Percolator

Large-Scale Incremental Processing
using Distributed Transactions and
Notifications

D. Peng & F. Dabek

Motivation

Built to maintain the Google web search index

Need to maintain a large repository, but cost
of updates should be independent of size

Must be able to maintain data invariants
Must scale horizontally (number of machines)

Must be easy for a programmer to reason
about concurrency

Non-Goals

* Not required to be real-time (latency doesn’t
matter)

* Availability secondary to scalability

EXISTING METHODS

MapReduce?

* Hides concurrency from the programmer
* Scales and performs very well

But...

* No incremental updates — all output is thrown
away when the repository is updated

* Cost of update is proportional to size of the
repository

Traditional DBMS?

* Provides incremental updates

* Concurrency is a non-issue for programmer
* Provides transactions and data constraints
But...

e Scalability (CPU, storage) usually limited to a
few hosts

 Cannot handle larger data sets (tens of
petabytes)

BigTable

e Distributed DBMS

* Very scalable in terms of throughput and storage
using many machines

* Provides incremental updates
But...

e No transactions across rows — hard to maintain
data invariants

* Provides few abstractions — essentially just
structured storage

BigTable

Dataset split into blocks
Each block mapped to a BigTable ‘tablet’

BigTable uses GFS for storage (high
availability)

Provides simple transactions and consistency
guarantees for single rows

Keeps revision history of individual cells

PERCOLATOR

What is Percolator?

Large-Scale system for incremental processing
Built on top of a BigTable distributed database

Each machine in cluster runs:
— GFS Chunkserver

— BigTable tablet server

— Percolator worker

Provides useful abstractions to the programmer:
— ‘Observers’
— Multi-row transactions

Overview

Data is written to BigTable by external process

Programmer chooses columns for Percolator
to watch

Changes to watched columns trigger small
user programs — ‘observers’

These observers can then update other parts
of the dataset, triggering further observers

Each observer can atomically update multiple
fields (all or nothing)

Observers

Piece of user code with conditions for when to
run it

A column is added for every watched column
in a table, which is set when the a cell is
updated

Each Percolator worker continuously scans
random subsets of the repository for changes

Runs observer if flag is set, then resets flag

Transactions

A single observer is likely to modify values
across several rows/tables, how to guarantee
consistency?

Want to provide ‘Snapshot Isolation
Semantics’ — easy to reason about

Need a high-performance locking service
— BigTable fits

Transactions ensure that if two observers
touch the same rows, only one can commit

Two-Phase Commit

Mechanism for coordinating writes

Do all writes in two stages — lock and commit
Try to acquire lock on every row

Iff all locks succeed, then commit changes

Lock and write are implemented in one
operation using BigTable time dimension

Commit updates current data pointer

Two-Phase Commit (cont’d)

Koy |7 [baldota |batoce |babwre

6 data @ 5
5 f10

6 data @ 5
5 £2

Two-Phase Commit (cont’d)

Koy |7 [baldota |batoce |babwre

7 £3 LOCK
6 data @ 5
5 f10

6 data @ 5

Two-Phase Commit (cont’d)

Koy |7 [baldota |batoce |babwre

7 £3 LOCK
6 data @ 5
5 f10

7 £9 LOCK @ Bob.bal
6 data @ 5
5 £2

Two-Phase Commit (cont’d)

—lmm

data @ 7
7 £3
6 data @ 5
5 £10
7 £9 LOCK @ Bob.bal
6 data @ 5

5 £2

Two-Phase Commit (cont’d)

—lmm

data @ 7
£3

data @ 5
£10

7
6
5
8 data @ 7
7
6
5

£9

data @ 5
£2

Transactions (cont’d)

Each transaction has a start and commit timestamp
requested from an oracle
For writes:

— if transaction sees another write after its start timestamp it
aborts

— if transaction sees another lock at any timestamp it aborts
— otherwise, initiate Two-Phase commit

For reads:

— if locks prior to start timestamp, block

— otherwise read the data value corresponding to the latest write
record

Synchronising on primary allows any client to clean any lock

EVALUATION

Evaluation Method

Compared to MapReduce for web index
Overhead of Percolator relative to BigTable

Synthetic benchmarks (TPC-E)
Resilience to failure

Clustering latency (s)

n
o
o

1000

tn
o
o

—&— Mapreduce
— -@— - Percolator

=]

4...1....|.......C.r.—.—.—._._._.TTF.....‘.'...l.........l

10% 20% 30% 40%
Crawl rate (Percentage of repository updated per hour)

Percolator vs MapReduce

Remove duplicates from a billion document repository by clustering.
Clustering is from a random value. Average cluster has 3.3 documents.

Percolator processes fewer documents per unit time, but only processes
updated documents.

50%

15513 14590 0.94
31003 7232 0.23

Percolator vs BigTable

Worst case for Percolator - constant number of operations for commit.

Write incurs 3 RPC operations for lock handling.
Additional overhead comes from extra metadata.

TPS

12000

10000 —

8000

6000 —

| ' ' ' ' |
5000 10000
cores

Percolator vs DBMS

TPC-E is a widely recognized DBMS benchmark which simulates a brokerage firm with
customers who perform trades, market search and account enquiries.

Current single-host record is 3183 TPS, Percolator is less efficient per host, but scales
better.

Transactions per Second

60.0

50.0

40.0

30.0

20.0

10.0

0.0

16:20 16:40 17:00 17:20 17:40 18:0

Percolator vs Failures

Kill a third of the 15 BigTable tablet servers and allow them to restart.
Performance drops by approximately 1/3.

Tradeoffs

Blocking API calls
— Makes programming easier

— Individually, worker processes are limited to a
single task

— Achieve parallelism by running many workers

Sacrifice performance for near-linear
scalability

Programmer must handle transactions
Sacrifices availability for stronger consistency

Future Work

 Percolator overhead is 30x that of DBMS for a
single host

— What overhead is fundamental to distributed
storage systems?

— What is due to inefficiencies in the design?

* Percolator sacrifices availability (e.g. cross-
datacentre replication) for consistency

— Is this necessary?

1N

Questions?

