severely than be-
fore, their algorithms without a dupthresh decrease strategy

10

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

must rely on a timeout to reset dupthresh to 3. In compari-
son, our timeout avoidance algorithm avoids most false fast
retransmits, while ignoring rare and extremely long reorder-
ings. Should the reordering length distribution change over
time, the histogram reflects any such change, and dupthresh
changes accordingly.

As timeouts are expensive, Blanton and Allman limit
dupthresh to 90% of the current congestion window. How-
ever, this limit may not always prevent timeouts that could
have been avoided with a smaller dupthresh—when multi-
ple packets are delayed or lost within a single window, a
timeout may be inevitable. The dupthresh limit of 0.9 ×
cwnd can’t prevent false fast retransmits in cases where
reordering lengths are longer than 0.9 × cwnd, but not
long enough to trigger false timeouts with the one-second-
minimum RTO. When the congestion window is small, such
cases occur frequently.

We use Blanton and Allman’s simulator code in ns-
2.7 We compare the approaches on a network where link
(R1,R2) has P = 50 ms propagation delay, S = 4 Mb/s link
capacity, and 1% of packets are delayed according to a nor-
mal distribution with mean kP and standard deviation k

3 . As
shown in Figures 9 and 10, we gradually increase k from
0.1 to 4.0, and thus vary the packet delay between 5 ms and
200 ms.

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.05 0.1 0.15 0.2

Th
ro

ug
hp

ut
 (p

kt
s)

Average Delay (s)

SACK
DSACK-BL-R

DSACK-BL-INC
DSACK-BL-AVG

DSACK-BL-EWMA
DSACK-BL-TIMEDEL
DSACK-BL-TIMEINC

DSACK-TA

Figure 9. Throughput vs. average delay time.

The DSACK-BL-XXX curves give results for Blan-
ton and Allman’s algorithms. As shown in Figure 9, when
kP is small, all schemes perform similarly better than
SACK, but as kP increases, DSACK-TA achieves in-
creasingly higher throughput as compared with all other
schemes. Figure 10 shows that the fraction of fast retrans-
mits suffered by DSACK-TA hovers around 0%, whereas
the other schemes suffer increasingly from fast retrans-
mits as mean packet delay increases. Here, the 0.9× cwnd
bound on dupthresh prevents the other schemes from avoid-
ing false fast retransmits caused by longer reorderings.

We now explore the behavior of Blanton and Allman’s
algorithms under bursty packet loss. Here, link (R1,R2) has

7Their code runs in ns-2.1b7, whereas ours runs in ns-2.1b8. In the in-
terest of maximal comparability of results, we used the TCP parameter de-
faults from 2.1b8 when running their code in 2.1b7.

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2

Fa
st

 R
et

ra
ns

m
it

R
at

io
 %

Average Delay (s)

SACK
DSACK-BL-R

DSACK-BL-INC
DSACK-BL-AVG

DSACK-BL-EWMA
DSACK-BL-TIMEDEL
DSACK-BL-TIMEINC

DSACK-TA

Figure 10. Incidence of fast retransmits
vs. average delay time.

No drops Drops No drops Drops
Total pkts Total pkts FR ratio FR ratio

DSACK-BL 97184 60708 0.13% 0.48%
DSACK-TA 103770 81916 0.03% 0.19%

Table 3. Throughput and FR ratios, with and
without bursty loss.

P = 200 ms propagation delay, and 2% of packets are de-
layed according to a normal distribution with mean 100
ms and standard deviation 33 ms. We further introduce a
small fraction (0.02%) of packet drops. Each drop event
lasts for a period that varies uniformly in [300,400] ms,
during which all consecutive packets to arrive are dropped.
This drop behavior triggers timeouts even with a 0.9×cwnd
bound on dupthresh. In Table 3 we see that the throughput
of DSACK-BL-INC suffers more than that of DSACK-TA
under bursty drops. Each timeout causes DSACK-BL-INC
to reset dupthresh to 3, so that DSACK-BL-INC loses all
its reordering length history. Thereafter, it linearly increases
dupthresh as it encounters reordering. In contrast, DSACK-
TA uses its reordering length histogram to preserves knowl-
edge of the path’s characteristics across timeouts.8 Thus,
DSACK-TA suffers fewer false fast retransmits and offers
higher throughput.

We have compared all variants of DSACK under an ex-
tensive set of network conditions, where we vary the link
delay of (R1,R2) between [50,400] ms; the packet drop
rate between [0,9] percent; the fraction of delayed pack-
ets between [0.1,10] percent; and mean packet delays be-
tween [25,1600] ms, using many of the random processes
supported in ns-2. As expected, DSACK-TA performs best
overall because it combines the benefits of false fast retrans-
mit avoidance and timeout avoidance.

6. Conclusion and future work

We have presented RR-TCP, a TCP sender extended to
distinguish between reordering and loss, in the interest of

8Plots of dupthresh vs. time for the two schemes omitted for brevity;
they may be found in [19].

11

To appear in IEEE ICNP 2003, Atlanta, GA, USA.

improving TCP’s robustness on paths that reorder packets.
Our extensions use a histogram of the reordering lengths
packets experience to adapt TCP’s dupthresh, and a control
loop to adapt the FA ratio, the fraction of reordering events
that the sender should avoid misidentifying as losses. The
key novel feature of RR-TCP is its use of timeout avoid-
ance; our control loop for varying the FA ratio is mindful
not only of the costs of false fast retransmits, but also of
the costs of timeouts and idle periods during limited trans-
mit. Our simulations on networks over a wide range of link
delays, packet delays, and loss patterns show that RR-TCP
consistently improves TCP’s throughput significantly in the
face of reordering, as compared with both standard SACK
TCP and previously published reordering robustness en-
hancements to SACK TCP.

