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Abstract

Under miscon�guration or topology changes, iBGP with

route re�ectors exhibits a variety of ills, including rout-

ing instability, transient loops, and routing failures. In

this paper, we consider the intra-domain route dissemi-

nation problem from �rst principles, and show that these

pathologies are not fundamental�rather, they are artifacts

of iBGP. We propose the Simple Ordered Update Proto-

col (SOUP) and Link-Ordered Update Protocol (LOUP),

clean-slate dissemination protocols for external routes

that do not create transient loops, make stable route

choices in the presence of failures, and achieve policy-

compliant routing without any con�guration. We prove

SOUP cannot loop, and demonstrate both protocols'

scalability and correctness in simulation and through

measurements of a Quagga-based implementation.

1 INTRODUCTION

Much has been written about iBGP's susceptibility to

persistent routing instability and forwarding loops [11,

12, 20]. Yet the transient behavior of intra-domain dis-

semination of external routes has been, to our knowl-

edge, unexamined. In recent work, we found that today's

iBGP frequently incurs transient forwarding loops while

propagating updates [13]. Real-time traf�c of the sort

prevalent on today's Internet does not tolerate transient

loops or failures well; Kushman et al. [18] note that pe-

riods of poor quality in VoIP calls correlate closely with

BGP routing changes. Even a BGP-free core does not

entirely eliminate iBGP's role in intra-AS route dissem-

ination, nor any associated pathologies: border routers

(BRs) must still use iBGP internally to exchange routes.

In this paper, we illustrate that the routing instability

and transient loops that often occur when disseminating

a route update (or withdrawal) learned via eBGP within

an AS are not fundamental. Rather, they are side-effects

of the way in which route dissemination protocols�not

only iBGP as typically deployed with Route Re�ectors

(RRs), but in the case of transient loops, alternatives such

as BST and RCP, as well�happen to disseminate routes.

It is the lack of attention to the order in which routers

adopt routes that causes these pathologies.

Based on these observations, we introduce the Simple

Ordered Update Protocol (SOUP), a route dissemination

protocol that provably never causes transient forwarding

loops while propagating any sequence of updates from

any set of BRs. SOUP avoids causing loops by reliably

disseminating updates hop-by-hop along the reverse for-

warding tree from a BR. We further introduce the Link-

Ordered Update Protocol (LOUP), which uses a similar

ordering mechanism to avoid loops, but includes opti-

mizations that reduce its convergence time (compared

with that of SOUP) in common cases.

We are not the �rst to observe that careful attention

to the details of route propagation can eliminate tran-

sient anomalies. DUAL [8], the loop-free distance-vector

interior gateway protocol (IGP), explicitly validates be-

fore switching to a next hop that doing so will not cause

a forwarding loop. And Consensus Routing [17] aug-

ments eBGP with Paxos agreement to ensure that all

ASes have applied an update for a pre�x before any AS

deems a route based on that update to be stable. SOUP

and LOUP use comparatively light-weight mechanisms

(i.e., forwarding in order along a tree) to avoid transients

during route dissemination within an AS.

Our contributions in this paper include:

� a �rst-principles exploration of the dynamics of route

dissemination, including how known protocols do dis-

semination and the trade-offs they make

� invariants that, when maintained during route dissem-

ination, avoid transient loops when any set of updates

to pre�xes is introduced

� SOUP, a simple route dissemination protocol that en-

forces these invariants using ordered dissemination of

log entries along a tree

� a proof that SOUP cannot introduce forwarding loops

� LOUP, an optimized route dissemination protocol that

converges faster than SOUP

� an evaluation in simulation that demonstrates the cor-

rectness and scalability of LOUP on a realistic Internet

Service Provider topology

� measurements of an implementation of LOUP for

Quagga that show LOUP scales well in memory and

computation, so that it can handle a full Internet rout-

ing table and high update processing rate.

2 INTRA-AS ROUTE DISSEMINATION

Internet routing consists of three components: External

BGP (eBGP) distributes routes between routing domains

and is the instrument of policy routing. An Interior Gate-

way Protocol (IGP) such as OSPF or IS-IS tracks reach-

ability within a routing domain. Finally, Internal BGP

(iBGP) distributes external routes received by border

routers (BRs) both to all other BRs, so they can be redis-

tributed to other domains, and also to all participating in-

ternal routers. In this paper we are concerned with iBGP:

when a route changes elsewhere in the Internet, how does

this change propagate across a routing domain?
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When a BR receives a route change from a neighbor-

ing routing domain or Autonomous System (AS), it sanity

checks it and applies a policy �lter. This policy �lter can

drop the route, or it can modify it.

After policy �ltering, the BR runs its decision process,

determining whether it prefers this route to other routes

it may hold for the same IP address pre�x. The decision

process is speci�ed in the BGP standard, and consists of

successive rounds of eliminating candidate routes based

on different criteria until only one remains. First in the

decision process is Local Preference, so con�gured pol-

icy trumps all else. Lower down the list come AS Path

length, and below that IGP distance (the distance to the

BGP next hop�usually either the announcing BR itself,

or its immediate neighbor in the neighboring AS).

When a BR receives a route announcement for a new

pre�x, if it is not dropped by policy, the BR distributes it

to all other routers in the domain so they can reach this

destination. If a BR already has a route to that pre�x, it

only sends the new route to the other routers if it prefers

the new route. Similarly, if a BR hears a route from an-

other BR that it prefers to one it previously announced, it

will withdraw the previously announced route.

Having decided to announce or withdraw a route, it

is important to communicate the change reliably and

quickly to the rest of the AS. BGP routing tables are

large�currently over 400,000 pre�xes�and multiple

BRs can receive different versions of each route. Peri-

odic announcement of routes doesn't scale well, so dis-

semination needs to be reliable: once a router has been

told a route, it will hold it until it is withdrawn or super-

seded. Route dissemination also needs to be fast, other-

wise inter-AS routing can take a long time to converge.

The simplest way to disseminate routes across an AS

is full-mesh iBGP, where each router opens a connection

to every other router in the domain (Fig. 1a). When an

update needs to be distributed, a BR just sends it down

all its connections. TCP then provides reliable in-order

delivery of all updates to each router, though it provides

no ordering guarantees between different recipients.

In practice, few networks run full-mesh iBGP. The

O(n2) TCP connections it requires dictate that all routers

in a network must be recon�gured whenever a router is

added or retired, and every router must fan out each up-

date to all n� 1 peers causing a load spike with associ-

ated processing delays. Most ISPs use iBGP route re�ec-

tors (RRs). These introduce hierarchy; they force propa-

gation to happen over a tree1 (Fig. 1b). Updates are sent

by a BR to its re�ector, which forwards them to its other

clients and to other re�ectors. Each other re�ector for-

wards on to its own clients.

