
Distributed Hash Tables: Chord
Brad Karp

(with many slides contributed by
Robert Morris)

UCL Computer Science

CS M038 / GZ06
6th February 2013

2

Today: DHTs, P2P

•  Distributed Hash Tables: a building block
•  Applications built atop them

•  Your task: “Why DHTs?”
– vs. centralized servers? (we’ll return to this

question at the end of lecture)
– vs. non-DHT P2P systems?

3

What Is a P2P System?

•  A distributed system architecture:
–  No centralized control
–  Nodes are symmetric in function

•  Large number of unreliable nodes
•  Enabled by technology improvements

Node

Node

Node Node

Node

Internet

4

The Promise of P2P Computing

•  High capacity through parallelism:
–  Many disks
–  Many network connections
–  Many CPUs

•  Reliability:
–  Many replicas
–  Geographic distribution

•  Automatic configuration
•  Useful in public and proprietary settings

5

What Is a DHT?

•  Single-node hash table:
key = Hash(name)
put(key, value)
get(key) -> value
– Service: O(1) storage

•  How do I do this across millions of hosts
on the Internet?
– Distributed Hash Table

6

What Is a DHT? (and why?)

Distributed Hash Table:
 key = Hash(data)
 lookup(key) -> IP address (Chord)
 send-RPC(IP address, PUT, key, value)
 send-RPC(IP address, GET, key) -> value

Possibly a first step towards truly large-scale
distributed systems
–  a tuple in a global database engine
–  a data block in a global file system
–  rare.mp3 in a P2P file-sharing system

7

DHT Factoring

Distributed hash table

Distributed application
get (key) data

node node node ….

put(key, data)

Lookup service
lookup(key) node IP address

•  Application may be distributed over many nodes
•  DHT distributes data storage over many nodes

(DHash)

(Chord)

8

Why the put()/get() interface?

•  API supports a wide range of applications
– DHT imposes no structure/meaning on keys

•  Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures

9

Why Might DHT Design Be
Hard?

•  Decentralized: no central authority
•  Scalable: low network traffic overhead
•  Efficient: find items quickly (latency)
•  Dynamic: nodes fail, new nodes join
•  General-purpose: flexible naming

10

The Lookup Problem

Internet

N1
N2 N3

N6 N5
N4

Publisher

Put (Key=“title”
Value=file data…) Client

Get(key=“title”)

?

•  At the heart of all DHTs

11

Motivation: Centralized
Lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2 N1 SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4

12

Motivation: Flooded Queries
(Gnutella)

N4 Publisher@
Client

N6

N9

N7
N8

N3

N2 N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=file data…

Lookup(“title”)

13

Motivation: FreeDB, Routed
DHT Queries (Chord, &c.)

N4 Publisher

Client

N6

N9

N7
N8

N3

N2 N1

Lookup(H(audio data))

Key=H(audio data)
Value={artist,

 album
 title,

 track title}

14

DHT Applications

They’re not just for stealing music anymore…
– global file systems [OceanStore, CFS, PAST,

Pastiche, UsenetDHT]
– naming services [Chord-DNS, Twine, SFR]
– DB query processing [PIER, Wisc]
–  Internet-scale data structures [PHT, Cone,

SkipGraphs]
– communication services [i3, MCAN, Bayeux]
– event notification [Scribe, Herald]
– File sharing [OverNet]

15

Chord Lookup Algorithm
Properties

•  Interface: lookup(key) → IP address
•  Efficient: O(log N) messages per lookup

– N is the total number of servers

•  Scalable: O(log N) state per node
•  Robust: survives massive failures
•  Simple to analyze

16

Chord IDs

•  Key identifier = SHA-1(key)
•  Node identifier = SHA-1(IP address)
•  SHA-1 distributes both uniformly

•  How to map key IDs to node IDs?

17

Consistent Hashing [Karger 97]

A key is stored at its successor: node with next higher ID

K80"

N32"

N90"

N105" K20"

K5"

Circular 7-bit
ID space

Key 5
Node 105

18

Basic Lookup

N32"

N90"

N105"

N60"

N10"
N120"

K80"

“Where is key 80?”

“N90 has K80”

19

Simple lookup algorithm

Lookup(my-id, key-id)
 n = my successor
 if my-id < n < key-id
 call Lookup(key-id) on node n // next hop
 else
 return my successor // done

•  Correctness depends only on successors

20

“Finger Table” Allows log(N)-
time Lookups

N80"

½"¼"

1/8!

1/16!
1/32!
1/64!
1/128!

21

Finger i Points to Successor of
n+2i

N80"

½"¼"

1/8!

1/16!
1/32!
1/64!
1/128!

