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Transparency in Distributed Systems 

•  Programmers accustomed to writing code for a 
single box 

•  Transparency: retain “feel” of writing for one 
box, when writing code that runs distributedly 

•  Goals: 
–  Preserve original, unmodified client code 
–  Preserve original, unmodified server code 
–  RPC should glue together client and server without 

changing behavior of either 
–  Programmer shouldn’t have to think about network 
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How achievable is true transparency? 
We will use NFS as a case study. 
But first, an introduction to RPC itself. 
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Remote Procedure Call: Central Idea 

•  Within a single program, running on a 
single box, well-known notion of 
procedure call (aka function call): 
– Caller pushes arguments onto stack 
– Jumps to address of callee function 
– Callee reads arguments from stack 
– Callee executes, puts return value in register 
– Callee returns to next instruction in caller 

•  RPC aim: let distributed programming look 
no different from local procedure calls 
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RPC Abstraction 

•  Library makes an API available to locally 
running applications 

•  Let servers export their local APIs to be 
accessible over the network, as well 

•  On client, procedure call generates 
request over network to server 

•  On server, called procedure executes, 
result returned in response to client 
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RPC Implementation Details 

•  Data types may be different sizes on different 
machines (e.g., 32-bit vs. 64-bit integers) 

•  Little-endian vs. big-endian machines 
–  Big-endian: 0x11223344 is 0x11, 0x22, 0x33, 0x44 
–  Little-endian is 0x44, 0x33, 0x22, 0x11 

•  Need mechanism to pass procedure parameters 
and return values in machine-independent 
fashion 

•  Solution: Interface Description Language (IDL) 
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Interface Description Languages 

•  Compile interface description, produces: 
– Types in native language (e.g., Java, C, C++) 
– Code to marshal native data types into 

machine-neutral byte streams for network 
(and vice-versa) 

– Stub routines on client to forward local 
procedure calls as requests to server 

•  For Sun RPC, IDL is XDR (eXternal Data 
Representation) 



Example: Sun RPC and XDR 

•  Define API for procedure calls between client 
and server in XDR file, e.g., proto.x 

•  Compile: rpcgen proto.x, producing 
– proto.h: RPC procedure prototypes, argument 

and return value data structure definitions 
– proto_clnt.c: per-procedure client stub code 

to send RPC request to remote server 
– proto_svc.c: server stub code to dispatch RPC 

request to specified procedure 
– proto_xdr.c: argument and result marshaling/

unmarshaling routines, host-network/network-
host byte order conversions  
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Let’s consider a simple example… 



Sun RPC and XDR: 
Programming Caveats 

•  Server routine return values must always be 
pointers (e.g., int *, not int) 
–  should declare return value static in server routine 

•  Arguments to server-side procedures are 
pointers to temporary storage 
–  to store arguments beyond procedure end, must copy 

data, not merely pointers 
–  in these cases, typically allocate memory for copy of 

argument using malloc() 
•  If new to C, useful background in Mark Handley’s 

“C for Java programmers” tutorial: 
–  https://moodle.ucl.ac.uk/mod/resource/view.php?

id=430247 
–  § 2.9 – 2.13 describe memory allocation  
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Now, back to our NFS case study… 
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“Non-Distributed” NFS 

•  Applications 
•  Syscalls 
•  Kernel filesystem implementation 
•  Local disk 

•  RPC must “split up” the above 
•  Where does NFS make the split? 
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NFS Structure on Client 

•  NFS splits client at vnode interface, below syscall 
implementation 

•  Client-side NFS code essentially stubs for system 
calls: 
–  Package up arguments, send them to server 
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NFS and Syntactic Transparency 

•  Does NFS preserve the syntax of the client 
function call API (as seen by applications)? 
– Yes! 
– Arguments and return values of system calls 

not changed in form or meaning 



 
15 

NFS and Server-Side Transparency 

•  Does NFS require changes to pre-existing 
filesystem code on server? 
– Some, but not much. 
– NFS adds in-kernel threads (to block on I/O, 

much like user-level processes do) 
– Server filesystem implementation changes: 

•  File handles over wire, not file descriptors 
• Generation numbers added to on-disk i-nodes 
• User IDs carried as arguments, rather than implicit 

in process owner 
• Support for synchronous updates (e.g., for WRITE) 
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NFS and File System Semantics 

•  You don’t get transparency merely by 
preserving the same API 

•  System calls must mean the same thing! 
•  If they don’t, pre-existing code may 

compile and run, but yield incorrect 
results! 