Route re�ectors signi�cantly improve iBGP's scaling,

1ISPs often use two overlaid trees for redundancy.

but they bring a range of problems all their own. In par-

ticular, each BR now only sees the routes it receives di-

rectly via eBGP and those it receives from its route re-

�ector. Thus no router has a complete overview of all the

choices available, and this can lead to a range of patholo-

gies, including persistent route oscillations [9].

ISPs attempt to avoid such problems by manually

placing route re�ectors according to guidelines that say

�follow the physical topology�; not doing so can cause

suboptimal routing [20]. Despite these issues, almost all

ISPs use route re�ectors and, with conservative network

designs, most succeed in avoiding the potential pitfalls.

Persistent Route Oscillations With eBGP, inconsis-

tent policies between ISPs can lead to persistent BGP

oscillations. These can be avoided if BGP policies obey

normal autonomous systems relations (�obey AR� [7]).

Essentially this involves preferring customer routes to

peer or provider routes, and that the graph of cus-

tomer/provider relationships is acyclic. However, even

when AR is obeyed, BGP's MED attribute can result in

persistent iBGP route oscillations [10].

Brie�y, MED allows an operator some measure of

control over which link traf�c from his provider takes

to enter his network. Unfortunately the use of MED

means that there is no unique lexical ordering to alter-

native routes. The decision process essentially takes two

rounds; in the �rst routes received from the same ISP are

compared, and the ones with higher MED are eliminated;

in the second, the remaining routes are compared, and

an overall winner is chosen. Thus route A can eliminate

route B in the �rst round, then lose in the second round

to route C. However, in the absence of route A, route B

may win the second round. Compared pairwise, we have

A > B, B >C, and C > A. To make the correct decision,

routers must see all the routes, not a subset of them.

Route re�ectors hide information; only the best route

is passed on. This interacts poorly with MED, resulting

in persistent oscillations [19]. Grif�n and Wilfong prove

that so long as policies obey AR, full-mesh iBGP will

always converge to a stable solution [10]. The same is

not true of route re�ectors or confederations. To avoid

iBGP route oscillations, it is suf�cient to converge to the

same routing solution that would be achieved by full-

mesh iBGP, and we adopt this as a goal.

The Rise of the BGP-free Core In recent years many

ISPs have deployedMPLSwithin their networks, primar-

ily to support the provisioning of VPN services. MPLS

also allows some networks to operate a BGP-free core.

An MPLS network with a BGP-free core functions in

the same way as BGP with route re�ectors, except that

only BRs are clients of the RRs. An internal router that

only provides transit services between BRs does not need
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(a) iBGP (b) iBGP + RR (c) RCP

(d) BST (e) LOUP

Figure 1:

Propagation

mechanisms.

to run BGP; instead the entry BR uses an MPLS label-

switched path to tunnel traf�c to the exit BR. A protocol

such as LDP [2] is then used to set up a mesh of MPLS

paths from each entry BR to each exit BR.

One potential advantage of a BGP-free core is that

core routers need only maintain IGP routes, rather than

the 400,000 or so pre�xes in a full routing table, though

they must also hold MPLS state for a subset of the O(n2)
label-switched paths. In general though, due to improve-

ments in hardware and forwarding algorithms [23], the

overall size of routing tables is not the problem it was

once thought to be [6]. Another potential advantage of

a BGP-free core is that it reduces the number of clients

of iBGP route re�ectors. Fewer clients mean less pro-

cessing load on the RRs and less chance of con�guration

errors that cause routing instability.

Against these potential bene�ts, a BGP-free core de-

pends on additional protocols such as LDP or RSVP-TE

for basic connectivity, which add complexity and them-

selves need careful con�guration. Moreover, a BGP-free

core doesn't eliminate transient forwarding loops. BRs

still run iBGP with RRs, and RRs still fail to control

the order in which their distinct clients hear updates. Al-

though MPLS may reduce the prevalence of such loops,

it cannot prevent them�those transient loops that do

occur will traverse the whole network between two (or

more) BRs.

Thus the adoption of a BGP-free core seems to be

driven by obsolete concerns about routing table size and

by undesirable properties of iBGP with route re�ec-

tors. Our goal is to revisit the role played by iBGP, and

demonstrate that iBGP's limitations are not fundamental.

We will describe replacements for iBGP that:

� are not susceptible to con�guration errors,
� are stable under all con�gurations,
� are not prone to routing protocol traf�c hot spots,
� minimize forwarding table (FIB) churn, both in BRs

and internal routers,

� propagate no more changes to eBGP peers than full-

mesh iBGP would,

� free of transient loops.

3 DISSEMINATION MECHANISMS

We now examine alternative route dissemination mecha-

nisms from �rst principles to cast light on how forward-

ing loops arise and inform the design of the loop-free

route dissemination protocol we describe subsequently.

Although iBGP's use of TCP ensures the in-order ar-

rival of updates at each recipient, each recipient applies

every update as soon as it can. Thus the order of up-

date application among recipients is arbitrary, causing

transient loops and black holes until all the routers have

received and processed the update. Route re�ectors im-

pose a limited ordering constraint (RR clients receive a

route after their RR processes it), but except in trivial

non-redundant topologies this constraint is insuf�cient to

prevent loops and black holes.

One way to avoid both loops and persistent oscillations

would be to centralize routing, as shown in Fig. 1c. When

an external update arrives the BR �rst sends it to a rout-

ing control platform (e.g., RCP [3]), which is in charge of

running the decision process for the whole domain and

distributing the results to all routers. As the RCP con-

troller has full knowledge, it could be extended to avoid

loops by applying updates in a carefully controlled order.

However, to do so would require a synchronous update

approach which, given the RTTs to each router, would

be slower than distributed approaches.

In the case of IGP routing, it is well known how to

build loop-free routing protocols. DUAL [8] is the ba-

sis of Cisco's EIGRP, widely deployed in enterprise net-

works, and uses a provably loop-free distance-vector ap-

proach. DUAL is based on several observations:

� If a metric change is received that reduces the distance

to the destination, it is always safe to switch to the

new shortest path. This is a property of distance-vector

routing; if the neighbor sending the change is the new

next hop, it must already have applied the update, and

so must be closer to the destination. Therefore no loop

can occur.

� If an increased distance is received, the router can

safely switch to any neighbor that is closer than it

previously was from the destination. This constraint

is DUAL's feasibility condition, and these routes are

known as feasible routes. They are safe because no

matter the router's distance after the update, it still

never forwards away from the destination.

� In all other circumstances, a router receiving an in-

creased distance cannot safely make its own local

decision. DUAL uses a diffusing computation [5] to

make its choice. It freezes the current choice of next

hop and queries its neighbors to see if they have a

feasible route. If they do not, they query their neigh-

bors, and so on, until the computation reaches a router

close enough to the destination that it can make a safe
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Figure 4: A simple topology

exhibits looping.

choice. The responses spread out back across the net-

work, activating routes in a wave as they return.