Our experimental evaluation of RR-TCP reveals much
about the nature of the reordering problem. As the loss rate
increases, the sender’s window is kept small by conges-
tion avoidance, and reordering doesn’t limit throughput—
congestion does. As the length of reorderings increases be-
yond the permitted extent of limited transmit, an RR-TCP
sender must incur idle periods, and will offer less of a per-
formance improvement over SACK. Limited transmit em-
bodies a fundamental tradeoff between the responsiveness
of the sender to congestion and the reordering length a TCP
sender can be made to tolerate.

Several avenues bear further investigation. In this pa-
per, we’ve pursued only sender-side designs that store ex-
tra state for each connection in the SACK scoreboard, and
in the reordering histogram. On a busy server with many
thousands of connections, this additional state may be large.
We believe RR-TCP can be built in a receiver-side fashion,
whereby the receiver measures reordering, keeps the his-
togram, applies the dupthresh adjustment algorithms, and
dynamically informs the sender of this dupthresh value, per-
haps in a TCP option. This design devolves the reordering-
related state requirements from the server to each client, but
requires changing the over-the-wire protocol.

We have only considered long-lived flows in the interest
of simplifying the evaluation of our algorithms’ properties.
Many web transfers are short-lived. We believe that sharing
reordering state (i.e., the reordering histogram and/or FA ra-
tio) between short-lived flows that occur serially in time will
confer the benefits of RR-TCP to short-lived flows. We fur-
ther believe that there is little to no risk to the network in
sharing this state in this way; it is not congestion state, but
reordering state, and thus will not cause a sender to send
more aggressively than current network conditions permit.

A reordering-robust transport protocol is one step toward
viable multi-path routing. But other transport problems in
spreading a single flow’s packets over multiple paths re-
main. The different paths packets take may not only have
different RTTs, but also different loss rates. Understanding
TCP’s behavior in such cases will require further study.

RR-TCP is a Reordering-Robust TCP that is safe to de-
ploy. We believe its deployment could substantially loosen

the in-order delivery restriction on the Internet architec-
ture. Simulation code for RR-TCP for ns-2 may be found
at http://www.icir.org/bkarp/RR-TCP/.

Acknowledgements

Sally Floyd thanks Ethan Blanton and Mark Allman for helpful
discussions of the reordering problem. Brad Karp thanks Robert
Morris, Mark Handley, and Orion Hodson for their illuminating
comments on earlier drafts of this manuscript.

References

[1] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s
loss recovery using limited transmit. RFC 3042, Jan. 2001.

[2] M. Allman, V. Paxson, and W. Stevens. TCP congestion con-
trol. RFC 2581, Apr. 1999.

[3] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dy-
namic behavior of slowly-responsive congestion control al-
gorithms. Proceedings of ACM SIGCOMM, Aug. 2001.

[4] J. Bennett, C. Partridge, and N. Shectman. Packet reorder-
ing is not pathological network behavior. IEEE/ACM Trans-
actions on Networking, 7(6):789–798, Dec. 1999.

[5] E. Blanton and M. Allman. On making TCP more robust to
packet reordering. ACM Computer Communication Review,
32(1), Jan. 2002.

[6] B. Chen and R. Morris. Flexible control of parallelism in a
multiprocessor PC router. Proceedings of the 2001 USENIX
Annual Technical Conference, pages 333–346, June 2001.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. Proceed-
ings of ACM SIGCOMM, Aug. 2000.

[8] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An ex-
tension to the selective acknowledgement (SACK) option for
TCP. RFC 2883, July 2000.

[9] J. Hoe. Improving the start-up behavior of a congestion con-
trol scheme for TCP. Proceedings of ACM SIGCOMM, Aug.
1996.

[10] V. Jacobson, R. Braden, and D. Borman. TCP extensions for
high performance. RFC 1323, May 1992.

[11] P. Karn and C. Partridge. Estimating round-trip times in re-
liable transport protocols. Proceedings of ACM SIGCOMM,
Aug. 1987.

[12] R. Ludwig and R. H. Katz. The Eifel algorithm: making
TCP robust against spurious retransmissions. ACM Com-
puter Communication Review, 30(1), Jan. 2000.

[13] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP se-
lective acknowledgement options. RFC 2018, Oct. 1996.

[14] ns2 (online). http://www.isi.edu/nsnam/ns.
[15] J. Padhye and S. Floyd. On inferring TCP behavior. Pro-

ceedings of ACM SIGCOMM, Aug. 2001.
[16] V. Paxson. End-to-end routing behavior in the Internet. Pro-

ceedings of ACM SIGCOMM, Aug. 1996.
[17] V. Paxson. End-to-end Internet packet dynamics. Proceed-

ings of ACM SIGCOMM, pages 139–152, Sept. 1997.
[18] C. Ward, H. Choi, and T. Hain. A data link control protocol

for LEO satellite networks providing a reliable datagram ser-
vice. IEEE/ACM Transactions on Networking, 3(1):91–103,
Feb. 1995.

[19] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: a
reordering-robust TCP with DSACK. ICSI Technical Report
TR-02-006, July 2002.

12

