Parallelism in the Cloud:

MapReduce

Kyle Jamieson
UCL Computer Science

COMPM038/COMPGZ06
31st January 2012
MapReduce programming model

- Simple abstraction that hides messy details of distributed computing:
 - **map**: \((k1, v1) \rightarrow \text{list}(k2, v2)\)
 - **reduce**: \((k2, \text{list}(v2)) \rightarrow \text{list}(v2)\)

- **Word count example**
 - Count the number of occurrences of each word in a large collection of documents

Word count example:

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
In this section, we discuss the implementation of MapReduce across commodity machines, which is essential for the PC cluster.

The MapReduce framework is a parallel computation model designed to process large datasets efficiently. It consists of two main phases: Map and Reduce. Each of these phases runs on distributed machines.

Map Phase
The map phase takes input files and produces intermediate files. These files are created on local disks, not moved across the network.

Reduce Phase
The reduce phase takes the intermediate files from the map phase and reduces them to a smaller output. This phase is executed on the same distributed machines as the map phase.

Distributed Machines
In a typical MapReduce setup, there is a Master node and multiple worker nodes. The Master node coordinates the overall execution, while worker nodes execute the map and reduce tasks.

Example
Consider a simple MapReduce job that processes a file containing key-value pairs. Each worker node reads a partition of the input file, applies the map function to produce intermediate key-value pairs, and then sends these pairs to their corresponding Reduce worker nodes.

Key-Value Pairs
In the context of MapReduce, key-value pairs are processed and reduced. Each key corresponds to a value, and theReduce function combines these values according to a specific operation defined by the user.

Availability
Collectively, these distributed settings and the ability to execute MapReduce on commodity machines are what make it a versatile and widely used framework.
Data transfer rates for *sort* program

(a) Normal execution

Compare: *grep* program
sort: effect of disabling backup tasks

(a) Normal execution
(b) No backup tasks
sort: effect of machine failures

(a) Normal execution

(b) No backup tasks

(c) 200 tasks killed
2003–2004: MapReduce catches on

MapReduce jobs in August 2004

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of jobs</td>
<td>29,423</td>
</tr>
<tr>
<td>Average job completion time</td>
<td>634 secs</td>
</tr>
<tr>
<td>Machine days used</td>
<td>79,186 days</td>
</tr>
<tr>
<td>Input data read</td>
<td>3,288 TB</td>
</tr>
<tr>
<td>Intermediate data produced</td>
<td>758 TB</td>
</tr>
<tr>
<td>Output data written</td>
<td>193 TB</td>
</tr>
<tr>
<td>Average worker machines per job</td>
<td>157</td>
</tr>
<tr>
<td>Average worker deaths per job</td>
<td>1.2</td>
</tr>
<tr>
<td>Average map tasks per job</td>
<td>3,351</td>
</tr>
<tr>
<td>Average reduce tasks per job</td>
<td>55</td>
</tr>
<tr>
<td>Unique map implementations</td>
<td>395</td>
</tr>
<tr>
<td>Unique reduce implementations</td>
<td>269</td>
</tr>
<tr>
<td>Unique map/reduce combinations</td>
<td>426</td>
</tr>
</tbody>
</table>
3rd February
Adapting to the Wireless Channel I
SampleRate (Bicket)

NEXT TIME