The iBGP route dissemination problem is different

from that solved by DUAL, as iBGP distributes the same

information to all internal routers, irrespective of the in-

ternal topology. DUAL, in contrast, concerns itself with

path choice across the internal topology. For each pre�x

iBGP routers must decide between alternative external

routes as those routes propagate across the network. The

routes themselves do not change; rather to avoid loops

we must either control the order in which route changes

are received or the order in which they are applied.

Wavefront Propagation DUAL performs hop-by-hop

�ooding of route changes, accumulating metric changes

along the way. BGP route dissemination can also be per-

formed using hop-by-hop �ooding, as shown in Fig. 1d,

in which each router sends the messages it receives to all

neighbors. Flooding must be done over one-hop reliable

sessions to ensure messages are not lost. BST [15] takes

this approach. Flooding imposes a topological ordering

constraint, guaranteeing that at all times, a contiguous

region of routers has processed an update. Essentially an

update propagates across the domain as a wavefront; this

is a necessary (though not suf�cient) condition to avoid

transient loops. iBGP does not have this property.

To see why this condition is not suf�cient, even as a

new route is propagated, consider Fig. 2. BR B had pre-

viously received a route to pre�x P and distributed it to

all the routers in the domain. BR A then receives a better

route to P, and this is in the process of �ooding across the

domain, forming a wavefront 1
 �owing outward from A.

All the routes in the light gray region now forward via A;

the remainder still forward via B. Unfortunately, �ooding

does not ensure that the wavefront remains convex�that

a forwarding path only crosses the wavefront once. As a

result transient loops 3
 can occur.

Fig. 4 shows one way that such non-convexity can oc-

cur. Initially all routers forward to some pre�x via B2,

but then B1 receives a better route. Link 1-2 would not

normally be used because of its high metric. If, how-

ever, router 1 �oods the update from B1 over this link,

then receiving router 2 may direct traf�c towards router

3 which is on the forwarding path to B1. As router 3 has

not yet heard the update, it will direct traf�c towards B2

via router 2, forming a loop. This loop will clear eventu-

ally when router 3 hears the update. Note that the update

may be delayed either by the network (e.g., congestion,

packet loss) or more likely, by variable update processing

delays at routers.

4 SIMPLE ORDERED UPDATE PROTOCOL

Building upon the discussion of route dissemination

primitives above, we now propose two novel dissemi-

nation techniques, reverse forwarding tree dissemination

and backward activation. We combine these into a Sim-

ple Ordered Update Protocol (SOUP), and prove that it

never causes transient forwarding loops within an AS.

4.1 Reverse Forwarding Tree Dissemination

Recall that BST's loops occur when one BR propagates

a new route that is preferred to a pre-existing route from

another BR. A suf�cient condition for avoiding such

loops is for no router to adopt the new route until the

next hop for that route has also adopted the route. The

condition transitively guarantees that a packet forwarded

using the new state will not encounter a router still us-

ing the old state. One way to meet this condition in BGP

route dissemination is for a router only to announce a

route to routers that will forward via itself. Thus, route

announcements �ow from a BR along the reverse of the

forwarding tree that packets take to reach that BR. Ap-

plying this condition in Fig. 4 precludes sending the up-

date over link 1-2 as it is not on the RFT.

SOUP works by propagating announcements over a

hop-by-hop tree, as shown in Fig. 1e. Unlike the Route

Re�ector tree, SOUP uses one tree per BR, rooted at that

BR. SOUP builds this tree dynamically hop by hop by

reversing the links on the shortest-path tree that the IGP

follows to reach that BR from everywhere in the domain.

This hop-by-hop nature preserves the wavefront prop-

erty. Disseminating routes down the reverse forwarding

tree (RFT) adds additional desirable ordering constraints

that eliminate transient loops of the sort described above

when improved routes are disseminated.
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4.2 Sending Bad News: Backward Activation

Sending bad news is never as simple as sending good

news. If a router receives a withdrawal (even over the

RFT), it cannot just pass it on and locally delete the route

from its FIB. If it does, a transient loop may result. Con-

sider what happens when all routers hold more than one

route to the same destination pre�x. This often occurs

when routes tie-break on IGP distance: more than one

BR originates a route, but they are all equally preferred.

Each router chooses the route to the closest exit; some

choose one exit, some another. Such hot-potato routing

is common when two ISPs peer in multiple places.

Withdrawing one of those routes, as B does in Fig. 3,

causes a loop. The routers behind withdrawal wavefront

2
 have already switched to an alternative route via A.

Routers farther away have not yet heard the withdrawal

and still forward to B. Traf�c loops at wavefront 2
.

To avoid such loops, when a BR withdraws a route,

the change must �rst be applied by routers furthest from

the BR. Essentially we want the change to propagate in

exactly the reverse of what would happen when good

news propagates. In this way, no router uses the to-be-

withdrawn route to forward packets to a router that has

already withdrawn the route, and so the withdrawal will

not cause a loop to occur. In Fig. 3 the routers far-

thest from B will remove the route �rst, though doing

so doesn't change their forwarding decision. The routers

just to the right of 2
 will be the �rst to withdraw the

route and change their choice of exit router, then their

parents (with respect to the tree routed at B), and so on

back up to B. We call this process backward activation.

4.3 The SOUP Protocol

SOUP routers actively build an RFT for each BR by ex-

changing messages with the relevant parent router. We

describe this in more detail in Section 6.1. BRs receive

route updates2 over eBGP. If a BR uses a route or the up-

date is a change to a route it previously used, then the BR

sends it hop-by-hop down the RFT.

We de�ne a route as active if it is eligible to be con-

sidered in the decision process, even if it is not installed

in the FIB. Updates can be sent forward activated or

backward activated. Each router makes its own choice

of forward or backward activation, but with one excep-

tion, once the BR has originated a route as one or the

other, the update will stay that way across the network.

When a router receives an update, it checks if the route

is preferred to the current activated version of the same

route it received from the same BR. If it is preferred, the

route is feasible; it is applied immediately, and previous

versions of this route from the same BR are �ushed. If

2A withdrawal is just an extreme form of a route becoming
less preferred, so we will only refer to updates from now on.

the route wins the BGP decision process, it is installed

in the FIB. Irrespective of whether it was installed in the

FIB, the router then sends it on to its children as forward

activated. The children will also �nd it to be feasible.

If the route is not feasible, the router cannot yet apply

the change. Its children still have the better version of

this route, and if it applies the change, it may forward to

a child who forwards right back again. Instead it keeps

the old route active, adds the update to a list of inactive

alternative routes received from that BR, and sends the

change to all its children marked as backward activated.

When a backward activated update is received by a

leaf router on the BR's RFT, it is safe for that router to

activate the update�it has no children, so no loop can re-

sult. The leaf sends an activation message back to its par-

ent, indicating that it has activated the change. Once the

parent receives activation messages from all of its chil-

dren, it in turn can activate the update and send its own

activation message on to its parent. After activating an

update, the router runs the BGP decision process in the

normal way to decide which of its active routes, received

from different BRs, it should install in its FIB.

