Parallelism in the Cloud: MapReduce

CS M038/GZ06: Mobile and Cloud Computing
Kyle Jamieson

Department of Computer Science
University College London
Motivation

- Even back in 2004, many web data sets were very large (10s–100s of terabytes)
 - Could not analyze them on a single server
 - **Too much data, computation; using a supercomputer would be expensive**

- **Standard architecture has emerged**
 - Cluster of commodity machines
 - Gigabit Ethernet interconnect

- **How to organize computation on this architecture?**
 - Mask issues such as hardware failure
Cluster architecture

1 Gbps between any pair of nodes in a rack

2-10 Gbps backbone between racks

Each rack contains 16 to 64 nodes

Backbone switch

ToR Switch

ToR Switch
Stable storage

- **First order problem:** *if nodes can fail, how can we store data persistently?*

- **Answer:** A *distributed file system*
 - Provides a global file namespace abstraction
 - Provides a unified view of the file system and hides the details of replication and consistency management
 - Examples: Google GFS; Hadoop File System (HDFS)

- **Typical usage pattern**
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common
GFS distributed file system

• Each file is split into contiguous 64 Mbyte *chunks*

• GFS cluster is made up of two types of nodes:
 1. Large number of *Chunkservers*
 • Each chunk replicated, usually 3× (GFS)
 • Try to keep replicas in chunkservers in different racks (why?)

 2. One *Master node*
 • Stores metadata; might be replicated

• GFS *client library* links into applications
 – Talks to master to find chunk servers
 – Then connects directly to chunkservers to access data
MapReduce

• What is the problem they are solving? Large-scale data processing
 – Recall, want to use 10^3–10^4 CPUs across 10^2–10^3 machines
 • But don’t want to bear the burden of managing computation

• MapReduce architecture provides
 – Automatic parallelization and distribution
 – Fault tolerance; I/O scheduling; monitoring, status updates

• What are map, reduce? Programming model from LISP and other functional languages
 – Many problems can be phrased this way
 – Easy to distribute across nodes
 – Nice retry/failure semantics
Map and reduce in LISP (Scheme)

- (map \textit{f list})
 (map square '(1 2 3))
 (1 4 9)

- (reduce \textit{f initval list})
 (reduce + 0 '(1 4 9))
 (+ 9 (+ 4 (+ 1 0)))
 14
Example application: Word count

• We have many large files of words
 – Problem: Count the number of times each distinct word appears in the set of files
 – Similar to analyzing web server logs to find popular URLs

• Case 1: All files fit in memory
• Case 2: Files too large for memory, but all (word, count) pairs fit in memory
• Case 3: Files on disk, too many distinct words to fit just the unique words in memory
Many of the above computations can occur in parallel.
MapReduce

• Input: a set of key/value pairs

• User supplies two functions:
 – map(k1, v1) \(\rightarrow\) list(k2, v2)
 – reduce(k2, list(v2)) \(\rightarrow\) list(v2)

• (k2, v2) is an **intermediate** key/value pair

• Output is the set of (k2, v2) pairs
Word count using MapReduce

map(key, value):
 // key: document name
 // value: text of document
 foreach word w in value:
 EmitIntermediate(w, 1)

reduce(key, values):
 // key: a word
 // values: an list of counts
 result = 0
 foreach count v in values:
 result += v
 Emit(key, result)
Computation model

MapReduce handles the grouping of intermediate pairs by key
Implementation overview

- Typical cluster: 100s of 2-CPU machines, 4–8 GB RAM
 - **Limited bisection bandwidth**: divide network into any two parts; take minimum bandwidth between parts
 - GFS manages input and output data
- MapReduce Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines
- Implementation is a C++ library linked into user programs
MapReduce execution overview

Input files (in GFS)

Map phase

Intermediate files (on local disks)

Reduce phase (R = 2 workers)

Output files (R files in GFS)
How many map and reduce jobs?

- M map jobs, R reduce jobs

- Rule of thumb: $M, R \gg$ cluster size
 - Improves dynamic load balancing, speeds failure recovery
 - Master needs to make $O(M + R)$ scheduling decisions (one for each map or reduce task)
 - Master needs to keep $O(M \times R)$ state in memory (names of R intermediate files for each of M map tasks)
 - One GFS chunk per map job is common

- Usually $R < M$, because output is spread across R files
Parallel execution in MapReduce

Handles failures automatically, *e.g.*, restarts tasks if a node fails; runs multiple copies of the same task to avoid a slow task slowing down the whole job.
Coordination

- Data structures maintained at the master
 - For each map task and reduce task:
 1. Task status: (*idle, in-progress, completed*), starts *idle*
 2. Identity of machine
 - Idle tasks scheduled as workers become available

- Master pings workers periodically in order to detect failures
Fault tolerance

• Map worker failure
 – Map tasks **in-progress/completed** at worker reset to **idle**
 – Reduce workers notified when task rescheduled on another worker

• Reduce worker failure
 – Only **in-progress** tasks are reset to idle

• Master failure
 – MapReduce task is aborted and client is notified
 – Rare occurrence because there is only one master
Semantics in the presence of failures

• **Claim:** Distributed MapReduce implementation produces **same output** as a **non-faulting local execution** (with deterministic operators)

• **Atomic commits** of map/reduce tasks: Either it all happens **exactly once, or no effects** are observable.
 – **Map tasks:** worker sends **completion message** to master with names of R temporary files after **writes finish**; master accepts only one.