•  Does NFS preserve the UNIX filesystem’s 
semantics? 

•  No! Let us count the ways… 
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NFS’s New Semantics: Server Failure 

•  On one box, open() only fails if file doesn’t exist 
•  Now open() and all other syscalls can fail if 

server has died! 
–  Apps must know how to retry or fail gracefully 

•  Or open() could hang forever—never the case 
before! 
–  Apps must know how to set own timeouts if don’t 

want to hang 

•  This is not a quirk of NFS—it’s fundamental! 
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NFS’s New Semantics: 
close() Might Fail 

•  Suppose server out of disk space 
•  But client WRITEs asynchronously, only on 

close(), for performance 
•  Client waits in close() for WRITEs to finish 
•  close() never returns error for local fs! 

– Apps must check not only write(), but also 
close(), for disk full! 

•  Reason: NFS batches WRITEs 
–  If WRITEs were synchronous, close() couldn’t 

fill disk, but performance would be awful 
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NFS’s New Semantics: Errors Returned 
for Successful Operations 

•  Suppose you call rename(“a”, “b”) on file in NFS-
mounted fs 

•  Suppose server completes RENAME, crashes 
before replying 

•  NFS client resends RENAME 
•  “a” doesn’t exist; error returned! 
•  Never happens on local fs… 
•  Side effect of statelessness of NFS server: 

–  Server could remember all ops it’s completed, but 
that’s hard 

–  Must keep that state consistent and persistent across 
crashes (i.e., on disk)! 

–  Update the state first, or perform the operation first? 
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NFS’s New Semantics: 
Deletion of Open Files 

•  Client A open()s file for reading 
•  Client B deletes it while A has it open 
•  Local UNIX fs: A’s subsequent reads work 
•  NFS: A’s subsequent reads fail 
•  Side effect of statelessness of NFS server: 

– Could have fixed this—server could track 
open()s 

– AFS tracks state required to solve this 
problem 
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Semantics vs. Performance 

•  Insight: preserving semantics 
produces poor performance 

•  e.g., for write() to local fs, UNIX can delay 
actual write to disk 
– Gather writes to multiple adjacent blocks, and 

so write them with one disk seek 
–  If box crashes, you lose both the running app 

and its dirty buffers in memory 
•  Can we delay WRITEs in this way on NFS 

server? 
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NFS Server and WRITE Semantics 

•  Suppose WRITE RPC stores client data in buffer 
in memory, returns success to client 

•  Now server crashes and reboots 
–  App doesn’t crash—in fact, doesn’t notice! 
–  And written data mysteriously disappear! 

•  Solution: NFS server does synchronous WRITEs 
–  Doesn’t reply to WRITE RPC until data on disk 
–  If write() returns on client, even if server crashes, 

data safe on disk 
–  Per previous lecture: 3 seeks, 45 ms, 22 WRITES/s, 

180 KB/s max throughput! 
–  < 10% of max disk throughput 

•  NFS v3 and AFS fix this problem (more complex) 
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Semantics vs. Performance (2) 

•  Insight: improving performance changes 
consistency semantics! 

•  Suppose clients cache disk blocks when they 
read them 

•  But writes always go through to server 
•  Not enough to get consistency! 

–  Write editor buffer on one box, make on other 
–  Do make/compiler see changes? 

