
Remote Procedure Call (RPC) and
Transparency

Brad Karp
UCL Computer Science

CS GZ03 / M030
10th October 2014

2

Transparency in Distributed Systems

•  Programmers accustomed to writing code for a
single box

•  Transparency: retain “feel” of writing for one
box, when writing code that runs distributedly

•  Goals:
–  Preserve original, unmodified client code
–  Preserve original, unmodified server code
–  RPC should glue together client and server without

changing behavior of either
–  Programmer shouldn’t have to think about network

3

Transparency in Distributed Systems

•  Programmers accustomed to writing code for a
single box

•  Transparency: retain “feel” of writing for one
box, when writing code that runs distributedly

•  Goals:
–  Preserve original, unmodified client code
–  Preserve original, unmodified server code
–  RPC should glue together client and server without

changing behavior of either
–  Programmer shouldn’t have to think about network

How achievable is true transparency?
We will use NFS as a case study.
But first, an introduction to RPC itself.

4

Remote Procedure Call: Central Idea

•  Within a single program, running on a
single box, well-known notion of
procedure call (aka function call):
– Caller pushes arguments onto stack
– Jumps to address of callee function
– Callee reads arguments from stack
– Callee executes, puts return value in register
– Callee returns to next instruction in caller

•  RPC aim: let distributed programming look
no different from local procedure calls

5

RPC Abstraction

•  Library makes an API available to locally
running applications

•  Let servers export their local APIs to be
accessible over the network, as well

•  On client, procedure call generates
request over network to server

•  On server, called procedure executes,
result returned in response to client

6

RPC Implementation Details

•  Data types may be different sizes on different
machines (e.g., 32-bit vs. 64-bit integers)

•  Little-endian vs. big-endian machines
–  Big-endian: 0x11223344 is 0x11, 0x22, 0x33, 0x44
–  Little-endian is 0x44, 0x33, 0x22, 0x11

•  Need mechanism to pass procedure parameters
and return values in machine-independent
fashion

•  Solution: Interface Description Language (IDL)

7

Interface Description Languages

•  Compile interface description, produces:
– Types in native language (e.g., Java, C, C++)
– Code to marshal native data types into

machine-neutral byte streams for network
(and vice-versa)

– Stub routines on client to forward local
procedure calls as requests to server

•  For Sun RPC, IDL is XDR (eXternal Data
Representation)

Example: Sun RPC and XDR

•  Define API for procedure calls between client
and server in XDR file, e.g., proto.x

•  Compile: rpcgen proto.x, producing
– proto.h: RPC procedure prototypes, argument

and return value data structure definitions
– proto_clnt.c: per-procedure client stub code

to send RPC request to remote server
– proto_svc.c: server stub code to dispatch RPC

request to specified procedure
– proto_xdr.c: argument and result marshaling/

unmarshaling routines, host-network/network-
host byte order conversions

8

Example: Sun RPC and XDR

•  Define API for procedure calls between client
and server in XDR file, e.g., proto.x

•  Compile: rpcgen proto.x, producing
– proto.h: RPC procedure prototypes, argument

and return value data structure definitions
– proto_clnt.c: per-procedure client stub code

to send RPC request to remote server
– proto_svc.c: server stub code to dispatch RPC

request to specified procedure
– proto_xdr.c: argument and result marshaling/

unmarshaling routines, host-network/network-
host byte order conversions

9

Let’s consider a simple example…

Sun RPC and XDR:
Programming Caveats

•  Server routine return values must always be
pointers (e.g., int *, not int)
–  should declare return value static in server routine

•  Arguments to server-side procedures are
pointers to temporary storage
–  to store arguments beyond procedure end, must copy

data, not merely pointers
–  in these cases, typically allocate memory for copy of

argument using malloc()
•  If new to C, useful background in Mark Handley’s

“C for Java programmers” tutorial:
–  https://moodle.ucl.ac.uk/mod/resource/view.php?

id=430247
–  § 2.9 – 2.13 describe memory allocation

10

Sun RPC and XDR:
Programming Caveats

•  Server routine return values must always be
pointers (e.g., int *, not int)
–  should declare return value static in server routine

•  Arguments to server-side procedures are
pointers to temporary storage
–  to store arguments beyond procedure end, must copy

data, not merely pointers
–  in these cases, typically allocate memory for copy of

argument using malloc()
•  If new to C, useful background in Mark Handley’s

“C for Java programmers” tutorial:
–  https://moodle.ucl.ac.uk/mod/resource/view.php?

id=430247
–  § 2.9 – 2.13 describe memory allocation

11

Now, back to our NFS case study…

12

“Non-Distributed” NFS

•  Applications
•  Syscalls
•  Kernel filesystem implementation
•  Local disk

•  RPC must “split up” the above
•  Where does NFS make the split?