SOUP's behavior is simple so long as only one update

from a BR propagates at a time: good news forward acti-

vates and bad news backward activates. At no time does

the existence or absence of an alternative route received

from another BR change this dissemination process. But

what happens when more than one change propagates si-

multaneously from the same BR?

Suppose a BR has already announced route r1, then

receives a route change from eBGP indicating the route

got worse, becoming r2. It sends an update containing

r2, which will backward activate. Before the activation

messages have returned, the route improves somewhat,

so the BR sends an update containing r3, which will also

backward activate�even though it is better than r2, it

is worse than the active route r1. Each router therefore

maintains a list containing fr1;r2;r3g, where r1 is still
active, and r2 and r3 are awaiting backward activation.

At the leaves of the tree, r2 has now activated, and the

activation for r2 spreads back up the tree. Descendants

on the RFT below the backward activation only have r2
in their list. At some point the update for r3 propagating

away from the BR passes the activation message for r2
returning toward the BR. On the link where these mes-

sages cross, the child router, Rc receives update r3. r3's

update is marked as backward activated, but is preferable

to the active route r2. It is therefore feasible, is applied

immediately, and is sent on marked as forward activated.

However, as r3 was received at Rc marked as backward

activated, Rc must also indicate to its parent that it has

activated the route, so it sends an activation message.

These rules ensure that an update sent as forward ac-

tivated is always propagated as forward activated, but an
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Figure 5: A simple routing loop.

update sent as backward activated may switch to forward

activated if it crosses into a region where backward acti-

vation has already removed an older version of that same

route. An update can only change from backward acti-

vated to forward activated once, and never the other way.

Limitations of SOUP SOUP is loop-free when dis-

seminating changes if the IGP is loop free and internal

routes do not change. It does not attempt to be loop-

free while the IGP is reconverging, but as external route

changes greatly outnumber internal ones in most net-

works, this seems a reasonable compromise.

SOUP cannot always prevent transient loops in the

presence of the BGP MED attribute, though it will al-

ways converge to the same stable loop-free solution

as full-mesh iBGP. With MED, although routes can be

ranked as better or worse when originating from the

same BR, the same is no longer true when they origi-

nate from different BRs. MED has the property that with

three routes, A, B, andC for the same pre�x, where three

routers have routes ABC, BC, and AC, as might happen

when routes A and B are propagating, then the three

routers can choose routes A, B, and C respectively. For

example, B beats C on MED, A beats B on router ID, C

beats A on router ID. There is no total order among the

three routes that all routers agree on, so looping can oc-

cur. iBGP-RR can exhibit persistent route oscillations in

this case, and Cisco provides an always-compare-MED

option to impose a strict total order. We conjecture that

no distributed protocol can ensure loop-freedom when

MED is used without such a workaround.

4.4 Proof of SOUP's Loop Freedom

To show that SOUP does not introduce forwarding loops,

we focus on how the protocol handles updates for a sin-

gle pre�x. Our proof rests on two assumptions: �rst,

that the IGP is not currently reconverging; and second,

that BGP's always-compare-MED option is in use (such

that there is a strict total order on BGP routes). Without

these assumptions, SOUP cannot always prevent tran-

sient loops. We proceed in two steps: �rst, we introduce

a suf�cient condition for loop avoidance, and second, we

prove that SOUP always complies with that condition.

Lemma. When the quality of the route used for forward-

ing improves monotonically at all successive router hops,

no forwarding loop can occur.3

Proof. Consider the simple three-router topology in

Fig. 5, in which letters denote the routes on which each

3Jaffe and Moss offer a similar proof [16].

router forwards. De�ne the operator ��� such that for

routes x and y, x � y means that the BGP decision pro-

cess prefers y to x. Consider a path whose �rst edge

(route) is A, along which route quality monotonically

increases. We proceed by contradiction. Assume that a

loop occurs along this path, and without loss of gener-

ality, assume the loop occurs between the third and �rst

router, as shown in Fig. 5. But if this loop occurs, we

have that A�C (by the path's monotonic improvement)

and also that C � A, as the loop will forward succes-

sively on routes C and A. In general, for any path on

which routes improve monotonically, a forwarding loop

will cause a contradiction in which the route that closes

the cycle must simultaneously be less preferred and more

preferred than the immediately subsequent route.

Theorem. SOUP does not introduce forwarding loops.

Proof. When a packet is forwarded, the routers along the

path do not have to forward towards the same BR. Some

may have received new state that the others have not yet

heard. However, as shown in the above lemma, so long as

the routing state along the path monotonically improves,

no loop can occur. For a loop to occur, monotonicity must

be violated: somewhere, a router rn+1 must forward to-

wards BR r0, and the next hop, rn, must forward using

less good state than that used by rn+1. Let the route be-

ing used at rn be rn� and the route being used at rn+1 be
rn+1�. (We will use � to indicate that a route is installed
in the FIB and used for forwarding.) To violate mono-

tonicity, and thus for a loop to be possible, rn� � rn+1�.
There are two cases to consider, depending on which BR

originated rn�:
Case 1: rn� is a route that originated at r0.
For rn+1 to have route rn+1�, it must previously have

received a forward activated update for a route rbest

n+1

from r0 that was either better than rn+1� or is actually
rn+1� . This is the case because forward activated up-
dates are the only way routes can improve. As rn+1 is

the child of rn with respect to BR r0, for rn+1 to have

received rbest

n+1
, it must have received this route from rn.

rn must therefore have also held rbest

n+1
at some point.

If rn� � rn+1�, then rn must have received an update

that replaced rbest

n+1
with a worse route. Such an update

must have backward activated at rn, as it would not

have been feasible compared to rbest

n+1
. However, for

rn� to have been backward activated, as rn+1 is the

child of rn, the activation must have passed through

rn+1, and it would have replaced rn+1�. Thus rn+1 can-
not have rn+1� � rn� if rn� originated at r0.
To summarize: if rn+1 has route rn+1, then its parent

rn must still have the same route or a better one.

Case 2: rn� originated at BR rBR, where rBR 6= r0.

However, by case 1, if rn+1 has route rn+1� received
from r0, then rn must still have a route r

r0
n received
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from r0, such that rn+1� � r
r0
n . If router rn has route

r
r0
n � rn�, then it will not choose rn��the BGP de-

cision process can only choose rn� � r
r0
n . Hence it

cannot be the case that rn� � rn+1�.

As neither case 1 nor case 2 can occur, it is impossible

for a loop to occur.