•  Ask server “has file changed?” at every read()? 
–  Almost as slow as just reading from server… 
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NFS: Semantics vs. Performance 

•  NFS’ solution: close-to-open consistency 
–  Ask server “has file changed?” at each open() 
–  Don’t ask on each read() after open() 
–  If B changes file while A has it open, A doesn’t see 

changes 
•  OK for emacs/make, but not always what you 

want: 
–  make > make.log (on server) 
–  tail –f make.log (on my desktop) 

•  Side effect of statelessness of NFS server 
–  Server could track who has cached blocks on reads 
–  Send “invalidate” messages to clients on changes 



 
25 

Security Radically Different 

•  Local system: UNIX enforces read/write 
protections per-user 
–  Can’t read my files without my password 

•  How does NFS server authenticate user? 
•  Easy to send requests to NFS server, and to 

forge NFS replies to client 
•  Does it help for server to look at source IP 

address? 
•  So why aren’t NFS servers ridiculously 

vulnerable? 
–  Hard to guess correct file handles! 
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forge NFS replies to client 
•  Does it help for server to look at source IP 

address? 
•  So why aren’t NFS servers ridiculously 

vulnerable? 
–  Hard to guess correct file handles! 

Fixable: SFS, AFS, some NFS versions use 
cryptography to authenticate client 
Very hard to reconcile with statelessness! 
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NFS Still Very Useful 

•  People fix programs to handle new 
semantics 
– Must mean NFS useful enough to motivate 

them to do so! 

•  People install firewalls for security 
•  NFS still gives many advantages of 

transparent client/server 
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Multi-Module Distributed Systems 

•  NFS in fact rather simple: 
–  One server, one data type (file handle) 

•  What if symmetric interaction, many data types? 
•  Say you build system with three modules in one 

address space: 
–  Web front end,  customer DB, order DB 

•  Represent user connections with object: 
class connection { 
  int fd; int state; char *buf; } 

•  Easy to pass object references among three 
modules (e.g., pointer to current connection) 
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•  NFS in fact rather simple: 
–  One server, one data type (file handle) 

•  What if symmetric interaction, many data types? 
•  Say you build system with three modules in one 

address space: 
–  Web front end,  customer DB, order DB 

•  Represent user connections with object: 
class connection { 
  int fd; int state; char *buf; } 

•  Easy to pass object references among three 
modules (e.g., pointer to current connection) 

What if we split system into three separate 
servers? 
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Multi-Module Systems: Challenges 

•  How do you pass class connection 
between servers? 
–  Could RPC stub just send object’s elements? 

•  What if processing flow for connection goes: 
order DB -> customer DB -> front end to send 
reply? 

•  Front end only knows contents of passed 
connection object; underlying connection may 
have changed! 

•  Wanted to pass object references, not object 
contents 

•  NFS solution: file handles 
–  No support from RPC to help with this! 
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RPC: Failure Happens 

•  New failure modes not seen in simple, same-
host procedure calls: 
–  Remote server failure 
–  Communication (network) failure 

•  RPCs can return “failure” instead of results 
•  Possible failure outcomes: 

–  Procedure didn’t execute 
–  Procedure executed once 
–  Procedure executed multiple times 
–  Procedure partially executed 

•  Generally, “at most once” semantics preferred 
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Achieving At-Most-Once Semantics 

•  Risk: Request message lost 
– Client must retransmit requests when no reply 

received 
•  Risk: Reply message lost 

– Client may retransmit previously executed 
request 

– OK when operations idempotent; some aren’t, 
though (e.g., “charge customer”) 

– Server can keep “replay cache” to reply to 
repeated requests without re-executing them 
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Summary: RPC Non-Transparency 

•  Partial failure, network failure 
•  Latency 
•  Efficiency/semantics tradeoff 
•  Security—rarely transparent! 
•  Pointers: write-sharing, portable object 

references 
•  Concurrency (if multiple clients) 
•  Solutions: 

–  Expose “remoteness” of RPC to application, or 
–  Work harder to achieve transparent RPC 
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Conclusions 

•  Of RPC’s goals, automatic marshaling most 
successful 

•  Mimicking procedure call interface in 
practice not so useful 

•  Attempt at full transparency mostly a 
failure! 
–  (You can try hard: consider Java RMI) 

•  Next time: implicit communication through 
distributed shared memory! 