112

N120"

22

Lookup with Fingers

Lookup(my-id, key-id)
 look in local finger table for
 highest node n s.t. my-id < n < key-id
 if n exists
 call Lookup(key-id) on node n // next hop
 else
 return my successor // done

23

Lookups Take O(log(N)) Hops

N32"

N10"

N5"

N20"
N110"

N99"

N80"

N60"

Lookup(K19)

K19

24

Joining: Linked List Insert

N36"

N40"

N25"

1. Lookup(36)
K30
K38

25

Join (2)

N36"

N40"

N25"

2. N36 sets its own
successor pointer

K30
K38

26

Join (3)

N36"

N40"

N25"

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

27

Join (4)

N36"

N40"

N25"

4. Set N25’s successor
pointer

Predecessor pointer allows link to new host
Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30

28

Failures Might Cause
Incorrect Lookup

N120"
N113"

N102"

N80"

N85"

N80 doesn’t know correct successor, so incorrect lookup

N10"

Lookup(90)

29

Solution: Successor Lists

•  Each node knows r immediate successors
•  After failure, will know first live successor
•  Correct successors guarantee correct lookups

•  Guarantee is with some probability

30

Choosing Successor List
Length

•  Assume 1/2 of nodes fail
•  P(successor list all dead) = (1/2)r

–  i.e., P(this node breaks the Chord ring)
– Depends on independent failure

•  P(no broken nodes) = (1 – (1/2)r)N

–  r = 2log(N) makes prob. = 1 – 1/N

31

Lookup with Fault Tolerance
Lookup(my-id, key-id)

 look in local finger table and successor-list
 for highest node n s.t. my-id < n < key-id
 if n exists
 call Lookup(key-id) on node n // next hop
 if call failed,
 remove n from finger table
 return Lookup(my-id, key-id)
 else return my successor // done

32

Experimental Overview

•  Quick lookup in large systems
•  Low variation in lookup costs
•  Robust despite massive failure

Experiments confirm theoretical results

33

Chord Lookup Cost Is
O(log N)

Number of Nodes

Av
er

ag
e

M
es

sa
ge

s
pe

r
Lo

ok
up

Constant is 1/2

34

Failure Experimental Setup

•  Start 1,000 CFS/Chord servers
– Successor list has 20 entries

•  Wait until they stabilize
•  Insert 1,000 key/value pairs

– Five replicas of each

•  Stop X% of the servers
•  Immediately perform 1,000 lookups

35

DHash Replicates Blocks
at r Successors

N40"

N10"
N5"

N20"

N110"

N99"

N80"

N60"

N50"

Block
17

N68"

•  Replicas are easy to find if successor fails
•  Hashed node IDs ensure independent failure

36

Massive Failures Have Little
Impact

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30 35 40 45 50

Fa
ile

d
Lo

ok
up

s
(P

er
ce

nt
)

Failed Nodes (Percent)

(1/2)6 is 1.6%

37

DHash Properties

•  Builds key/value storage on Chord
•  Replicates blocks for availability

– What happens when DHT partitions, then
heals? Which (k, v) pairs do I need?

•  Caches blocks for load balance
•  Authenticates block contents

38

DHash Data Authentication

•  Two types of DHash blocks:
– Content-hash: key = SHA-1(data)
– Public-key: key is a cryptographic public key,

data are signed by that key

•  DHash servers verify before accepting
put(key, value)

•  Clients verify result of get(key)

•  Disadvantages?

DHTs: A Retrospective

•  Original DHTs (CAN, Chord, Kademlia, Pastry,
Tapestry) proposed in 2001-02

•  Following 5-6 years saw proliferation of DHT-
based applications:
–  filesystems (e.g., CFS, Ivy, Pond, PAST)
–  naming systems (e.g., SFR, Beehive)
–  indirection/interposition systems (e.g., i3, DOA)
–  content distribution systems (e.g., Coral)
–  distributed databases (e.g., PIER)
– &c.…

39

DHTs: A Retrospective

•  Original DHTs (CAN, Chord, Kademlia, Pastry,
Tapestry) proposed in 2001-02

•  Following 5-6 years saw proliferation of DHT-
based applications:
–  filesystems (e.g., CFS, Ivy, Pond, PAST)
–  naming systems (e.g., SFR, Beehive)
–  indirection/interposition systems (e.g., i3, DOA)
–  content distribution systems (e.g., Coral)
–  distributed databases (e.g., PIER)
– &c.…

40

Have these applications succeeded—are we all
using them today?
Have DHTs succeeded as a substrate for
applications?

What DHTs Got Right

•  Consistent Hashing
–  simple, elegant way to divide a workload across

machines
–  very useful in clusters: actively used today in

Dynamo, FAWN-KV, ROAR, …
•  Replication for high availability, efficient

recovery after node failure
•  Incremental scalability: “add nodes, capacity

increases”
•  Self-management: minimal configuration

41

What DHTs Got Right

•  Consistent Hashing
–  simple, elegant way to divide a workload across

machines
–  very useful in clusters: actively used today in

Dynamo, FAWN-KV, ROAR, …
•  Replication for high availability, efficient

recovery after node failure
•  Incremental scalability: “add nodes, capacity

increases”
•  Self-management: minimal configuration

42

Unique trait: no single central server to shut
dow, control, or monitor
…well suited to “illegal” applications, be
they sharing music or resisting censorship

DHTs’ Limitations

•  High latency between peers
•  Limited bandwidth between peers (as

compared to within a cluster)
•  Lack of centralized control: another sort of

simplicity of management
•  Lack of trust in peers’ correct behavior

– securing DHT routing hard, unsolved in
practice

43