5 LINK-ORDERED UPDATE PROTOCOL

SOUP avoids loops by always maintaining the invariant

that no router ever has better active state for a pre�x from

a speci�c BR than its parent router. The down side of

maintaining this invariant is that bad news must normally

propagate all the way across the network and the back-

ward activations return before worsening or withdrawn

state can be removed. If, after receiving bad news from

eBGP, a BR still has an external route, even though it is

no longer the best route from the domain, then there is no

signi�cant problem: the destination is still reachable, and

all that happens is a suboptimal path is used for a short

while. However, when the BR receives a withdrawal via

eBGP and has no other eBGP route, then it will have

to drop any packets for this destination. SOUP forces the

BR to hold the old route longer than we would wish, pro-

longing the black hole longer than alternative protocols

that are not loop-free.

Is it possible to get the best of both worlds: maintain

loop-free routing, but also reconverge quickly? Back-

ward activation of withdrawals is essential for loop-free

routing, but inevitably delays switching to an alterna-

tive route. Thus SOUP cannot converge as fast as proto-

cols that do not perform backward activation. However,

it is often safe to terminate a backward activation without

having it traverse the whole network and back.

Consider Fig. 3, where the route advertised by B is

being withdrawn and an alternative route from A that tie-

broke on IGP distance exists. To avoid loops, SOUP's

withdrawal wavefront spreads the whole way across the

network before activating on the reverse path. It is safe

instead to activate the withdrawal as soon as the wave-

front reaches 5
. The �rst hop to the left of 5
 could trig-

ger the backward activation of the withdrawal by sending

a reply. This short-cutting of backward activation is the

essence of the Link-Ordered Update Protocol (LOUP).

5.1 Local Activation of Withdrawals

Just as with SOUP, a LOUP router passes a worsening

update on to its children without activating it, and waits

for backward activations from them before activating the

route change. Doing so maintains the invariant that a

router never has a better activated version of the route

than its parent does. This invariant ensures that succes-

sive announcements of a route from the same BR cannot

cause a loop.

A Y Z B

C

X
U(A)	
  W(A)	
  

U(C)	
  A	
  =	
  C	
  >	
  B	
  

Figure 6: Local activation can lead to transient loops.

Fig. 3 might lead us to consider that the routers just to

the left of 5
 could locally activate the withdrawal. They

are not using the route being withdrawn, so they could re-

ply immediately to their parent, activating the withdrawal

back toward B. In the steady state, doing so is safe and

does not cause loops. However, it violates the invariant

that no router ever has a better activated version of a route

than its parent. Although it is quite dif�cult to �nd cases

where a loop results, they do exist.

Consider Fig. 6. The three BRs, A, B, and C have all

announced routes, such that A=C�B. The updates from

A and C have not yet reached B, so B has not yet with-

drawn its route.C's update has reachedY , but not reached

X and Z. A has withdrawn its route�the withdrawal will

backward activate. Thus A, X , and Z are currently using

route A (shown by the block arrows), Y is usingC, and B

is using its own route. So far, the network is loop-free.

The withdrawal of A then reaches Y , which is not us-

ing route A. Y therefore activates the withdrawal, passes

it to its children, and sends an activation message back

to X . Before any of these messages are received, Y then

receives a withdrawal of C. Because neither X nor Z

reaches C via Y , Y is a leaf on C's RFT. Y immediately

activates the withdrawal, and switches to its only alterna-

tive, which is B. Traf�c now loops between Y and Z.

Thus we can see that local activation is not safe in

the presence of transient announcements such as the one

from C. The problem is that the existence of the route

from C causes routers Y and Z to violate the invariant�

Z still has the route to A, but Y does not. To maintain the

invariant and be loop-free, the routing state at a route for

one BR must not depend on the existence or absence of

routing state for another BR.

5.2 Targeted Tell-me-when

To avoid the problem associated with local activation, we

build upon the sound basis of SOUP. LOUP activates an

update exactly as SOUP does�it triggers backward ac-

tivation under the same conditions as SOUP. However,

if a router has an alternative route via another neighbor,

it is safe to switch to that route if the router knows that

neighbor is no longer using the route that is waiting for a

backward activation.

Upon receiving a withdrawal (or a worsening update),

a router marks the route as backward activated and passes

it on to its children. It then also runs the decision pro-

cess to determine which route it would use if the change
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were activated. If there is an alternative route via another

neighbor, the router sends a tell-me-when request to that

neighbor requesting that it reply when it is no longer us-

ing the route being withdrawn.

If the response to the tell-me-when arrives before the

activation, the router knows that it is now safe to use the

alternative because its new next hop (and transitively, all

routers between it and the new exit point) is already us-

ing the alternative. The router does not yet activate the

withdrawal, but it can reply to any tell-me-when from its

other neighbors.

If the alternative route is withdrawn, the router still

has the original route (waiting for backward activation of

the withdrawal) in its table, and can safely switch back

to it if necessary as the invariant still holds, so long as

it has not replied to any other router's tell-me-when for

this route. If it has replied to a tell-me-when, the route

is marked as dead. It is unsafe to switch back to a dead

route, and packets for this pre�x will be black-holed until

the backward activation arrives.

Only when the backward activation arrives from all a

router's children is a withdrawal �nally activated.

5.3 Safety

With respect to a BR, LOUPmaintains the same invariant

as SOUP, so no two routers forwarding on state from the

same BR can cause a loop. In [13], for an older version

of LOUP that used targeted tell-me-when messages but

did not use backward activation, we exhaustively consid-

ered all the possible ways a single update or withdrawal

could interact with existing forwarding state at routers.

So long as the IGP itself is loop-free, there was only

one way a loop could occur: a race condition we called a

Withdrawal/Announcement race, where a withdrawal of

one route caused a previously suppressed route to be re-

announced. The triggering withdrawal and the triggered

announcement could race, leading to loops. The current

LOUP protocol's backward activation mechanism pre-

vents this race condition. We thus assert that no single

update can cause LOUP to create a forwarding loop. We

make no assertion that LOUP is loop-free when a BR

sends multiple updates for the same pre�x in extremely

rapid succession, but we have not seen such loops in sim-

ulation. BGP's MRAI timer would normally prevent this.

5.4 Freedom from Con�guration Errors

Full-mesh iBGP requires all peerings be con�gured. The

con�guration is simple, but all routers must be recon-

�gured whenever any are added or removed. Route re-

�ectors and confederations add con�gured structure to

an AS, and require expert knowledge to follow heuristics

to avoid sub-optimal routing or persistent oscillations. A

BGP-free core improves iBGP's scaling somewhat, at the

expense of requiring additional non-trivial mechanisms

just to route traf�c across the network core. All this con-

�guration signi�cantly increases the likelihood of disrup-

tions caused by con�guration errors.

Hop-by-hop dissemination mechanisms such as BST

and LOUP are con�guration-free. All one must do is en-

able the protocol. Some might equate con�guration with

control. We will show that LOUP's freedom from con-

�guration does not give rise to routing protocol traf�c

hotspots.

6 BUILDING AND USING THE RFT

We now describe the details of ordered update dissemi-

nation along an RFT in the SOUP and LOUP protocols.4

There are two main aspects: how to build the RFT, and

how to disseminate updates along the RFT reliably de-

spite topology changes.

