JazzyMac

An Adaptive, High Performance MAC for Long-Distance Multihop Wireless Networks

Piyakhun Nopphakhun Jofrey Kyomo Zelalem S Deresse Kanika Bahuguna

Overview

- Introduction
- Background
- Goals
- JazzyMac Design
- Evaluation
- Critical Appraisal
- Related Works
- Summary

Introduction

- Multi-hop WiFi long-distance networks (WiLD)
 - provides connectivity to rural areas
 - □ low cost

Background

- **802.11**
 - □ uses CSMA-based MAC
 - station listens before transmitting
- Problems in long distance link network
 - □ high packet loss
 - □ low throughput
 - □ long propagation delay
 - □ inter-link interference

Background cont...

TDMA with fixed time slots used by 2P and WiLDNet

- Drawbacks:
 - □ Low throughput
 - □ Links under utilization

M٩

What can we do about it?

JazzyMAC

- TDMA with dynamic slot lengths
- Fully distributed
 - □ Each node adapts its transmission slot size using purely local state and locally-observed traffic information
- Deadlock free

Goals

- Performance
 - Adapts to traffic demand, does not rely on fixed timeslot
 - Allows neighbouring transmissions that overlap
- Tradeoff between throughput and delay
 - e.g Internet telephony
- Works on any network topologies

SynOp

- Simultaneous Synchronized Operation
- Two adjacent directional links either transmit simultaneously or receive simultaneously - interference-free

Design

- Variable time slots
- Allow parallel transmission
 - Solving problem ==> neighboring-butindependent
- Improve throughput

Design cont...

Token assignment

M

Evaluation

Divergence point / Max point

M

Evaluation cont...

Improve throughput

Evaluation cont...

Improve throughput cont..

M

Evaluation cont...

Per-flow average delay

Evaluation cont...

Throughput for various topologies

Ŋ.

Aravind Network

Figure 2: Aravind Telemedicine Network. Then hospital is connected to 5 Vision Centers. The other nodes are all relays.

Critical Appraisal

- JazzyMAC's per-flow delay is lower than the others at low utilization (<100 input flows)
 - □ What about at higher utilization >100 input flows?
- The initial token assignment is computed globally during the network planning phase.
 - If new nodes join or current nodes leave the topology, how does JazzyMAC reassigns token?

Related Works

- Maximizing throughput in multihop wireless nework [Djukic and Valaee]
 - Min-max heuristic, offline algorithms to minimize delay, link bandwidths are known in advance
- Centralized and distributed algorithms to maximize throughput by taking into account interfering links [Wang et al]
- MAC implementations using 802.11 radios
 - □ 2P, WiLDNet
- Overlay-MAC, Softmac, MultiMAC,

Summary

- WiLD networks provide network access to many users in rural areas.
- These networks uses TDMA based MACs
 - ☐ They are limited by fixed size timeslot
 - Neighboring-but-independent problem
 - □ only operate in bipartite topologies
 - Links underutilized

Summary cont...

- Key innovation in JazzyMAC is to use dynamic timeslot adaptation which gives advantages over fixed size timeslot
 - □ higher throughput
 - □ lower average delay
 - unconstrained in any network topology

Questions?