 – **Reduce task:** **Atomic rename** of temporary output file to final output file after **writes finish**; file system guarantees just one execution.
Combiners

• Often a map task will produce many pairs of the form (k, v1), (k, v2), ... for the same key k
 – e.g., popular words in word count example

• Can save network time by “pre-aggregating” at map worker
 – combine(k1, list(v1)) → v2
 – Usually same as reduce function

• Works only if reduce function is commutative and associative
Partitioning function

- Inputs to map tasks are created by contiguous splits of input file.
- For reduce, we need to ensure that records with the same intermediate key end up at the same worker.
- System uses a default partition function e.g., hash(key) mod R.
- Sometimes useful to override:
 - e.g., suppose we are counting URL access frequencies.
 - Partitioning function $\text{hash(\text{hostname(URL)\ mod\ } R)}$ ensures all URLs from a given host end up in the same output file.
Performance: Stragglers

• Machine that takes unusually long time to complete one of the last few map or reduce tasks in a computation.

• Why does this happen? Bad disk: errors slow down. CPU load high. Configuration bug disables CPU cache.

• **Fix:** When close to completion, master schedules *backup tasks*: executions of remaining in-progress tasks.
 – Task completes when *either primary or backup* completes.
 – Atomicity properties above guarantee correctness.
Data transfer rates for *sort* program

(a) Normal execution

Compare: *grep* program
Effect of disabling backup tasks

(a) Normal execution (b) No backup tasks
Effect of machine failures

(a) Normal execution

(b) No backup tasks

(c) 200 tasks killed
2003–2004: MapReduce catches on

- Many uses: machine learning, Google News, Google Product Search, extraction of data for reports, extraction of geographical locations from large corpus of web pages for localized search

- Processed three Petabytes of data in August 2004!

- Rewrote the indexing system that produces data structures for Google web search
 - Processes documents retrieved by crawler (>20 TB), stored in GFS
 - Simpler, smaller indexing code

<table>
<thead>
<tr>
<th>MapReduce jobs in August 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of jobs</td>
</tr>
<tr>
<td>Average job completion time</td>
</tr>
<tr>
<td>Machine days used</td>
</tr>
<tr>
<td>Input data read</td>
</tr>
<tr>
<td>Intermediate data produced</td>
</tr>
<tr>
<td>Output data written</td>
</tr>
<tr>
<td>Average worker machines per job</td>
</tr>
<tr>
<td>Average worker deaths per job</td>
</tr>
<tr>
<td>Average map tasks per job</td>
</tr>
<tr>
<td>Average reduce tasks per job</td>
</tr>
<tr>
<td>Unique map implementations</td>
</tr>
<tr>
<td>Unique reduce implementations</td>
</tr>
<tr>
<td>Unique map/reduce combinations</td>
</tr>
</tbody>
</table>
PageRank: Random walks on the web

• How can we measure how popular a web page is?

• If a user starts at a random web page and surfs by clicking links and randomly entering new URLs, what is the probability that s/he will arrive at a given page?

• The PageRank of a page captures this notion
 – More “popular” or “worthwhile” pages get a higher rank
PageRank: Visually
PageRank: Defined

• Given page \(x\) with incoming links \(t_1 \ldots t_n\), where
 – \(C(t_i)\) is the out-degree of \(t_i\)
 – \(\alpha\) is probability of randomly entering new URL (usually 0.15)
 – \(N\) is the total number of nodes in the graph

• Can’t compute directly: recursively defined in PR

\[
PR(x) = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}
\]
PageRank computation: Intuition

• Calculation is iterative: maintain an estimate of PageRank at iteration i: PR_i

• Sketch of algorithm
 – Start with seed PR_i values
 – PR_{i+1} is based on PR_i: each page distributes PR_i “credit” to all pages it links to
 – Each target page adds up “credit” from in-bound links to compute PR_{i+1}
 – Iterate until values converge

• Each page distributes its PR_i to all pages it links to. Linkees add up their awarded rank fragments to find their PR_{i+1}
Map step: break page rank into even fragments to distribute to link targets

Reduce step: add together fragments into next PageRank

Iterate for next step...
Phase 1: Parse HTML

- **Map** task takes *(URL, page content)* pairs and maps them to *(URL, (init-rank, list-of-urls))*
 - *init-rank* is the “seed” PageRank for URL
 - *list-of-urls* contains all pages pointed to by URL

- **Reduce** task is just the identity function
Phase 2: PageRank distribution

- **Map** task takes \((URL, (cur_rank, url_list))\)
 - For each \(u\) in url_list, emit \((u, cur_rank/|url_list|)\)
 - Also emit \((URL, url_list)\) to carry the points-to list along through iterations

- **Reduce** task gets \((URL, url_list)\) and many \((URL, val)\) values
 - Sum \(vals\), weight with \((1-\alpha)\), add \(\alpha(1/N)\) term
 - Emit \((URL, (new_rank, url_list))\)

- Iterate until finished

\[
PR(x) = \alpha \left(\frac{1}{N} \right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}
\]
PageRank conclusions

- MapReduce runs the “heavy lifting” in iterated computation

- Key element in parallelization is independent PageRank computations in a given step

- Parallelization requires thinking about minimum data partitions to transmit (e.g., compact representations of graph rows)
 - Even the implementation shown today doesn't actually scale to the whole Internet; but it works for intermediate-sized graphs
Follow-on readings

Percolator, Peng and Dabek (USENIX OSDI ’10)

- System for incrementally processing updates to a large data set
- Deployed to create the Google web search index
- Replaces batch-based indexing with incremental processing
- Reduces the average age of documents in Google search results by 50%.
• Student presentation slots are now in calendar

• Regardless of presentation slot, must submit **final** slides by start of lecture (3:05 PM) on 14th March (next Friday)
 – No changes allowed after submission, for fairness

• **Next time:** Preprint on indoor radar research, previously distributed as hardcopy