13

NFS Structure on Client

•  NFS splits client at vnode interface, below syscall
implementation

•  Client-side NFS code essentially stubs for system
calls:
–  Package up arguments, send them to server

14

NFS and Syntactic Transparency

•  Does NFS preserve the syntax of the client
function call API (as seen by applications)?
– Yes!
– Arguments and return values of system calls

not changed in form or meaning

15

NFS and Server-Side Transparency

•  Does NFS require changes to pre-existing
filesystem code on server?
– Some, but not much.
– NFS adds in-kernel threads (to block on I/O,

much like user-level processes do)
– Server filesystem implementation changes:

•  File handles over wire, not file descriptors
• Generation numbers added to on-disk i-nodes
• User IDs carried as arguments, rather than implicit

in process owner
• Support for synchronous updates (e.g., for WRITE)

16

NFS and File System Semantics

•  You don’t get transparency merely by
preserving the same API

•  System calls must mean the same thing!
•  If they don’t, pre-existing code may

compile and run, but yield incorrect
results!

•  Does NFS preserve the UNIX filesystem’s
semantics?

•  No! Let us count the ways…

17

NFS’s New Semantics: Server Failure

•  On one box, open() only fails if file doesn’t exist
•  Now open() and all other syscalls can fail if

server has died!
–  Apps must know how to retry or fail gracefully

•  Or open() could hang forever—never the case
before!
–  Apps must know how to set own timeouts if don’t

want to hang

•  This is not a quirk of NFS—it’s fundamental!

18

NFS’s New Semantics:
close() Might Fail

•  Suppose server out of disk space
•  But client WRITEs asynchronously, only on

close(), for performance
•  Client waits in close() for WRITEs to finish
•  close() never returns error for local fs!

– Apps must check not only write(), but also
close(), for disk full!

•  Reason: NFS batches WRITEs
–  If WRITEs were synchronous, close() couldn’t

fill disk, but performance would be awful

19

NFS’s New Semantics: Errors Returned
for Successful Operations

•  Suppose you call rename(“a”, “b”) on file in NFS-
mounted fs

•  Suppose server completes RENAME, crashes
before replying

•  NFS client resends RENAME
•  “a” doesn’t exist; error returned!
•  Never happens on local fs…
•  Side effect of statelessness of NFS server:

–  Server could remember all ops it’s completed, but
that’s hard

–  Must keep that state consistent and persistent across
crashes (i.e., on disk)!

–  Update the state first, or perform the operation first?

20

NFS’s New Semantics:
Deletion of Open Files

•  Client A open()s file for reading
•  Client B deletes it while A has it open
•  Local UNIX fs: A’s subsequent reads work
•  NFS: A’s subsequent reads fail
•  Side effect of statelessness of NFS server:

– Could have fixed this—server could track
open()s

– AFS tracks state required to solve this
problem

21

Semantics vs. Performance

•  Insight: preserving semantics
produces poor performance

•  e.g., for write() to local fs, UNIX can delay
actual write to disk
– Gather writes to multiple adjacent blocks, and

so write them with one disk seek
–  If box crashes, you lose both the running app

and its dirty buffers in memory
•  Can we delay WRITEs in this way on NFS

server?

22

NFS Server and WRITE Semantics

•  Suppose WRITE RPC stores client data in buffer
in memory, returns success to client

•  Now server crashes and reboots
–  App doesn’t crash—in fact, doesn’t notice!
–  And written data mysteriously disappear!

•  Solution: NFS server does synchronous WRITEs
–  Doesn’t reply to WRITE RPC until data on disk
–  If write() returns on client, even if server crashes,

data safe on disk
–  Per previous lecture: 3 seeks, 45 ms, 22 WRITES/s,

180 KB/s max throughput!
–  < 10% of max disk throughput

•  NFS v3 and AFS fix this problem (more complex)

23

Semantics vs. Performance (2)

•  Insight: improving performance changes
consistency semantics!

•  Suppose clients cache disk blocks when they
read them

•  But writes always go through to server
•  Not enough to get consistency!

