Background: I/O Concurrency

Brad Karp
UCL Computer Science

CS GZ03 / M030
3rd October 2012
Outline

• “Worse Is Better” and Distributed Systems

• Problem: Naïve single-process server leaves system resources idle; I/O blocks
 – Goal: I/O concurrency
 – Goal: CPU concurrency

• Solutions
 – Multiple processes
 – One process, many threads
 – Event-driven I/O (not in today’s lecture)
Review: How Do Servers Use Syscalls?

- Consider server_1() web server (in handout)
Review: How Do Servers Use Syscalls?

Server waits for each resource in turn
Each resource largely idle
What if there are many clients?
Performance and Concurrency

• Under heavy load, server_1():
 – Leaves resources idle
 – ...and has a lot of work to do!

• Why?
 – Software poorly structured!
 – What would a better structure look like?
Solution: I/O Concurrency

• Can we overlap I/O with other useful work? Yes:
 – Web server: if files in disk cache, I/O wait spent mostly **blocked on write to network**
 – Networked file system client: could **compile first part of file while fetching second part**

• **Performance benefits potentially huge**
 – Say one client causes disk I/O, **10 ms**
 – If other clients’ requests in cache, could serve **100 other clients during that time!**
One Process
May Be Better Than You Think

• OS provides I/O concurrency to application transparently when it can, e.g.,
 – Filesystem does *read-ahead* into disk buffer cache; *write-behind* from disk buffer cache
 – Networking code copies arriving packets into application’s kernel socket buffer; copies app’s data into kernel socket buffer on write()
I/O Concurrency with Multiple Processes

• Idea: start new UNIX process for each client connection/request
• Master process assigns new connections to child processes
• Now plenty of work to keep system busy!
 – One process blocks in syscall, others can process arriving requests
• Structure of software still simple
 – See server_2() in webserver.c
 – fork() after accept()
 – Otherwise, software structure unchanged!
Multiple Processes: More Benefits

• Isolation
 – Bug while processing one client’s request leaves other clients/requests unaffected
 – Processes do interact, but OS arbitrates (e.g., “lock the disk request queue”)

• CPU concurrency for “free”
 – If more than one CPU in box, each process may run on one CPU
CPU Concurrency

• Single machine may have multiple CPUs, one shared memory
 – Symmetric Multiprocessor (SMP) PCs
 – Intel Core Duo

• I/O concurrency tools often help with CPU concurrency
 – But way more work for OS designer!

• Generally, CPU concurrency way less important than I/O concurrency
 – Factor of 2X, not 100X
 – Very hard to program to get good scaling
 – Easier to buy 2 machines (see future lectures!)
Problems with Multiple Processes

• fork() may be expensive
 – Memory for new address space
 – 300 us minimum on modern PC running UNIX

• Processes fairly isolated by default
 – Memory not shared
 – How do you build web cache on server visible to all processes?
 – How do you simply keep statistics?
Concurrency with Threads

• Similar to multiple processes
• Difference: one address space
 – All threads share same process’ memory
 – One stack per thread, inside process
• Seems simple: single-process structure!
• Programmer needs to use locks
• One thread can corrupt another (i.e., no cross-request isolation)
Concurrent with Threads

- App1
 - t1 stack
 - t2 stack

- App2

User Space

Kernel
- Filesystem
- Disk Driver

Hardware

Diagram illustrating concurrency through threads and their stacks.
Threads: Low-Level Details Are Hard!

- Suppose thread calls read() (or other blocking syscall)
 - Does whole process block until I/O done?
 - If so, no I/O concurrency!

- Two solutions:
 - Kernel-supported threads
 - User-supported threads
Kernel-Supported Threads

• OS kernel aware of each thread
 – Knows if thread blocks, e.g., disk read wait
 – Can schedule another thread

• Kernel requirements:
 – Per-thread kernel stack
 – Per-thread tables (e.g., saved registers)

• Semantics:
 – Per-process: address space, file descriptors
 – Per-thread: user stack, kernel stack, kernel state
Kernel-Supported Threads

```
<table>
<thead>
<tr>
<th>Kernel-Supported Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kernel</strong></td>
</tr>
<tr>
<td><strong>User Space</strong></td>
</tr>
<tr>
<td><strong>Disk Driver</strong></td>
</tr>
<tr>
<td><strong>Filesystem</strong></td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>App1</th>
<th>App2</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="t1 stack, table" /></td>
<td><img src="image" alt="t2 stack, table" /></td>
</tr>
</tbody>
</table>

```

```
<table>
<thead>
<tr>
<th>Hardware</th>
</tr>
</thead>
</table>

```
Kernel Threads: Trade-Offs

• Kernel can schedule one thread per CPU
 – Fits our goals well: both CPU and I/O concurrency

• But kernel threads expensive, like processes:
 – Kernel must help create each thread
 – Kernel must help with thread context switch!
 • Which thread took a page fault?
 – Lock/unlock must invoke kernel, but heavily used

