
Percolator 

Large-Scale Incremental Processing 
using Distributed Transactions and 

Notifications 

D. Peng & F. Dabek 



Motivation 

• Built to maintain the Google web search index 

• Need to maintain a large repository, but cost 
of updates should be independent of size 

• Must be able to maintain data invariants 

• Must scale horizontally (number of machines) 

• Must be easy for a programmer to reason 
about concurrency 



Non-Goals 

• Not required to be real-time (latency doesn’t 
matter) 

• Availability secondary to scalability 



EXISTING METHODS 



MapReduce? 

• Hides concurrency from the programmer 

• Scales and performs very well 

But… 

• No incremental updates – all output is thrown 
away when the repository is updated 

• Cost of update is proportional to size of the 
repository 



Traditional DBMS? 

• Provides incremental updates 

• Concurrency is a non-issue for programmer 

• Provides transactions and data constraints 

But… 

• Scalability (CPU, storage) usually limited to a 
few hosts 

• Cannot handle larger data sets (tens of 
petabytes) 



BigTable 

• Distributed DBMS 

• Very scalable in terms of throughput and storage 
using many machines 

• Provides incremental updates 

But… 

• No transactions across rows – hard to maintain 
data invariants 

• Provides few abstractions – essentially just 
structured storage 

 



BigTable 

• Dataset split into blocks 

• Each block mapped to a BigTable ‘tablet’ 

• BigTable uses GFS for storage (high 
availability) 

• Provides simple transactions and consistency 
guarantees for single rows 

• Keeps revision history of individual cells 



PERCOLATOR 



What is Percolator? 

• Large-Scale system for incremental processing 

• Built on top of a BigTable distributed database 

• Each machine in cluster runs: 
– GFS Chunkserver 

– BigTable tablet server 

– Percolator worker 

• Provides useful abstractions to the programmer: 
– ‘Observers’ 

– Multi-row transactions 



Overview 

• Data is written to BigTable by external process 

• Programmer chooses columns for Percolator 
to watch 

• Changes to watched columns trigger small 
user programs – ‘observers’ 

• These observers can then update other parts 
of the dataset, triggering further observers 

• Each observer can atomically update multiple 
fields (all or nothing) 



Observers 

• Piece of user code with conditions for when to 
run it 

• A column is added for every watched column 
in a table, which is set when the a cell is 
updated 

• Each Percolator worker continuously scans 
random subsets of the repository for changes 

• Runs observer if flag is set, then resets flag 



Transactions 

• A single observer is likely to modify values 
across several rows/tables, how to guarantee 
consistency? 

• Want to provide ‘Snapshot Isolation 
Semantics’ – easy to reason about 

• Need a high-performance locking service 
– BigTable fits 

• Transactions ensure that if two observers 
touch the same rows, only one can commit 



Two-Phase Commit 

• Mechanism for coordinating writes 

• Do all writes in two stages – lock and commit 

• Try to acquire lock on every row 

• Iff all locks succeed, then commit changes 

• Lock and write are implemented in one 
operation using BigTable time dimension 

• Commit updates current data pointer 



Two-Phase Commit (cont’d) 

Key T bal:data bal:lock bal:write 

Bob 
6 data @ 5 

5 £10 

Joe 
6 data @ 5 

5 £2 



Two-Phase Commit (cont’d) 

Key T bal:data bal:lock bal:write 

Bob 
7 £3 LOCK 

6 data @ 5 

5 £10 

Joe 
6 data @ 5 

5 £2 



Two-Phase Commit (cont’d) 

Key T bal:data bal:lock bal:write 

Bob 
7 £3 LOCK 

6 data @ 5 

5 £10 

Joe 
7 £9 LOCK @ Bob.bal 

6 data @ 5 

5 £2 



Two-Phase Commit (cont’d) 

Key T bal:data bal:lock bal:write 

Bob 

8 data @ 7 

7 £3 

6 data @ 5 

5 £10 

Joe 
7 £9 LOCK @ Bob.bal 

6 data @ 5 

5 £2 



Two-Phase Commit (cont’d) 

Key T bal:data bal:lock bal:write 

Bob 

8 data @ 7 

7 £3 

6 data @ 5 

5 £10 

Joe 

8 data @ 7 

7 £9 

6 data @ 5 

5 £2 



Transactions (cont’d) 

• Each transaction has a start and commit timestamp 
requested from an oracle 

• For writes: 
– if transaction sees another write after its start timestamp it 

aborts 
– if transaction sees another lock at any timestamp it aborts 
– otherwise, initiate Two-Phase commit 

• For reads: 
– if locks prior to start timestamp, block 
– otherwise read the data value corresponding to the latest write 

record 

• Synchronising on primary allows any client to clean any lock 



EVALUATION 



Evaluation Method 

• Compared to MapReduce for web index 

• Overhead of Percolator relative to BigTable 

• Synthetic benchmarks (TPC-E) 

• Resilience to failure 



Percolator vs MapReduce 

Remove duplicates from a billion document repository by clustering. 
Clustering is from a random value. Average cluster has 3.3 documents. 

Percolator processes fewer documents per unit time, but only processes 
updated documents. 

 



Percolator vs BigTable 
Worst case for Percolator - constant number of operations for commit. 

Write incurs 3 RPC operations for lock handling. 

Additional overhead comes from extra metadata. 

BigTable Percolator Relative 

Read/s 15513 14590 0.94 

Write/s 31003 7232 0.23 



Percolator vs DBMS 
TPC-E is a widely recognized DBMS benchmark which simulates a brokerage firm with 
customers who perform trades, market search and account enquiries. 

Current single-host record is 3183 TPS, Percolator is less efficient per host, but scales 
better. 



Percolator vs Failures 

Kill a third of the 15 BigTable tablet servers and allow them to restart. 

Performance drops by approximately 1/3. 



Tradeoffs 

• Blocking API calls 
– Makes programming easier 

– Individually, worker processes are limited to a 
single task 

– Achieve parallelism by running many workers 

• Sacrifice performance for near-linear 
scalability 

• Programmer must handle transactions 

• Sacrifices availability for stronger consistency 



Future Work 

• Percolator overhead is 30x that of DBMS for a 
single host 

– What overhead is fundamental to distributed 
storage systems? 

– What is due to inefficiencies in the design? 

• Percolator sacrifices availability (e.g. cross-
datacentre replication) for consistency 

– Is this necessary? 



FIN 
Questions? 