–  Write editor buffer on one box, make on other
–  Do make/compiler see changes?

•  Ask server “has file changed?” at every read()?
–  Almost as slow as just reading from server…

24

NFS: Semantics vs. Performance

•  NFS’ solution: close-to-open consistency
–  Ask server “has file changed?” at each open()
–  Don’t ask on each read() after open()
–  If B changes file while A has it open, A doesn’t see

changes
•  OK for emacs/make, but not always what you

want:
–  make > make.log (on server)
–  tail –f make.log (on my desktop)

•  Side effect of statelessness of NFS server
–  Server could track who has cached blocks on reads
–  Send “invalidate” messages to clients on changes

25

Security Radically Different

•  Local system: UNIX enforces read/write
protections per-user
–  Can’t read my files without my password

•  How does NFS server authenticate user?
•  Easy to send requests to NFS server, and to

forge NFS replies to client
•  Does it help for server to look at source IP

address?
•  So why aren’t NFS servers ridiculously

vulnerable?
–  Hard to guess correct file handles!

26

Security Radically Different

•  Local system: UNIX enforces read/write
protections per-user
–  Can’t read my files without my password

•  How does NFS server authenticate user?
•  Easy to send requests to NFS server, and to

forge NFS replies to client
•  Does it help for server to look at source IP

address?
•  So why aren’t NFS servers ridiculously

vulnerable?
–  Hard to guess correct file handles!

Fixable: SFS, AFS, some NFS versions use
cryptography to authenticate client
Very hard to reconcile with statelessness!

27

NFS Still Very Useful

•  People fix programs to handle new
semantics
– Must mean NFS useful enough to motivate

them to do so!

•  People install firewalls for security
•  NFS still gives many advantages of

transparent client/server

28

Multi-Module Distributed Systems

•  NFS in fact rather simple:
–  One server, one data type (file handle)

•  What if symmetric interaction, many data types?
•  Say you build system with three modules in one

address space:
–  Web front end, customer DB, order DB

•  Represent user connections with object:
class connection {
 int fd; int state; char *buf; }

•  Easy to pass object references among three
modules (e.g., pointer to current connection)

29

Multi-Module Distributed Systems

•  NFS in fact rather simple:
–  One server, one data type (file handle)

•  What if symmetric interaction, many data types?
•  Say you build system with three modules in one

address space:
–  Web front end, customer DB, order DB

•  Represent user connections with object:
class connection {
 int fd; int state; char *buf; }

•  Easy to pass object references among three
modules (e.g., pointer to current connection)

What if we split system into three separate
servers?

30

Multi-Module Systems: Challenges

•  How do you pass class connection
between servers?
–  Could RPC stub just send object’s elements?

•  What if processing flow for connection goes:
order DB -> customer DB -> front end to send
reply?

•  Front end only knows contents of passed
connection object; underlying connection may
have changed!

•  Wanted to pass object references, not object
contents

•  NFS solution: file handles
–  No support from RPC to help with this!

31

RPC: Failure Happens

•  New failure modes not seen in simple, same-
host procedure calls:
–  Remote server failure
–  Communication (network) failure

•  RPCs can return “failure” instead of results
•  Possible failure outcomes:

–  Procedure didn’t execute
–  Procedure executed once
–  Procedure executed multiple times
–  Procedure partially executed

•  Generally, “at most once” semantics preferred

32

Achieving At-Most-Once Semantics

•  Risk: Request message lost
– Client must retransmit requests when no reply

received
•  Risk: Reply message lost

– Client may retransmit previously executed
request

– OK when operations idempotent; some aren’t,
though (e.g., “charge customer”)

– Server can keep “replay cache” to reply to
repeated requests without re-executing them

33

Summary: RPC Non-Transparency

•  Partial failure, network failure
•  Latency
•  Efficiency/semantics tradeoff
•  Security—rarely transparent!
•  Pointers: write-sharing, portable object

references
•  Concurrency (if multiple clients)
•  Solutions:

–  Expose “remoteness” of RPC to application, or
–  Work harder to achieve transparent RPC

34

Conclusions

•  Of RPC’s goals, automatic marshaling most
successful

•  Mimicking procedure call interface in
practice not so useful

•  Attempt at full transparency mostly a
failure!
–  (You can try hard: consider Java RMI)

•  Next time: implicit communication through
distributed shared memory!