• Kernel threads not portable; not offered by many OSes
User-Level Threads

• Purely inside user process; kernel oblivious
• Scheduler within user process for process’ own threads
 – In addition to kernel’s process scheduler
• User-level scheduler must
 – Know when thread makes blocking syscall
 – Not block process; switch to another thread
 – Know when I/O done, to wake up original thread
User-Level Thread Implementation
User-Level Threads: Details

- Apps linked against **thread library**
- Library contains “fake” read(), write(), accept(), &c. syscalls
- Library can start **non-blocking** syscall operations
- Library marks threads as **waiting**, switches to **Runnable** thread
- Kernel notifies library of I/O completion and other events; library marks **waiting** thread **Runnable**
User-Level Threads: read() Example

```c
read() {
    tell kernel to start read;
    mark thread waiting for read;
    sched();
}
```

```c
sched() {
    ask kernel for I/O completion events;
    mark corresponding threads runnable;
    find runnable thread;
    restore registers and return;
}
```
User-Level Threads: Event Notification

• Events thread library needs from kernel:
 – new network connection
 – data arrived on socket
 – disk read completed
 – socket ready for further write()s

• Resembles miniature OS inside process!

• Problem: user-level threads demand significant kernel support:
 – non-blocking system calls
 – uniform event delivery mechanism
Event Notification in Typical OSes

• Usually, event notification only partly supported; e.g., in UNIX:
 – new TCP connections, arriving TCP/piper/tty data: YES
 – filesystem operation completion: NO

• Similarly, not all syscalls can be started without waiting, e.g., in UNIX:
 – connect(), read()/write() on socket
 – open(), stat(): NO
 – read() from disk: SOMETIMES (e.g., aio_read())
Non-blocking System Calls: Hard to Implement

• Typical syscall implementation, inside the kernel, e.g., for read() (sys_read.c):

```c
sys_read(fd, user_buffer, n) {
    // read the file’s i-node from disk
    struct inode *i = alloc_inode();
    start_disk(..., i);
    wait_for_disk(i);
    // the i-node tells us where the data are; read it.
    struct buf *b = alloc_buf(i->...);
    start_disk(..., b);
    wait_for_disk(b);
    copy_to_user(b, user_buffer);
}
```
Non-blocking System Calls:
Hard to Implement

- Typical syscall implementation, inside the kernel,

Why not just return to user program instead of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?

```c
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->...);
start_disk(..., b);
wait_for_disk(b);
copy_to_user(b, user_buffer);
```
Non-blocking System Calls: Hard to Implement

- Typical syscall implementation, inside the kernel,

Why not just return to user program instead of calling wait_for_disk()?
How will kernel know where to continue?
In user space? In kernel?

```
wait_for_disk(i);
// the i-node tells us where the data are; read it.
struct buf *b = alloc_buf(i->...);
start_disk(..., b);
wait_for_disk(b);
copy_to_user(b, user_buffer);
```
Typical syscall implementation, inside the kernel, e.g., for read() (sys_read.c):

```c
sys_read(fd, user_buffer, n) {
    // read the file's i-node from disk
    struct inode *i = alloc_inode();
    start_disk(..., i);
    wait_for_disk(i);
    // the i-node tells us where the data are; read it.
    struct buf *b = alloc_buf(i->...);
    start_disk(..., b);
    wait_for_disk(b);
    copy_to_user(b, user_buffer);
}
```

Why not just return to user program instead of calling `wait_for_disk()`?

How will kernel know where to continue?

In user space? In kernel?
Non-blocking System Calls: Hard to Implement

• Typical syscall implementation, inside the kernel,

```c
sys_read(fd, user_buffer, n) {
    // read the file's i-node from disk
    struct inode* i = alloc_inode();
    start_disk(..., i);
    wait_for_disk(i);
    // the i-node tells us where the data are; read it.
    struct buf*b = alloc_buf(i->...);
    start_disk(..., b);
    wait_for_disk(b);
    copy_to_user(b, user_buffer);
}
```

Why not just return to user program instead of calling `wait_for_disk()`?

How will kernel know where to continue?

In user space? In kernel?

```c
wait_for_disk(i);
```

Problem: Keeping state for complex, multi-step operations

```c
wait_for_disk(i);
wait_for_disk(b);
copy_to_user(b, user_buffer);
```
User-Threads: Implementation Choices

- Live with only partial support for user-level threads
- New operating system with totally different syscall interface
 - One syscall per non-blocking “sub-operation”
 - Kernel doesn’t need to keep state across multiple steps
 - e.g., `lookup_one_path_component()`
- Microkernel: no system calls, just messages to servers, with non-blocking communication
Threads: Programming Difficulty

- Sharing of data structures in one address space
- Even on single CPU, thread model necessitates CPU concurrency
 - Locks often needed for mutual exclusion on data structures
 - May only have wanted to overlap I/O wait!
- Events usually occur one-at-a-time
 - Can we do CPU sequentially, and overlap only wait for I/O?
 - Yes: event-driven programming
Event-Driven Programming

- Foreshadowed by user-level threads implementation
 - Organize software around event arrival
- Write software in state-machine style
 - “When event X occurs, execute this function.”
- Library support for registering interest in events
 (e.g., data available to read())
- Desirable properties:
 - Serial nature of events preserved
 - Programmer sees only one event/function at a time