6.1 RFT Construction

Each LOUP router derives a unique ID (similar to BGP-

ID) that it uses to identify routes it originates into the

AS. LOUP routers periodically send single-hop link-

local-multicast Hello messages to allow auto-discovery

of peers. A Hello contains the sender's ID and AS num-

ber. Upon exchanging Hellos containing the same AS

number, a pair of LOUP routers establish a TCP con-

nection for a peering. All LOUP protocol messages apart

from Hellos traverse these TCP connections, and are sent

with an IP TTL of 1.

A LOUP router must know the IDs of all LOUP

routers in its AS to build and maintain the RFTs. This

list is built by a gossip-like protocol that operates over

LOUP's TCP-based peerings. Essentially, a LOUP router

announces the full set of LOUP router IDs it knows to its

neighbors each time that set grows (and to bootstrap, it

announces its own IDwhen it �rst peers with a neighbor).

These gossip messages need not be sent periodically, as

they are disseminated reliably with TCP. LOUP routers

time out IDs from this list upon seeing them become un-

reachable via the IGP.

The RFT rooted at a router X is the concatenation of

the forwarding paths from all routers to X�the inverse of

the relevant adjacencies in routers' routing tables. When-

ever the RFT changes, each LOUP router sends each

of its neighbors a Child message. LOUP router Y will

send its neighbor X a Child message stating, �you are

my parent in the RFT for this set of IDs.� This set of

IDs is simply the set of all IGP-learned destination IDs

in Y 's routing table with a next hop of X . Upon receiving

a Child message on interface i, LOUP router X subse-

quently knows that it should forward any message that

originated at any ID mentioned in that Child message

down the appropriate RFT on interface i.

4Both protocols use the exact same RFT techniques; we
write �LOUP� hereafter for brevity.
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6.2 Reliable RFT Dissemination

An origin LOUP router that wishes to send an update

(e.g., a BR injecting an update received over eBGP)

sends that update to all routers in its AS over the RFT

rooted at itself. LOUP routers forward such updates over

their one-hop TCP peerings with their immediate neigh-

bors on the appropriate RFT. During a period when no

topology changes occur in an RFT, TCP's reliable in-

order delivery guarantees that all updates disseminated

down the RFT will reach all routers in the AS.

When the topology (and thus the RFT) changes, how-

ever, message losses may occur: if the distance between

two routers that were previously immediate neighbors

changes and exceeds a single hop, the IP TTL of 1 on

the TCP packets LOUP sends over its peerings will cause

them to be dropped before they are delivered. For RFT-

based update dissemination to be reliable under topology

changes, then, some further mechanism is needed.

To make update dissemination over the RFT robust

against topology changes, the LOUP protocol structures

updates as a log. Each router maintains a log for each

origin. A log consists of an active operation and one or

more inactive operations, each with a sequence number,

ordered by these sequence numbers; this sequence num-

ber space is per-origin. An operation may either be a

route update or a route withdrawal. Inactive operations

are backward propagated updates that have not yet been

activated. When a LOUP router receives an operation

for dissemination over the RFT on a TCP peering with

a neighbor, it only accepts the operation and appends

it to the appropriate origin's log if that operation's se-

quence number is one greater than that of the greatest

sequence number of any operation already in that ori-

gin's log. That is, a router only accepts operations from

an origin for RFT dissemination in contiguous increasing

sequence number order.

Should a LOUP router ever receive an operation for

RFT dissemination with a sequence number other than

the next contiguous sequence number, or should a tem-

porary partition occur between erstwhile single-hop-

neighbor routers, LOUP may need to recover missing

operations for the origin in question. A LOUP router

does so by communicating the next sequence number

it expects for each origin's log to its current RFT par-

ent. LOUP includes this information in Child messages,

which routers send their parents for RFT construction

and maintenance, as described above. Should an RFT

parent �nd that it holds operations in a log that have not

yet been seen by its RFT child, it forwards the operations

in question to that child.

LOUP requires that the topology within an AS remains

stable long enough for LOUP to establish parent-child

adjacencies with its Child messages. So long as this con-

dition holds, LOUP's single-hop TCP connections cou-

pled with its log mechanism guarantee reliable dissem-

ination of operations down the RFT. Topology changes

may temporarily disrupt the RFT, but all data will even-

tually reach the entire AS.

When a BR wishes to distribute a route update or with-

drawal, it acts as an origin: it adds this operation to its

log with the next unused sequence number, and sends it

down the RFT. As routers receive the operation, they ap-

ply it to their logs. When all operations are eventually

activated the end effect is the same as that of full-mesh

iBGP because the origin BR disseminates its update or

withdrawal to every router in the AS, just as full-mesh

iBGP does.

7 EVALUATION

We evaluated SOUP and LOUP to examine their correct-

ness, scalability, and convergence speed. To be correct

they must:

� always converge to the same solution as full-mesh

iBGP�doing so guarantees no persistent oscillations

if eBGP policy obeys AR; and

� not create transient loops, so long as the underlying

IGP's routes are loop-free.

We assess scalability by asking:

� How is the CPU load distributed between routers?

� How are FIB changes distributed? Is the FIB updated

more frequently than with iBGP?

� How much churn is propagated to neighboring ASes?

� What is the actual cost of processing updates? Can

bursts of updates be handled quickly enough?

� Can the implementation hold the global routing table

in a reasonable memory footprint? Neither SOUP nor

LOUP hides information, so how well does it compare

to BGP with RRs?

Finally, we consider the delay and stability behavior of

these protocols during convergence, and compare them

with the alternate loop-free strategy of injecting external

routes into DUAL:

� How do the convergence times of SOUP and LOUP

compare? How long does DUAL take to converge

when conveying external routes?

� Does injecting external routes into DUAL render the

network unstable? What is the cost when an internal

link comes up or down?

7.1 Methodology

We implemented LOUP, SOUP, iBGP with RRs and a

generic �ooding protocol that we will call BST* in a

purpose-built event-driven network simulator.5 We also

implemented a version of DUAL that injects external

5We wanted to implement BST, but there is no clear spec,
so it probably differs from BST in some respects.

9



.05 .15 .25 .351

10

100

1000

10000
n
u
m

b
er

 o
f 

ro
u
te

rs
LOUP

.05 .15 .25 .35
time (s)

BST*

.05 .15 .25 .35

iBGP + RRs
New exit

Old exit

Dropped

Loop

Figure 7: Transients on update (less connected)
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Figure 8: Transients on withdrawal (less connected)

routes, so it can be used as a loop-free iBGP replacement.

In addition we implemented LOUP for Quagga [14], and

compare it to Quagga's iBGP implementation.

We have explored the behavior of SOUP and LOUP

on a wide range of synthetic topologies, including grids,

cliques, and trees. These scenarios included varying de-

grees of link and router failure and the presence of MED

attributes. In all cases the two protocols required no ex-

plicit con�guration and converged to the same solution

as full-mesh iBGP.

To illustrate the behavior of the protocols in a realistic

scenario, we simulate a network based on that of Hurri-

cane Electric (HE), an ISP with an international network.

We use publicly available data: HE's backbone topology

(including core router locations) and iBGP data that re-

veal all next hops in the backbone [1]. These next hops

are the addresses of either customer routers or customer-

facing routers. We assume there is an attachment point in

the geographically closest POP to each distinct next hop,

create a router for each attachment point, and assign it

to the closest backbone router. For iBGP-RR, we place

RRs on the core routers and connect them in a full mesh.

Recent studies suggest this model is not unrealistic [4].

We explore two different levels of redundancy. In the

baseline redundancy case all clients in a POP connect

to two aggregation routers, which in turn connect to the

core router. In the more redundant case each aggregation

router is additionally connected to the nearest POP. Un-

less explicitly speci�ed all simulation results are from the

more connected case.

We model speed-of-light propagation delay and add a

uniform random processing delay in [0, 10] ms. We do

not, however, model queues of updates that might form

in practice, so our simulations should produce shorter-
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Figure 9: Transients on update (more connected)
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Figure 10: Transients on withdrawal (more connected)

lived transients than might be seen in real backbones.

In the case of DUAL, we inject eBGP routes into

DUAL bymapping the BGP path attribute list to a DUAL

metric, and then allow DUAL to distribute these routes

internally as it normally does.

7.2 Correctness

To examine transient loops we compare the behavior of

LOUP, BST*, and iBGP in two scenarios involving a

single pre�x: the announcement of a new �best� route

for a pre�x, and the withdrawal of one route when two

routes tie-break on IGP distance. We compare both the

less redundant and the more redundant topologies to ob-

serve the effect of increased connectivity. Figs. 7 and 9

show the protocols' behavior when a single BR propa-

gates an update, and all routers prefer that update to a

route they are already using for the same pre�x. As a re-

sult, this update triggers a withdrawal for the old route.

And Figs. 8 and 10 show the protocols' behavior in the

tie-break withdrawal case.

We are interested in how the pre�x's path from each

router evolves over time. De�ne the correct BR before

the change occurs as the old exit and the correct BR after

the change occurs and routing converges as the new exit.

In these four �gures, we introduce the initial change at

time t = 0.1 seconds and every 100 ms we check every

router's path to the destination. Either a packet correctly

reaches the new BR, still reaches the old BR, is dropped,

or encounters a loop. The y-axis shows the number of

routers whose path has each outcome. We plot the mean

of 100 such experiments, each with randomly chosen

BRs as the old and new exits.

Figs. 7 and 9 con�rm that LOUP incurs no transient

loops or black holes and its convergence time is similar to
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that of the other protocols. BST* and iBGP-RR perform

as expected; BST* does not cause black holes, but IBGP-

RR causes both loops and black holes. On the less con-

nected topology, there is limited opportunity for races to

propagate far, so BST incurs relatively few loops. When

it does loop, many paths are affected - the BST results

have high variance. The more redundant the network, the

more opportunity there is for BST to cause loops, as is

evident from Fig. 9.

Figs. 8 and 10 demonstrate the importance of en-

forcing ordering on withdrawals. LOUP does not cause

loops, but it takes longer to converge because the with-

drawal �rst must propagate to the �tie� point and then

be activated along the reverse path. All other protocols

loop transiently because the BR immediately applies the

withdrawal resulting in a loop like that in Fig. 3.

In the interest of brevity we omitted graphs for DUAL

and SOUP, but neither incurred transient loops. We ex-

amine their convergence latency separately below.

7.3 Convergence Delay

How quickly do the various protocols propagate changes

to all routers? We repeated the single-update and single-

withdrawal experiments from Fig. 10 for 100 passes per

protocol. We collected the median and 90th percentile

delays of all passes and present their CDFs. We also

present results for DUAL and SOUP. The results are in

Figs. 11 and 12. When disseminating good news, all the

protocols incur similar delay.

Fig. 12 shows the price paid to avoid looping with bad

news. BST and iBGP converge fastest, but cause tran-

sient loops. SOUP performs worst, as it cannot short-cut

the activation of withdrawals, propagating them all the

way to the end of the AS, and only then activating. In

fact, if one or two routers were slower, this effect would

be exacerbated. Both LOUP and DUAL overcome this
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Figure 13: DUAL instability

problem, but DUAL's �ooding nature means that it is

a little slower to converge. When frozen, each DUAL

router must collect replies from all its neighbors before

terminating the diffusing computation, while a LOUP

router only needs to wait for its children on the RFT. This

is the reason for the gap between DUAL and LOUP.

7.4 Stability

The most signi�cant problem with distributing external

routes into DUAL is the increased cost of IGP changes.

After LOUP, SOUP or BST has propagated external

routes through the network, any route change in the IGP

will not cause additional churn�the IGP will recon-

verge, but there will be no need to re-exchange external

routing information. If a link fails with DUAL, a new

path is calculated for each destination, including the ex-

ternal ones, as each may be injected from a different sub-

set of BRs. To do this requires a great deal of commu-

nication. In some cases a single link's failure may cause

all external routes to be frozen and DUAL will have to

re-converge for each of them.

We injected 5000 routes from the HE data set into

DUAL�these relate to 300 different pre�xes. We then

failed one link and observed the traf�c generated that

relates to these external pre�xes. We repeated this pro-

cess for every core link and 300 randomly chosen access

links. Fig. 13 shows a CDF of the results. For 50% of the

access links, a failure results in more than 2000 messages

being exchanged and 10% of link failures generate more

than 10000 messages. We would expect message com-

plexity to scale linearly; for example, with a full routing

table of 300K pre�xes, we would expect 50% of core link

failures to result in more than 2 million messages being

sent.

Access link failures generate fewer messages�60%

generate none in this experiment because these BRs in-

jected no external routes. With a full routing table, all

these would have injected some routes. Of the ones that

were on the shortest-path tree for some external pre�x,

50% of link failures generated more than 300 messages.

With a full routing table, we would expect this number

to grow to around 300K messages.

We have omitted results for LOUP, SOUP and BST

because they generate no routing messages for exter-
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nal pre�xes when the IGP changes, though LOUP and

SOUP generate up to one message per neighbor to main-

tain the RFTs. iBGP does generate some churn as RRs

change preferred routes and inform their clients of the

changes, but this churn is usually insigni�cant compared

to DUAL's, and it does not manifest in this scenario.

7.5 Scalability

To what extent do the different protocols concentrate pro-

cessing load in a few routers? We take a set of 10000

routes from HE's iBGP data set, taking care to preserve

all alternatives for each pre�x we select, and inject them

rapidly into the simulated 3000 router HE network. We

rank the routers in terms of messages sent or received,

and show the 750 busiest in Figs. 14, 15, and 16. Mes-

sage counts are a measure of communication cost, and

update counts are a measure of the cost of running the

BGP decision process.

BST's �ooding means it incurs greater communica-

tion cost and processes many updates. LOUP and SOUP

are a little more expensive than iBGP, as route re�ectors

hide some updates from their clients. As the HE route

set does not include many external withdrawals, tell-me-

when kicks in rarely, so LOUP and SOUP perform al-

most identically. DUAL's overall costs are similar, but it

performs more processing in well-connected core routers

as it explores alternatives.

Control-plane overhead is only one aspect to scalabil-

ity: on some routing hardware, FIB changes are the rout-

ing bottleneck [6]. Generally FIB adds or deletes where

the trie may need to be rebalanced are more costly than

in-place updates to existing entries.

Figs. 17 and 18 show FIB operations during the ex-

periment above. All protocols except DUAL perform a

similar number of operations. Although iBGP processes

fewer messages, those messages are more likely to cause

expensive FIB adds or deletes. Route re�ectors hide in-

formation. Doing so can lead to path exploration dur-

ing which the FIB is modi�ed multiple times, but it may

also shield RRs' clients from a number of FIB updates.

SOUP, LOUP, and BST exhibit virtually identical behav-

ior because they exchange the same information.

The DUAL results show the number of times DUAL

changes successor. It can do so often, as its loop-

avoidance mechanism needs to freeze and then unfreeze

portions of the network when updates for the same pre�x

propagate at the same time.

Fig. 19 shows FIB operations at the BRs only. When

a BR changes route, it usually noti�es its external peers,

so this is a measure of churn passed on to eBGP. DUAL

is signi�cantly worse than the other protocols here, as it

explores more alternatives before converging.

To evaluate CPU usage we run our Quagga-based

LOUP implementation using a simple topology consist-

ing of three single-core 2Ghz AMD machines (A, B and

C) connected with gigabit links. In BGP's case we open

an eBGP session from A to B and an iBGP session from

B to C. In LOUP's case we perform no con�guration.

We inject one view of the global routing table (�400,000

routes) at A, which forwards to B, which forwards to C.

We look at the load on B as it must both receive and send

updates, and does the most work.

Task LOUP BGP

Updating the RIB 1981 5042

Updating the FIB 6544 16874

Serialization 3222 7477

Low-level IO 7223 6447

Other 2824 5369

Total (million cycles) 21797 41212

Total (seconds) 10.8 20.6

Both protocols spend most of the time updating the

FIB and doing low-level IO. Running the decision pro-

cess and updating the RIB data structures is almost neg-

ligible. LOUP is much faster than BGP, but it seems

that Quagga's BGP spends unnecessary time updating

the FIB, so this effect is not fundamental.

LOUP's memory usage, below, depends directly on

the number of routes for a pre�x that tie-break on IGP

distance, as other alternatives will be withdrawn.

BGP (1) LOUP (1) LOUP (2) LOUP (3)

73.2 MB 46.7 MB 68.2 MB 89.8 MB

Memory usage is shown when we injected the same

route feed from 1, 2 and 3 different BRs in our exper-

imental network. We only present results for BGP with

one view, because the RRs hide all but the winning routes

from their clients. Because BGP has to maintain multiple

RIBs for each session, its memory footprint is greater

than LOUP's. Based on HE's data, in a large ISP there

will be on average 5-6 alternatives for a pre�x. LOUP's

memory usage grows linearly, so we expect the protocol

to run easily in a network like HE's on any modern router

with 200 MB or more of RAM.

8 RELATED WORK

There has been signi�cant work on carefully disseminat-

ing routing updates so as to improve the stability of rout-

ing and ameliorate pathologies such as loops and black

holes. We have discussed DUAL's approach to loop-

free IGP routing [8], BST's reliable �ooding approach to

intra-AS route dissemination [15], and RCP's centralized

approach to intra-AS route dissemination [3] at length in

Sections 2 and 3. To recap: LOUP tackles loop-free intra-

AS dissemination of externally learned routes, a differ-

ent problem than loop-free IGP routing, as taken on by

DUAL and oFIB [22]; the non-convexity of BST's �ood-

ing causes transient loops that LOUP avoids; and RCP

centralizes the BGP decision process for an AS, but does

12
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Figure 17: FIB adds and deletes
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Figure 19: FIB operations (BRs)

not propagate the results synchronously to all routers,

and so does not achieve the freedom from transient loops

and black holes that LOUP does. We note that loop-

free IGPs like DUAL (and its implementation in EIGRP)

complement LOUP nicely: running LOUP atop DUAL

would prevent both IGP loops and transient loops present

in today's route dissemination by iBGP with RRs.

Consensus Routing [17] adds Paxos-based agreement

to eBGP to avoid using a route derived from an update

until that update has propagated to all ASes. LOUP's or-

dered, reliable dissemination of updates along an RFT

is lighter-weight than Paxos-based agreement, yet still

avoids introducing loops within an AS during dissem-

ination. Bayou's logs of sequence-number-ordered up-

dates [24] and ordered update dissemination [21] in-

spired the analogous techniques in LOUP; we show how

to apply these structures to achieve robust route dissemi-

nation, rather than weakly consistent storage.

In prior work [13], we �rst proposed ordered, RFT-

based dissemination as a means to avoid transient loops.

In this paper, we have additionally described SOUP and

LOUP, full routing protocols built around these princi-

ples, proven that SOUP never causes forwarding loops,

and evaluated the scalability of a full implementation of

LOUP atop the Quagga open-source routing platform.

9 CONCLUSION

The prevalence of real-time traf�c on today's Internet

demands greater end-to-end path reliability than ever

before. The vagaries of iBGP with route re�ectors�

transient routing loops, route instability, and a brittle,

error-prone reliance on con�guration�have sent net-

work operators running into the arms of MPLS, in an

attempt to banish iBGP and its ills from the core of

their networks. In exploring the fundamental dynamics

of route dissemination, we have articulated why iBGP

with route re�ectors and BST introduce such patholo-

gies. Based on these fundamentals, we have described

a simple technique�ordered dissemination of updates

along a reverse forwarding tree�that avoids them. And

we have illustrated how to apply this technique in prac-

tice. SOUP is provably loop-free, but incurs latency as-

sociated with network-wide backward activation of less

preferable routes. LOUP converges faster than SOUP by

short-cutting backward activation in common cases. Dur-

ing convergence after a single update from a single BR,

LOUP prevents forwarding loops. But as LOUP may in-

cur loops under heavy update churn for the same pre�x

from multiple BRs, it trades absolute loop-freedom for

faster convergence. Our evaluation in simulation has re-

vealed LOUP to be a practical, scalable routing proto-

col, which we have also seen through to a prototype im-

plementation for Quagga. While earlier work has drawn

upon consistency techniques from the distributed sys-

tems community to improve the robustness of routing,

SOUP and LOUP achieve strong robustness with lighter-

weight mechanisms. As such, we believe they offer com-

pelling alternatives to a BGP-free core.
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